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A representation is given for the Feynman Green function corresponding to a scalar field that
propagates in Schwarzschild spacetime and which is subject to the Hartle-Hawking boundary condi-
tions. This representation is valid for all values of the Schwarzschild radial coordinate r and is used
to obtain an expression for {@?>),, for the region interior to the horizon. This expression is evaluat-

ed numerically for the range 0.5M <r <2M.

I. INTRODUCTION

Our purpose in this article is to provide an explicit ex-
pression for the Hartle-Hawking' Green function for a
scalar field ¢ on a Schwarzschild background correspond-
ing to the region inside the event horizon (i.e., valid for
coordinate r <2M) and to calculate the regularized value
of (¢?) there.

The Schwarzschild metric is

dr?

2 _(1_ 2, __art
ds*=—(1 2M/r)dt+1_2M/r

+rHd@* +sin6?*¢?) .

1)

The Hartle-Hawking Green function for the massless sca-
lar field is the solution of

0G (x,x")=—g ~1/8(x,x") (2)

which is singled out uniquely by the requirement that

G (x,x’) both tend to zero as the spatial distance d(x,x’)

tends to infinity and is periodic in imaginary time. The

way in which the periodicity condition picks out a unique

Green function is somewhat subtle, as we now indicate.
Consider the metric (1) with ¢ replaced by i7:

2
ds?= {1_—2—1r"— ]dfz+——-j—£—-——+r2(d02+sin26d¢2)

1-2M/r
(3)

or

ds2=%ie—'ﬂM[pzd(m)z+dp2]+r2(doz+sinzod¢2) ,
r

(4)
where
172

_ | r/AM

P=2m l} ¢
and

oL

=

Provided r>2M, this metric has positive-definite signa-
ture and is without conical singularities if 7 is interpreted

33

as an angular coordinate with period 27/k=87mM. We
schematically graph this manifold in Fig. 1, with 6 and ¢
suppressed. Specification of G(x,x’) at r =2M and at
r = o together with Eq. (2) comprises a well-posed prob-
lem.

We would like to construct the analogous statement for
the region r <2M. In this region it is not sufficient to
pass to imaginary time, as this would leave our metric
with signature (— — + +). If we make the additional
change 68— i6, the metric becomes

ds?=— —zrﬁ——l d‘r2+mi%
+rXd6%+sinh?6d¢?) ] (5
or
ds?=— %e’/M[RZd(KT)2+dR2]
+r¥d6?%+sinh?6d¢?) | , (6)
r=oo
r=2M

FIG. 1. The Euclidean Schwarzschild manifold for r >2M
(6,¢ suppressed). As r— oo, the area grows linearly with r
while the circumference C— 87M.
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where R =ip is a real quantity. This metric has
negative-definite signature for » <2M. This manifold is
represented by Fig. 2, with 6 and ¢ suppressed. The diffi-
culty is this: unlike the case for r>2M, the Hartle-
Hawking requirements for G do not provide a well-posed
problem on this manifold. In particular, it is not clear
what boundary conditions G must satisfy on the space-
time singularity at » =0.

We may overcome this difficulty by the following argu-
ment: if G is uniquely determined on the exterior region,
then when it is regarded as a function of well-behaved
coordinates such as the Kruskal coordinates, it will be an-
alytic in those coordinates. Values of G for r <2M can be
obtained from those for r > 2M by analytic continuation.
This is the procedure that we will follow.

While straightforward in principle, it is complicated in
|

G(—it,r,0,¢;—ir',r',0, ')=-;~
¢ ¢ 32eM? |5,

1597

practice. One must inevitably solve the wave equation by
separation of variables. One cannot do it in Kruskal coor-
dinates: it is only practical in Schwarzschild coordinates
and those simply related to them. Schwarzschild coordi-
nates are, of course, singular at the event horizon and it is
this singularity that leads to the problem that the mani-
folds of Figs. 1 and 2 have “pinched off” and are connect-
ed only at the point r =2M.

