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%'e investigate the contribution of massless fields of spins 0, T, and 1 to the vacuum polarization

near the event horizon of static Ricci-flat space-times. %e do not assume any particular spatial
symmetry. Within the Page-Brown "ansatz" we calculate (P )' and ( T„„)" near static distorted
black holes, for both the Hartle-Hawking (

~
)~) and Boulware ( ) )q) vacua. Using Israel's descrip-

tion of static space-times, ~e express these quantities in an invariant geometric way. %e obtain that

(P )P and ( T„„)gnear the horizon depend only on the two-dimensional geometry af the horizon
surface. We find (Pi)g=(1/48m )Ko, ( Too)g=(7a+ 12P)Eoi —a'~'Idaho. Eo is the Gaussian cur-
vature of the horizon, and a and P are numerical coefficients depending on the spin of a field. The
term in '2'~0 is characteristic of the distortion of the black hole. %hen the event horizon is not
distorted, Eo is a constant and this term disappears.

I. INTRODUCTION

The problem of vacuum polarization near black holes is
of particular interest for several reasons. Knowledge of
the renormalized vacuum expectation value of the stress-
energy tensor [(T„"(x))' ], which can be considered as a
measure of the vacuum polarization, is crucial in order to
determine the space-time evolution of an evaporating
black hole. As a first step, one usually considers the situ-
ation when the space-time geometry is given; that is, one
deals with the quantum field theory on a given space-time
background. Such an approximation is expected to be
rather good when the mass M of the black hole is much
larger than the Planckian mass mpi ——(i)ic/6)'~ . In this
case, one can use the one-loop approximation in which the
contributions of different physical fields to (T„")'~are
summed additively and may be considered separately.
The contributions of massive fields (with mass m) contain
the additional factor e=mpi /m M . The presence of a
small pariimeter e {for A, =It/mc &&26M/cz) and the fact
that the contributions of massive fields are essentially lo-
cal allow one to study them in detail. ' The contributions
of massless fields which are essentially nonlocal are much
more complicated. The aim of this paper is to investi-
gate the contribution of massless fields of spin 0, —,', and 1

to the vacuum polarization near the event horizon of stat-
ic Ricci-fiat space-times. We do not assume any particu-
lar spatial symmetry for the geometry. A rather simple
approach for calculating (T "(x)) in static space-times
has been proposed by Page. His approximation has been
shown to be extremely good in the external space-time of
a Schwarzschild black hole. Another approach which
gives, for a conformal scalar field in the Schwarzschild
metric, the same approximative expressions as Page has
been proposed by Brown. ' These approaches are based
on the possibility of obtaining (T„") in the space-time
of interest from that calculated in an appropriate confor-
mally related space-time where trace anomalies vanish. A
brief description of these approaches and their compar-

ison is given in Sec. II. We analyze within Page's approx-
imation the infiuence of an external gravitational field on
the vacuum polarization near black holes. Such a field
arises when there are massive bodies outside of the black
hole. Their gravitational field changes the metric near the
event horizon and distorts the black hole. 9' In the case
of the scalar field P, there is also some interest in the in-
vestigation of ({{))"",which describes the quantum fiuc-
tuations of this field. We will denote by (T„") and

(P ) the corresponding quantities obtained in Page and
Brown's approximation. As is known, these expectation
values depend on the choice of the vacuum state. We will
deal here with the Hartle-Hawking (

