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The analytic properties of the scalar radial functions associated with the Schwarzschild metric as
functions of the argument, angular momentum, and frequency are discussed.

I. INTRODUCTION

Our purpose in this paper is to establish a number of
the analytic properties of the scalar radial functions for
the wave equation in Schwarzschild spacetime. Although
our immediate interest is to use these properties in calcu-
lations involving the quantum propagator on the
Schwarzschild background, these functions are also of im-
portance for classical black-hole scattering and perturba-
tion questions. What we present is, in part, a review of re-
sults already established in the literature. However, we
derive several previously unreported properties of the ra-
dial functions„ including the existence of solutions which
are regular both at the Schwarzschild event horizon and
at spatial infinity.

Consider the massless scalar wave equation

where we have set f=r/M 1 and —tt=(4M)
For v=0, the two linearly independent solutions in the

region g & 1 (r & 2M) are given by the Legendre functions
Pt(f) and Qt(g}.' For v&0, the differential equation is a
confiuent form of the Heun equation with regular singu-
larities at g'=+1 and an irregular singularity at g= ao (see
Appendix A}.

For Rev& 0, let pt"(g) denote the solution that is regular
as (~1 and qt"(g)the 'solution that is regular as /~ ac.
We normalize p and q such that

pt"(g) -(g 1)"—
qt"(g)-(g' —I) "/', (5)

and therefore the Wronskian

2v

for the Schwarzschild metric

2M q dr
ds = — 1 — dt+ +r2d8 +r sini8dg

r 1 —2M/r

(2)

Separable solutions have the form

y=e Yt (8,$)Rt"(r),

where Yt is a spherical hartnonic and R satisfies the
equation

r

4

16(g' —1)
(g —1) —l(l+1)—, R(g) =0,

In the following sections we shall establish the analytic
properties of p and q as outlined in Table I. In Sec. IV we
find that, for real v and particular (complex) values of I,
there exist solutions which are regular both at the event
horizon and at r = 00.

Although we shall only consider the spin-zero scalar
mode functions, many of our results have a straightfor-
ward generalization to fields of arbitrary spin. The work
of Price and Teukolsky' has shown that a perturbation of
a Schwarzschild black hole by a field of spin s, y„can be
written as

q)s ——e~', Yt (8&P)R, (r) &

where the, Yt (8,$) are the spin-weighted spherical har-
monics and R, is the solution of the Teukolsky equation.

TABLE I. Properties of pt"(g) and ql"(g).

pI"(x) qt"(4)

Demonstrated in:
Section II

Section III

Section IV

(g—1)" pt"(g) analytic on entire g
plane except for cut —N& &g& —1

Analytic on v plane except for isolated
poles at v= —1, —2, —3, . . .

Analytic on entire I plane

Analytic on entire g plane
except for cut —N& &/&1

Analytic on v plane except
for cut —00 &&&0

Analytic on I plane except
for a series of simple poles
st i= ——,'~u", , {X"„)t'ai
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For the identification of y, for spin s = + —,', +1,+2, the
reader is referred to Table I of the paper by Teukolsky.
The field y, for spin s =+—,

' is treated in the article of
Guven.

11. p AND q AS FUNCTIONS OF g

pi"(g) can be represented by the series

k=0

with the coefficients satisfying the recurrence relation

—(v /16)ak 2
—(3v /8)ak

(8)

qi (f) pi (4)+ . pi"(C)
2 sine@

(10)

We shall assume initially that v is not an integer and we
shall regard Eq. (10) as defining ai a function whose
properties we will study in Sec. V.

If v is a positive integer n, then

qi"(g) =yiln(g —1)pi"(g)

+(g—1) " g bk(g I)"+Pipi'(g—),

where the bk's and yi are given by

y& [(2k n+ 1)a—k „+4(k n /2+ 1)ak „—i]
—(n /16)bk 2

—(3n /8)bk

+[(k+v/2)(k+v/2+ 1)—3v /4 —l(l+ 1)]ak

+[2(k+v/2+ 1) —v /2]ak+ i
——0 (9)

and ao ——1. In virtue of the standard theorems relating to
differential equations, (g—1) "~pi"(f) extends to an ana-
lytic function on the cut plane. We shall choose the cut to
extend from g= —oo to g= —l.

The second solution, qi"(g}, is the solution which, for
Rev) 0, ttmds to zero as g-+ oo and is normalized such
that qi"(g)-(g 1) "— as )~1+. qi"(f) may be written
as a linear combination of pi"(g) and pi "(f):

relation for the coefficients (9) we see that the mth coeffi-
cient has the form

1
am fm(am —i~am 2—~am —3iv|1)

V+ Pl
(13)

f is a polynomial in v which is generally nonzero (but
see Appendix 8). From the series representation it is clear
that, for

~ g—1
~

& 2, pi"(g} is analytic in the entire com-
plex v plane with the exception of simple poles at the neg-
ative integers.