One unusual feature of the problem is not shown in our
diagram: while every point in Fig. 1 represents a two-
sphere in the suppressed coordinates 6 and ¢, every point
in Fig. 2 is a two-hyperboloid. Fortunately the harmonic
decomposition on hyperboloids is well understood.?

When written in terms of the metric of Eq. (3), the
solution of (2) may be expressed in the form?

S 21+ DP(cosy)PY(E DQI(ES)

+3 —'l;cosnK(’r—T') S (21 + 1)Pi(cosy )pfE gl |, @

n=1

where
cosy =cosf cosd’ +sinf siné’ cos(¢—¢")
and (8)

r
=L _1.
§ M
& and £, denote the lesser and greater of £ and &’ on the
interval (1,0). P; and Q; are Legendre functions and pf’
and g are the solutions of the radial equation

Ao 4 _gpen_PErD g0 o
EE-D g —lu+n—{eET T RE

specified by the requirements that, for n >0, p(&) is the
solution that remains bounded as £—1 and ¢/(§) the
solution that tends to zero as £— . These solutions are
normalized such that

PHE) ~(E—1)? .
e~ BEZLT

r=0

r=2M

FIG. 2. The Euclidean Schwarzschild manifold for r <2M.
As r—0, the area 4 — 16mM? while the circumference diverges
as r—L.

1=0

Although we expect, on general grounds, that G (x,x’)
is analytic for all £> —1 (» >0), this is not apparent from
the representation (7), since the functions p/(£) and g/'(§)
individually have branch cuts which extend from £=1
along the real £ axis to £= — «0.* Moreover, the sum, as
written, fails to converge for £, £’ < 1. Therefore it is not
clear how one may unambiguously extend the representa-
tion of G by analytic continuation in the complex £ plane
to £, £ <1. In Sec. II, however, we shall show that al-
though p/(£) and ¢f(£) individually have branch cuts in
&, the sum (7) does not. Furthermore, the expression (7)
may be analytically continued to yield a satisfactory, con-
vergent, and unique propagator on the region of the mani-
fold defined by 0 <7 <2M.

Section III provides a numerical calculation of
(@A(X) ) req defined by

1

_—, (10)
870 (x,x)

(%)) reg=—1i lim G (x,x')—

X —X

where o(x,x’) is the geodetic distance.’ We find that, as
in the case for 7 > 2M (Ref. 6), {@*(x) ) reg SEParates natur-
ally into two parts:

1 1—(2M /r)*
1—2M/r

A(r)
(87M)? "’

(@HX) ) reg= (1

T 12(87M)?

where the first term is the approximation given by Whit-
ing’ and Page® and A(r) is a small correction. We present
a numerical calculation of A(r) for the range
0.5M <r <2M. We find that the Whiting-Page approxi-
mation remains valid for this range but becomes worse as
r diminishes.
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II. A REPRESENTATION
FOR THE GREEN FUNCTION FOR r <2M

Our aim in this section is to demonstrate that (a) the
Green function of Eq. (7) has no branch point at £(£')=1,
and (b) the expression (7) can be analytically continued to
a convergent expression which is valid for £ or £’ < 1.

To save writing we present the demonstration for the
partial coincidence limit of Eq. (7):

2ImG (§,8') =G (E+ie, &' +ie)—G(E—i€, &' —i€)

—2(21+1)2

n=1

We have used the fact that’
QUE+ie)—QE—ie)= —inPy(£) . (14)

The expression in the square brackets may be evaluated by
writing
N - vajip;(€)
= —_— (15
4 &) =p &)+ — )
which is valid for all noninteger v.* Momentarily taking
n =v noninteger, the expression in square brackets in Eq.
(13) is

| v
S a6 ) —pi(E a6 )]