~
)ir ) and the

Boulware (
~ )a ) vacua corresponding to a thermal and to

an empty state at large radii, respectively. (
~

)s is patho-
logical at the horizon in the sense that (T„")s"and
(tI) )s diverge there. ) From a mathematical point of
view the study of the behavior of (P )' and (T„")""
near the horizon in the framework of Page and Brown's
approximation means the investigation of properties of
scalars and tensor invariants constructed from the Weyl
tensor, the Killing vector, and their derivatives near the
fixed point of the Killing vector. The necessary informa-
tion concerning the geometrical properties of static
space-tines is collected in Sec. III. In Sec. IV we describe
the convenient choice of coordinates proposed by Israel'
for studying the static metrics and we obtain the expan-
sion of geometrical invariants near the event horizon. In
Sec. V we obtain the explicit expressions of (P )ir and
(P )ii near the event horizon of the distorted black hole.
In Sec VI the co.mponents of (T&")H and (T&")s near
the horizon are calculated and their properties are dis-
cussed. We find that (P )0 and ( To)H near the horizon
depend only on the two-dimensional geometry of the hor-
izon surface. (P )~ is proportional to the Gaussian cur-
vature Eo of this surface [see Eq. (5.4)]. (To)H is pro-

rtional to JCoz and 'z'mo [see Eq. (6.7)]. The term in
'bXO is characteristic of the distortion of the black hole.

&@hen the event horizon is not distorted, Lo is a constant
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and this term disappears.
In a number of eases, the formulas obtained here coin-

cide identically with the exact values of (4 )H and

( T„")~. In particular, it happens for ((() )~ (Ref. 1}and

( T„")H of the electromagnetic field"' at the horizon of
the Schwarzschild black hole and for ((It )~ at the pole of
the event horizon of the axially symmetric distorted black
hole. '

We use the sign conventions of Misner, Thorne, and
Wheeler' and Planck's units A=c =G = 1.

1

(90)8'HM'

r1=2MIr .

1 —n'(4 —3n}' 5. ~ o

(1 ~)2» 0»

+24rI (35p"5„+5i"5„') (2.7)

(2.8)

II. PAGE AND BROWN APPROXIMATION
FOR &P') AND & T ")

In 1982 Page proposed a rather simple approach for
calculating (T„„)' in static spaces with the geometry
obeying the equation

The analogous approximation can also be used for the ex-

pectation value of T»" in the Boulware vacuum state

)ii with the result'

( T„"(r))p ——
~ 4

— (5„" 45p"—5„)
(90)8 M

R»„——Ag»„(A=const) . (2.1)

Page's approach is based on the following two facts. (i}
Under conformal transformations

dS =Q (x)dS (2.2)

here,

H "=—R R "+ RR "+(—,'R pR~P —,—R2)5"—
I»"=2R »'" 2RR»". + (—,

' R 2R '~ ~)—5»",—.
(2.4)

and a,P,y are numerical coefficients depending on the
spin s and on the number of polarizations h(s} of the
fields. Their values (calculated by dimensional regulariza-
tion} are

a= [3h (0)+ —', h ( —,
' )+18h (1)],

57

( T„")""(for conformally related states) transforms in
such a way that the following expression remains invari-
ant:

g 1/2I ( T v)rm+a[(Cav ing};P + ( R PCav ing]

+P(2H»" 4R~PC "p—„)+(1/G)yI»"I; (2.3}

+24(350 5»0+5i "5» ) (2 9)

For a scalar field P, Page's approximation in the static
Ricci-flat space-time gives for (P ) in the Boulware vacu-
um and in the Hartle-Hawking vacuum the following re-
sults:

I X' X~
192~ X

(2.10)

Here

2 P 1 2
X'X~

48~X
"-

4X
(2.11}

(2.12)

and icp is the surface gravity of the black hole (1j4M}.
Brown7 s proposed another approach which gives, for a

conformal scalar field in the Schwarzschild space-time,
the same approximative expressions (2.7} and (2.9). His
approach is based on the possibility to choose, in the space
where conformal anomalies are absent, the state for which
the average value of (T„")"'vanishes. In the static
Ricci-flat (R~p=0) space-time for the choice of the con-
formal factor (2.6) this ansatz gives

P= [—h(0) ——", h( —,
'

) —31h(1)],
576(hr

(2.5) ( T v)P A(0) v+pg(0) v

A' ' "=—8C "PCO ——'(CO~ ). '"
~P

(2.13)

y= [Zh (0)+3h ( —,)+12h (1)] .
57

(ii) If the static space-time dS (with Killing vector P}
obeys the relation (2.1) and the conformal factor in Eq.
(2.2} is 8"' "=—SC "&~ —SC~P I