1 ¥, —V, —,
= —[p/ (& o (E)—p(E )P (E )]

v
V

+ 2einm NEPIE ) —pl(EPIE)] . (16)
We define a new function of £ by

(§)—11me+""’/ H(Etie) . (17)

As pj(£) is real on the interval —1 < £ <1, the first term
on the right-hand side of Eq. (16) is zero. Our expression
is now

(&4 )a1 (64 ) —pr(E-)gl () ] =iaip/(§)pi(€) . (18)

In order to take v to the integers, we have this result from
the Appendix:

pf”(§)~——2%7p7(§) asv—n=123 ..., (19)
or
——Pr(é)pz‘”(g )~ o —pi(&")pi(§)as v—n . (20
Note that, in this hmlt

prE D (E)=pr(E)p " (&) as v—n . (1)
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2
2TM? o i 06— ity 0,0)
1
—GEeH=S @+ 3 [%pf(gwq,"(g)
1=0 n=1

—2P((£")Q,(8)

where we have interchanged the order of the sums. We
now take —1 <&, £’ < 1 and consider the difference

(12)

(P& +ie)glE+ie)—pl(E' —ie)g[(E—i€)]+2miP(E’ )P[(é’)] (13)

r

Our expression is

2ImG (£,6)=3 (21 +1) S, Liap}(&)p(E)

n=1

+2miP(§)P(£')] . (22)

We convert the sum over # into a contour integral,

ié ['..]zz_“_lTSﬁadV

o — 2L o1 pi(e)

+2ri cotmvP(§)P(§")

=I(a), (23)

using (20) to justify the first term inside the square brack-
ets. a is the contour shown in Fig. 3(a). We are free to
deform the contour to those of Fig. 3(b):

Ia)=I(a')+1(ap) . (24)

But clearly I(a')= —I(a), so we have

Ia)=11(ay)
=1 |5 aodv[‘2 LpHEIPIE)
+2mi cotmvP(&E)P(E')
=0 (25)

as pj(£)=P;(£). Therefore expression (12) has no branch
cutin§ for —1<£<1.

Expression (12) and therefore the full expression (8) for
the Feynman Green function is not convergent for £,
&' < 1. The summand in Eq. (12) has the asymptotic form
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@2 +1) | LplE g E) —2PIE)Q(E)

n

e—(1+1/2)(§——§‘) 1 n2
"~ (sinh¢sinhg)72 | (14 1) 64

B(coshf") .. |
sinh¢’ 15¢ ]

B(coshg) 15¢

1y-2y| (26)
sinh¢ +0Wl+3)7%)

as | — «, where
&=cosh{, )
£'=coshg’, 1<6'<6,
and
B (cosh¢)=cosh®¢ + 8 cosh?¢ — 17 cosht —24 .

For &, £ <1 ({—¢' purely imaginary), it is necessary to give a small imaginary piece to [ to ensure convergence of the [
sum. In order to continue (7) to a convergent expression valid for values of £ less than 1, we are naturally led to rewrite
our expression as a contour integral in /. Again taking the partial coincidence limit (12), we have

o0

GEE=3

n=1

6 gl cotml (21 +1) | --pHE ()~ 2PA(E)QI(E)

1
2

-3 Reillr [0+ ranatl + 520 +3) , 27)

n=1

1
~, PN E)—2P(£)0:(E)

where B,B, are the contours shown in Figs. 4(a) and 4(b). We now rotate the contour 8 by making the substitution
(I4+3)=eA, A real (28)
and taking 6 from O to w/2. If we simultaneously make the substitutions
&=cosh(e ~*%¢),
£ =cosh(e ~%¢’),

then we are assured that the exponent of the integrand in the asymptotic form (26) remains real and negative. As a re-
sult, when we rotate the contour the “radial” part of the integral converges while the integral over the arc at infinity van-
ishes.

Taking 0 to w/2 (Fig. 5), we have

§,&' real (29)

’ < et 1 ’ 7]
GEE)=—3 2 fo dAtanhmA 2A ;pn—l/2+il(§ 90 124 lE)—2P_ 1 n 1 in(E)ReQ_1 24ia(8) | » (30)
n=1
(a) (a) 24
7 /L—b— 1 B
= ¥ x> X © x* * ol 1 ( i
-3 -2 -1 1 2 3 r ‘1‘3 X —Tl (’ j ’zr ‘ﬁsr 7
-1 1]
-2 J v
2 o) l
) 2 (b) 2-
@
‘ ' ag 19 B,
B T2 3 XN o ‘ ALl
—l _]——
2 v y

FIG. 3. The contours for Egs. (23)—(25). FIG. 4. The contours for Eq. (27).
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where now —1<£<§ <1 and
q;'(g)sum S[e™™2qME+i€)+e T gME—ie)] . (31)

W4e are careful to write the integral as a Cauchy principal value since Q" ;. ;1(£) has simple poles for discrete values of
A

Note that in deriving Eq. (30) we could have just as easily started with the real part of the integral over the lower half
of the contour in Fig. 4(a). We also need not have chosen the phases of the substitution (29) to exactly cancel those of
(28). The vital point has been to continue to integrand in £ in such a way as to render a finite result at every stage. This
will be true as long as the conditions of the Hartog theorem hold: i.e., that the integrand is analytic separately in £ and /
in the domains of interest.

The full expression for the Feynman Green function for r < 2M is

Oi—innilgs—i7,r,0"9)
1611'2M2 ’EICOSHK(T r).@f dA2AtanhmAP_, /5 ;3 (cosh¥)

1,
;p——l/2+ik(§>)qn—l/2+il(§<)"'2P—1/2+ik(§>)ReQ—1/2+iA(§<) , (32)

where
coshy = cosh@ cosh8’ +sinh@ sinh@’ cos(¢ —¢') .
Equation (32) is the principal result of this paper.

III. THE CALCULATION OF (¢%x)) FOR r <2M

In this section we shall use our expression for G (x,x’) to calculate the regularized value of {(@?) for r <2M. We regu-
larize by the geodesic point-splitting technique of DeWitt!® and Christensen,’ defining

1

—iG(x,x")— ———
X 8o (x,x’')

(H | ¢*(x) | H ) reg= lim (33)

where | H) denotes the Hartle-Hawking state and o(x,x’) is the geodetic interval between x and x’. As in the case for
r>2M, we set x =(—it,r,0,¢), x'=(—ir+¢€,r,0,¢), and expand

1 E+1 1 1
—_— o(é) 34
8ma(x,x’) 4112 E—1 & L2MAE+ DAE—_1) ’“L ( oo
or
4
1 K E+1 2 2
———— ncosnke+— |1— |—— O(e), (35)
8mo(x,x’) 4 E—1 {E, 8 12 E+1 l+
where we have employed the identity
€ 2=—x? i cosnke—k*/124+0(€?) . (36)

n=1
Inserting Egs. (35) and (32) into (33) and taking the limit e—0, we have
11 1—=CM/r)*  Ar)

Pes=(mmy 12 1=2M /) BaM? 7
We recognize the first term as the Whiting-Page approximation (@?)wp. The second term is given by
A(’)=2’§1 -2 f dAtanhwA 2A P—1/2+.A(§)q—1/2+m(§ —2P_104iAl§)ReQ_ 124 ial8) +%‘§‘{‘;‘] . (38)
Using the identity established in the Appendix

J.7 A [tanhmh 24P o 2 (x) ReQ_ 1 /2.4 (%)— —(—1_—;2)17 -0 (39)

we rewrite A as
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1
(1_52)1/2

We see from Eq. (26) that the integrand above is of order A =2 for large A and so the A integral is clearly convergent. Be-
cause of several convenient cancellations, the summand in the large square brackets can be shown to be of order n > for
large n, ensuring convergence of the n sum.5