+ —,
'

(CO~ ).p'P], (2.14)

—4CO»(CO~ )'"—4CO"(CO~ ),„
—8CO»CO"(CO~ )+25»"[2COP(CO~ ).p+ (CO~ )

Q = —g»P,

then conformal anomalies in the space dS are absent.
Page restricted himself to the conformal massless scalar
field and used the Gaussian approximation for the propa-
gator in the conformal space dS . For the Schwarzschild
space-time and the Hartle-Hawking vacuum state

~ )H,
this approximation gives

Here

co=lnQ= —,
'

ln( —g»P)

—8CO»~ 4CO»(CO~CO—)' —4CO (CO~CO )»
—8CO»CO (CO~67 )+45» [CO~pCO +(CO~CO );pCO

+—,'(CO~ ) ] . (2.15}

(2.16)
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and coefficients a and P are given by Eq. (2.5). This ex-
pression for the stress-energy tensor is related with the
Boulware vacuum choice and in the case of the scalar
field near the Schwarzschild black hole it reproduces Eq.
(2.9).

In the general case, the conformal factor o) relating the
physical space-time and the space without conformal
anomalies is defined up to some freedom associated with
the choice of the vacuum state. In particular for the stat-
ic Ricci-flat space-time, e allows the following transfor-
mation:

(2.17)

(i.e., e =Q =0 e '), where t is the Killing time
[p=(B/Br)('] and a is an arbitrary constant. Brown and
Ottewill have shown that the choice

Brown-Ottewill formula gives the result which coincides
with the exact value of ( T„")H".

III. GEOMETRICAL PROPERTIES
OF STATIC DISTORTED SLACK HOLES

1k(i')= i(k); +C,i)=0 (3.1)

Here we collect results connected with the geometrical
properties of static black holes. We begin by discussing
the properties of the scalar and tensor invariants in the
static space-time which are constructed with the help of
the Killing vector (for a general discussion see the paper
by Boyer' ).

Let (ei' be a Kilhng vector field in the static space-time
with metric g&„,

' gg ~0. It means that the following re-
lations are satisfied:

Q =21TKp, (2.18) (3.2)

where so is the surface gravity of a black hole, corre-
sponds to the choice of the Hartle-Hawking vacuum state.
The expectation value of the stress-energy tensor in this
case is of the form

0;p;y=~ pysk'. (3.3)

Denote X= —g„P, then using the Killing equation (3.1)
one can obtain the following relations:

where

(2.19) X P=O,
—X X' = —Xg .pP'P —3g( gp.

(3.4)

(3.5)

v g(0) v+g(1) v+g(2) v
(2.20)

Equations (3.2) and (3.3) allow one to rewrite Eq. (3.5) in
the following two equivalent forms:

A (0)„"and 8 (0)„"are given by Eqs. (2.14) and (2.15), and
X X'

= —2D,
X

(3.6)

g{1) v Kp I

3X' ' " X
X . 5+ " +8C p

2&o' „44„P
X2 P X

X X'=X(X. "—2R pggP),

where

(3.7)

(3.8)

(2.21)
g(1) v 3g (1) v

g(2) v g (2) v

For the scalar massless field in the static Ricci-flat space-
time Eqs. (2.19}—(2.21) give the same result as that ob-
tained from Page's approximation. It should be stressed
that the Brown-Ottewill formula (2.19) at far distances
from the black hole gives

fa;p;y =Capysk

X.~'~= —2D .

Equation (3.2) implies that

g .p=X 'g(~ p}
—=—,'X '(g'~ p

—AX ) .