We turn now to the numerical calculation of A(r). In order to speed convergence of the A integral we add and subtract
the first three WKB approximants to the function (1/n)p”;/,,:2(£)@%1,24:2(£) (by a slight abuse of notation we write
Wy for Wi=W_,,.0):

An=23

n=1

© 1 n
-2 fo dA |tanhmA 2}"';1’"—l/2+ik(§)q—1/2+il(§)_

n £t
25_11. (40)

Mn=—23 2 [” d\tanhrh 22

1 n n n
;P"—l/2+n(§)qin/z+m(§)— W13(6) — W2R(§)— W3i(E) ]

+(=2) 3 (U ©+7a&)], @)
n=1
where
Un(&)= [ 7 dA |2\ tanhaA W 13(£) — 2 PR 4 (42a)
" 0 (1—g2)172 21-¢°
Val€)= [” dA2A tanhaA[ W 23(6)+ W33(&)] . (42b)

The WKB approximants are given in Table II of Ref. 6. When replaced in expression (41) they render the integrand of
order A~¢ for large A, ensuring rapid convergence.
For actual numerical calculation it is best to deform our contour in / to steer wide of the poles in the function

q" 1 24ia(€). We found it convenient to rewrite Eq. (41) as

A(r=273 Re—:- fydltamr(l +3)2045) [-;—p}'(é')q?(é’)—WI;'—WZ?-— W3t |—=23 (Uy+V,). (43)
n=1 n=1
T
y is the contour shown in Fig. 6. lows from Eq. (31).
The function p/(£) [and thus p;'(£)] was easily generat- The results of our numerical evaluation of A(r) are

ed by either summing its series representation (for £ <3.0)  given in Table I and Fig. 7. In Table I (#n) is the number
or by a fourth-order Runge-Kutta integration routine.!!  of terms in the n sum needed for 3-figure accuracy. We
qJ(£€) was generated by the integral of the Wronskian rela-  found that as £ becomes close to — 1 more terms must be

tion included in the n sum. This problem can be explained by
¢ de’ the breakdown of the WKB approximation to the product
ql'(&)=2np[(£) f = rrperer (44)  (1/n)pl(€)qJ(E). For example, the first WKB approxi-
= (£ *—1DIp(EN] mant is
For £ <1, the path of integration in £ was chosen in the . . n2 —122
complex £ plane to avoid the pole at £=1. q}(£) then fol- W1i(§)= (I+—2-)2(§2—-1)+l—6(1+§)4 . (45

-1+

-2 -1 12

FIG. 5. The rotated [ contour. FIG. 6. The contour for Eq. (43).
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TABLE I. Numerical evaluation of A(r).

§ A(g) (n)
1.0 0.0
0.9 —0.00093 1
0.8 —0.002 28 1
0.7 —0.004 12 1
0.6 —0.007 11 2
0.5 —0.0116 2
0.4 —0.0185 2
0.3 —0.0288 3
0.2 —0.0437 3
0.1 —0.0655 4
0.0 —0.0943 5
—0.1 —0.155 6
—0.2 —0.250 8
—-0.3 —0.415 10
—04 —0.706 10
—0.5 —1.150 10

It is the overall factor of (£+1)~!/2 which causes diffi-
culties as £ approaches — 1. If £ is near — 1 the above is a
good approximation to (1/n)pf(£)qf(£) only for large n.
The large amount of computing time necessary for
evaluating each n term prohibits us from taking £ smaller
than —0.5.

A graph of {@?) and (@?)wp is provided by Fig. 8. As
one might expect, the Whiting-Page approximation be-
comes worse as r approaches the spacetime singularity.
The difficulties in evaluating A(r) for small r prevent us
from gaining a clear picture of the form of {@?*) as r ap-
proaches zero. The poor convergence of the n sum in A
is, in some sense, a measure of the violence of the vacuum
fluctuations at small ». We expect that a calculation of
(1) using the mode sum definition analogous to that
performed!? for r > 2M would show similar results.
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APPENDIX
In this appendix we shall establish Eqgs. (19) and (39).