(3.9)

(3.10)

(3.11)

We restrict ourselves by considering the Ricci-flat static
metrics. In this case Eqs. (3.3) and (3.7) read

( T„")ir -2ao (a+P)(5„" 45„5o") . — (2.22) Using this relation one can obtain

For the values of coefficients a and P given by Eq. (2.5)
this expression reproduces correctly the behavior of the
thermal (with temperature 6)=~o/2ir) stress-energy densi-

ty for the scalar and spinor fields. However, it gives the
wrong sign and value for the electromagnetic field. It
should be noted that the Brown-Ottewill formula was ob-
tained using the values of a, P, and y as given by Eq.
(2.5). Different renormalization procedures give the same
values for all the coefficients in Eq. (2.5) except the coeffi-
cient before h (1) in y. The possibility exists that using
this freedom one may "improve" the approximation in the
case of the electromagnetic field. Nevertheless, it appears
that at the horizon of a Schwarzschild black hole the

g~.pgP'y = (2D)~P+X ~X'y),1
(3.12)

4;pPVy;s= 2DC;s . — (3.13}

l X~X„ PX.„„=+—g„g„+— ' ' +2C„„pPg (3.14)

D ~ ——2C~~P'Pg (3.15)

In what follows we shall also need a number of relations
listed below which can be easily verified by using the
mentioned properties of P:
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D.„,„=2C p„s,. P'Pg +2C P.iCaptsf"0

+2C g~P'Pg „ (3.16)

to define these quantities for other values of X. The con-
straints (4.8) and (4.9) will be preserved.

Let hatt' be a unit vector in the direction X":
%'e suppose now that the considered space-time

possesses a bifurcate Killing horizon. Then at the two-
dimensional surface of the bifurcation of the horizon

P=0 and D is finite and negative. '

IU. ISRAEL'S COORDINATES AND EXPANSION
OP GEOMETRICAL INVARIANTS

NEAR THE HORIZON
OF STATIC DISTORTED BLACK HOLES

a~ =X~y2~X'" .

Denote

X(~X(a
~AB

2 X(AB

then we have

II„,=X~(k, 5„'5 b kn„—n

(4.11)

(4.12)

dS2= Xd—t + +h,bd8'd8,
4 X

where a,b, . . .=2,3, hub =hah (X,8'), and

(4.1)

In order to study the behavior of geometric invariants
near the event horizon of static black holes it appears con-
venient to use the coordinates introduced by Israel. ' Us-
ing the results of his paper one can show that the metric
of a static space-time can be written as

C~gppPg =IIgp

CaattcP =0

C~a =—&~a~& ~w XCD CD% M —1

(4.14)

(4.15)

+X'"a.~(5„'n, +5,'n„), 11„"=0. (4.13)

In the Ricci-flat space-time the following relations are
valid:"

x(X,8') =( D/2)'i' —. (4.2)
=X '(ll„'5-, +11,'5„'—ll„'5,'—ll, '5„) .

We denote by ( }., the covariant derivative with respect to
the two-dimensional metric These relations allow one to show that

(4.16)

dh =h~d8'd8 .

We also use the three-dimensional metric

p dX
dq =qqitdx "dxp= +h,b d8'd8

4 X

(4.3)

(4.4)

C =C.~,P'PP'= 4dk, —

E=Cp„sC~™—
=8X C q~C ~Pg P
=SX IIgg0"

(4.17)

axbgb =K k~,—1 (4.5}

(A,B, . . .=1,2,3), and denote the covariant derivative
with respect to this metric by ( )

~

z. Let K K'
=82 k bk +k +2

Xz
(4.18)

axK= —
2 k p

1

Xaxk, = —k, b+ —,
' k5 ——,'(a '),, '

(4.6)

[(k k'"—k }5 +2kk ] (4.7)

K =a.k ——,'X(k, k'"—k ),
a.~= —x(k, —k. '., ) .

(4.8)

(4-9)

Here K is the Gaussian curvature of the two-dimensional
surface X =const and

(4.10)

then X'~2k~ is the external curvature of the two-
dimensional surface X=const embedded in the three-
dimensional space dq . The condition that the space-time
(4.1) is Ricci fiat implies the relations

a=pa„x", k, =g k bX",

k = g k„X", h~ ——g h~bx", (4.19)

K= g KX".
rg =0

If the quantities hp, b and ~p are given, then substituting
Eq. (4.19) into (4.9) one can define all the coefficients in
the series. The following formulas for the first few coeffi-
cients will be used:

At the event horizon X=0 and ~ is finite. The regular-
ity of the space-time near the horizon means that the in-
variants E and K are finite and h, b is regular. Equations
(4.8), (4.9), and (4.18) show that k,b and k are finite at the
horizon. We can write the following expansions for the
quantities defining the geometry near the horizon:

(All the operations with a,b, . . . indices are performed us-
ing the two-dimensional metric h,b and its inverse b . )

Equations (4.5)—(4.7) play the role of "dynamical" equa-
tions and Eqs. (4.8) and (4.9) are "constraints. " Given the
values K, h,b, and k,b on the surface X =Xp, satisfying
the constraint equations, then Eqs. (4.5)—(4.7} allow one

Kp ——~pkp,

k„'=-,' k,5.',
1 2 1«o)'—,ko:."

4&0 4m 02

(4.20)

(4.21)

(4.22)
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2

so 8Ko

1
~ lab = kp~p ~

2Ko

(4.23)

(4.24)

curvature' of the black hole. The divergent part of this
expression correctly reproduces the behavior of (P )p
near the Schwarzschild black hole.

The value of (P )H is finite at the horizon. Using the
relations (4.20) and (4.27) one can verify that at the hor-
izon (P )& depends only on the Gaussian curvature Ko
of the two-dimensional surface of the horizon:

1
h2, b

— ko h~+ k, ;ho,b,
4x'o 2' (4.25) (0')H =,&o .

48m.
(5.4)

xo, ——0,
1

Kf 2 )Co

1~2= ——,kt .

(4.26)

(4.27)

(4.28)

($ )~ NEAR DISTORTED BLACK HOLES

In order to describe the behavior of quantities (P )$
and (P )~ given by Eqs. (2.10) and (2.11) near distorted
black holes we express them in terms of the invariant
functions which enter in the Israel metric (4.1). Namely,
using Eqs. (3.6}and (4.2) we have

—K

48 X
(5.1)

The quantities h~ and a'o ——const may be considered as
the "initial data" for the dynamical equations (4.5)—(4.7).
An arbitrariness of a constant ao reflects the possibility of
changing the normalization of P. We assume that the
normalization of P is chosen in such a way that
g&P= —1 at infinity. In this case ~o coincides with the
surface gravity of the black hole.

It could be noted that this formula reproduces the exact
value of (P )H at the horizon of a Schwarzschild black
hole' and (P )H at the pole of an axisymmetric distorted
black hole. '

It is worthwhile emphasizing that the same formula
(5.4) gives the exact value of (P )~ at the pole of the
event horizon of a rotating black hole. ' It means that
one can expect that the Page approximation must be rath-
er good in an axisymmetric stationary (not necessary stat-
ic) Ricci-flat space-time for the points located near the
axis of symmetry.

~oa =&oa =0 .(i) (i) (6.1)

In order to calculate ( T&„)H and ( T&„)p one needs to
know only AB components of these quantities; 00 com-
ponents can be fixed by using the expression for confor-
mal anomalies:

VI. ( T„") NEAR DISTORTED BLACK HOLES

We consider now the asymptotic behavior of (T„")p
and (T„")~near the event horizon.