To establish the asymptotic form (19) we consider the
equation

J

2n
(—1)"Pi "(x, )Q}'(x<)=51;r— [, dvcosnpQlxx’+(1—x%)"(1—x"3)! 2 cosy] .
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-0.4

—O.BJ

FIG. 7. A(§).

vaj

a/(&)=p; (&) + pr(§) . (AD)

2sinvr

It has been shown in Ref. 4 that while p;”*(£) has poles at
positive integer values of v, ¢/(£) does not. Thus as v ap-
proaches a positive integer p;”*(£) has the form

(=" *naf

O e wrovy

prE) asv—n=1,23.... (A2

Applying Eq. (17) to (A2) results in Eq. (19).
We now establish the identity

fom di {2}‘ tanhmA(—1)"PZ7 /5 a(x) ReQL, 34 sa(x)

1
T (1-x)”?

]: n 3 forx <1 (A3)
1—x

of which Eq. (39) is a special case. We begin by taking
the Fourier transform of the standard identity!?

Qixx'+(1—x3)12(1—x"2)2 cosyp] =Py(x ., )Q;(x . )

+2 3 (— 1P "x, )QUx ) cosndp .

n=1

(Ad)

Taking the inverse Fourier transform gives the relation

(AS)

This equation is true for general /. Letting ! = — + +iA, multiplying by [2A tanhmAP _, 5 5 (coshy)], taking the real

part and integrating over A, we have

J.” dA2a tanhad(— D"PZY 54 a(x, REQ™ 1 24 ia(x IP_y 34 2 (coshy)

27 @
=—23ﬂ— fo dycosnyp fo dA2AtanhmAP_, /5 ;3 (coshy)ReQ_; j4 ialxx’ +(1—x2)12(1—x"2)1/2 cosy] .

(A6)
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0 T
0 M M

r

FIG. 8. (87M?%)(#*r)) (solid curve) and (87M?2){$*(r))wp
(dashed curve) for 0.5M <r <2M.

Employing the identities

T
ReQ_1,24ir(2)= 2 coshh P_ip4in(—=2) (A7)
and
® _ AtanhmA 1
m fo dk—com_P—l/2+iA(y)P—1/2+iA("Z)= —z
(A8)
we may write the left-hand side of (A6) as
1 p2 cosny
27 Y0 coshy —[xx’'+(1—x2)1/2(1—x'?)2 cosy]
—nu
2e (A9)

= (x?+x'2—2xx’ coshy +sinh?y)12 ’

where

1603

coshy —xx'
(1—=x?)2(1—x")7

u =cosh™!

Taking the limit of small ¥ and letting x'—x, we have
Jim fo"’ dA 22 tanhmA(— 1)"P=7 5 4 ia(x)

XReQL /2 4ia(X)P_y /54 ia(coshy)

1 n
= a2 Tz O

(A10)

To remove the ¥ ~! term we begin by writing the Mehler-
Dirichlet formula

V3 fa cos(l +5)pd¢
-

Pi(cosa)= —_— - (A11)
! 0 (cos¢—cosa)'”?
Setting I=%+ik, a=iy, ¢= —it, we have
P—1/2+u(°05h7)=ﬁ v ___coshtd (A12)

m Y0 (coshy—cosht)!/?

We recognize (A 12) as the Fourier cosine transform of the
function 6(y —t)(coshy —cosht)~!/2, where 0 is the step
function. Taking the inverse transform and letting ¢ go to
zero leads to the identity

1

“ P_yp4ia(coshy)dA= . (A13)
fo 172+ Y V2(coshy —1)'/2
As y approaches zero this is
[P /2+,-A(coshy)d}»=71/~+0(y) . (A14)

By multiplying this result by (1—x?2)~!/2, subtracting it
from (A10), and taking ¥ —0 we arrive at the desired rela-
tion (A3).
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