In a static space-time the tensors A „'„' and 8&„'
(i =0, 1,2}possess the following property:

(5.2)
( To)H+(Tg")Hno —n

48m X
The expectation value (P )p for the Boulware vacuum

state diverges at the horizon

=(T'o)', +(7„")',=(~+p)C.»,C pr'

2pc.g
K'

=8(a+P)a. k,bk +k +
Xa

(6.2)
—)co Eo

48
(5.3)

where ao is the surface gravity and Eo ls the Gaussian

In order to evaluate A' '"p and 8' '"p [given by Eqs.
(2.14) and (2.15)] near a horizon we use Eqs. (3.14)—(3.16),
(4.14)—(4.18), and the following relations:

X.=2~X'"n. ,

e) =aX-'"n
—K K

2 2
a~ p= n np — 2g gp+ —II„~5 5pX

(~~"); = ( an Xakn +X—'~~8, a5—' ),x'"
X4

~ "~rp=
2

—
X pgp+annp+42{n n'"Ilpc5p 5r +npn "IIp 5„5C ) I+I" cIlcp„55pp

(6.3)

8~4 a X~p D ~Xp+D pX D p
X' X 2X' 2X
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These relations allow one to show that the leading term of
( Ts")ti divergent at the horizon is of the form

4

, (p--, e, .A & 2Ko
(6A)

X2

The trace ( T„")sis finite at the horizon; thus

( T„") = (P——,
' a)diag( —3, 1,1,1)„",

X
(6.5)

when diag(ai, aq, a3,aq) means the diagonal matrix, with
the diagonal elements at.

It is instructive to compare these results with the exact
asymptotics of (T„")s for conformal massless fields of
spin s =0, —,', and 1 near the Schwarzschild black hole

d g(-41, —41,28,2S)„".
4S (2M)'

Candelas and Howard ' have shown that ( T„"(x))tt'= '

reproduces the behavior of the exact values
(T„"(x))tt" ' with high accuracy. The deflection of
the components of (T„")g'= ' in (t, r, 8,$) coordinates
from the exact ones at the event horizon does not exceed
20%.

For the electromagnetic field the value of (T&")&'="
at the event horizon of the Schwarzschild black hole coin-
cides identically with the exact value ( T„")H"."' It is a
rather astonishing fact because neither (T„")tt at large
distances nor (T„")s at the horizon reproduces the
correct result for the electromagnetic field.

( T& )s 2 &o F(s) diag( —3, 1,1, 1)„",
6 X2

(6.6)
VII. DISCUSSION

F( ) f dxx(x +s )
o exp(2irx) —( —1)+

1

240 & $=0,
s=-, , (6.7)

s=(

The asymptotics (6A) and (6.5) coincide for s =0 and
s= —,

'
and are different for s =l. It means that the

Brown-Ottewill formula (2.13) does not give the correct
result for the electromagnetic energy-momentum tensor in
the Boulware vacuum state.

The expressions for (Ttt")tt components are rather
cumbersoine. We present here only the expression for
( To )& which describes the energy density of the vacuum
polarization. The straightforward calculations give

( To )H =&~o+P&o

(sp —a )(a +3ap )
Aoo= —2

X2
—2—+—'E

X

Bp ——— (~o —2) + , E . —O 6 2

X

(6.8)

[Here C and E are given by Eqs. (4.17) and (4.18).] Using
the expansions (4.19)—(4.28) we obtain at the event hor-
1zon

e = —( Tp )tt ——(7a+ 12p)Kp +aKo,," . (6.9)

( T v)P{s=0)
H

( T v)P(s =1/2)
p, H

1
diag(3, 3, 1, 1)„",

1920ir (2M)

4 diag( —1,—1,8,8)~, (6.10)
1

9 (2M)

The coefficients a,p, taking into account the dependence
on the spin, are given by Eq. (2.5).

%hen the black hole is not distorted j:o is a constant
and only the first term in the right-hand side of Eq. (6.7)
survives. For the scalar (s =0), spinor (two-components)
(s = —,

'
), and electromagnetic fields (s =1), the values of

( T„")0"at the horizon of the Schwarzschild black hole
are

The general property of Page and Brown's ansatz is the
possibility to express in Ricci-flat static space-tiines the
quantities (T&") and (P ) in terms of the Weyl ten-
sor C ti„s, the Killing vector P, and their derivatives. All
the derivatives of P which are of higher than first order
can be eliminated by using the relation (3.9). The first-
order derivative g .tt can be expressed in terms of g and
of the gradient X&——(Pg ) & [Eq. (3.11)]. It means that
the components of ( T„")&and ( T„")tt can be expressed
in terms of the Weyl tensor, its derivatives and two vec-
tors P and X . The explicit form of these expressions is
greatly simplified in Israel s coordinates. The main ad-
vantage of these coordinates is the possibility of express-
ing the quantities under consideration in terms of the
internal and external curvature of two-dimensional (equi-
potential) surfaces t =const, g„@=const. The external
curvature of the surface of the static black hole appears to
be equal to zero and at this surface all the expressions are
greatly simplified. In particular, (P )tt is simply propor-
tional to the Gaussian curvature Ko of the black-hole sur-
face [Eq. (5.4)] while the expression for the "energy densi-
ty" e = —(1/

~ g~ ~
)T„„PPcontains Kp' and "mp.

It should be stressed once more that we restricted our-
selves by studying the expression for (P )""and ( T&")""
only in the framework of Page and Brown's ansatz. We
have shown that in a number of cases these values coin-
cide with the exact value for these quantities. In particu-
lar, it happens with the components of (T„")& at the
event horizon of the Schwarzschild black hole in the case
of the electromagnetic field. The reason for this as well as
the reason for the remarkable accuracy of Page's approxi-
mation in the case of the scalar field still remains un-
known.

ACKNOWLEDGMENTS

The authors tharlk Martin Brown, Brandon Carter,
Raymond McLenaghan, and Bernard Whiting for discus-
sions. One of the authors (V.P.F.) acknowledges the
Groupe d'Astrophysique Relativiste de l'Observatoire de
Paris (Meudon) for hospitality during the preparation of
this paper and the Centre National de la Recherche Scien-
tifique of France for financial support.



V. P. FROLOV AND N. SANCHEZ 33

'Permanent address: P. N. Lebedev Physical Institute, Moscow,
Leninsky Prospect 53, 117924, U.S.S.R.

'V. P. Frolov and A. I. Zel'nikov, Phys. Rev. D 29, 1057 {1984).
2P. Candelas, Phys. Rev. D 21, 2185 (1980).
~D. Page, Phys. Rev. D 25, 1499 (1982).
~P. Candelas and K. %'. Howard, Phys. Rev. D 29, 1618 (1984).
5K. W. Howard and P. Candelas, Phys. Rev. Lett. 53, 403

(1984).
6K. W. Howard, Phys. Rev. D 30, 2532 (1984),
7M. R. Brown, University of Texas at Austin report, 1977 (un-

published).
M. R. Brown and A. S. Ottewill, Phys. Rev. D 31, 2514 (1985).

9R. P. Geroch and J. B.Hartle, J. Math. Phys. 23, 680 (1982).
'M. Israel, Phys. Rev. 164, 1776 (1967).
~ ~T. Elster, Class. Quant. Gravit. 1, 43 (1984).

V. P. Frolov and A. I. Zel'nikov, Phys. Rev. D 32, 3150
(1985).
V. P. Frolov and A. D. Garcia, Phys. Lett. 99A, 421 (1983).
Ch. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation
(Freeman, San Francisco 1973}.

~sV. P. Frolov and A. I. Zel'nikov, in Quantum Gravity,

proceedings of the Third Seminar, Moscow, 1984, edited by
V. A. Berezin, V. P. Frolov, and M. A. Markov (%orld Scien-
tific, Singapore, 1985).

6R. H. Boyer, Proc. R. Soc. London A311, 245 {1969).
'7L Smarr, Phys. Rev. D 7, 289 (1973).
~IV. P. Frolov, Phys. Rev. D 26, 954 {1982).
'9D. %. Sciama, P. Candelas, and D. Deutsch, Adv. Phys. 30,

327 (1981}.