To remove the restriction on f from the above state-
ment we must resort to the techniques of potential scatter-
ing analysis. 6 Let us change variables to a Regge-
Wheeler-type coordinate x = —,(g—1)+in(g —1)—xo.
Setting f=((+1)R(g) and rewriting Eq. (4) in terms of
x, we have

d 2f
dx

f= V(x)f,
2

(14)

where V(x) is defined implicitly by

(15)

If one writes V(x) in terms of its Laplace transform, and
noting that V(x +2mik ) = V(x) for k an integer, it can be
shown that~

V(x)= g C e for x &0. (16)

If f+(x) is the solution of (14) with the asymptotic

f+(x)-e / as x~ —e&,

then clearly pi"(()=2e '($11) 'f+. We may rewrite
Eq. (14) for f+(x) as the integral equation

f+ (x)=e +f dx'G(x, x') V(x')f+ (x'), (l8)

where G(x,x') is the Green function for Eq. (14) with
V=O,

sinh[(v/2}(x —x')]
v/2

+ [(k —n/2)(k n/2+ —1) 3n /4 l(l—+ 1)]bk-

+ [2(k —n /2+ 1)' n'/2]b—„+, 0, — (12a)
We solve Eq. (18) by iteration:

yi =(n /32)b„3+ (3n /16)b„2
Z

f+(x)=e + dxiG(x, xi)V(xi)e
Z

+ x)G x,x) V x)
1 vx2/2

X f dx, G(x„x,)V(x, )e '

(12b)+(1/2n )[(n/2)(n +1)+1(1+1)]b,
and bo 1. From the——se definitions one can see that q is
analytic on the g plane with a cut —ao &j& 1.

(19)

IIL THE ANALYTIC PROPERTIES OF pi"(P
AND qi"(g'} AS FUNCTIONS OF v

To examine pi"(g) as a function of v we first consider
the power-series representation (8). From the recurrence

I

+ 0 ~ 0

Employing (16) and (19) and performing the integra-
tions, we have

N! I Z (m &+m&)Z
CO CO

f+(x)=e ~2 1+(—1) g +(—1)' g + 0 ~ ~

, , mi(mi+v), , m, (m, +m, )(m, +v)(m, +m, +v)
(21)
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6 (g) e+vg/4g+v/2 —i (22)

As qi(g) is a solution which is regular at infinity, it is
clearly proportional to 6 (g). We may write 6 (g) as
the linear combination

Using methods exactly analogous to those employed by
Chandrasehkar and Hartle in a similar proof, one may
show that this series converges for all v such that v is not
a negative integer. From this representation for f+(x) we
see explicitly that f+ is analytic in v except at
v= —1,—2, —3, . . . where it has simple poles. Although
we must restrict the validity of (21) to those values of g
for which x ~0, we may extend this range to arbitrary (
by the choice of the constant xo. Therefore we conclude
that pi"(f)=2e '(/+1) 'f+[x(g)] is analytic in v for ar-
bitrary real g, except for the isolated simple poles already
noted.

In arder to examine qf(g) qua function of v, we first
consider the asymptotic forms of the salutions to Eq. (4)
at large g:

2

Ci(v, l) =— 8'[pi "(g),6 (g)] . (24b)

Comparing Eqs. (23) and (10) we see that
qi"(g)=Ci '6 (g) and that

vai Ci(v, I)

2 sinvn. C, (v, l)
%[pi "(g'),6 (g)]

g (x)=(/+1)6 (g), (26)

where now x= —,(g—1)+ln(g —1}. g (x) is the solution
of Eq. (14) with the asymptotic form

If we exclude the integers, the analytic properties of qi"(g)
in the v plane are completely determined by those of ai.
From the above equation it is clear that, for v not an in-
teger, the analytic properties of ai are in turn determined
from those of 6 (g). We therefore turn aur attention to
this quantity.

It is in fact more convenient to examine the related
function

6 (g)=Ci(v, l)p& "(g)+C,(v, l)pi"(g), (23) g (x)-e / as x~ao . (27)

2 —1
Ci(v, l)=— IV[p/"(g), 6 (g)], (24a)

where Ci and Ci are functions of v and l. They can be
found from computing the Wronskians:

In analogy with Eq. (18) we write the integral equation

g (x)=e / +f dx'6(x, x') V(x')g (x'), (28)

where 6(x,x') and V(x) are defined as above. Again, we
may solve this equation by iterating

g (x)=e /2 1+ f dyi(1 —e ')V(x+yi)( —1)
v

( —1)' VP l
CO 'y2+ f dy, (1 —e ') V(e+y& )f dy, (1—e ') V(» +y&+ye )+ (29)

or

g (x)=e / 1+ g Ak(x)
k=r

where

Ak(x)=( —1/v) f dyi(1 e')—V(x +yi ) f dyk(1 —e ")V(x+yi+ +yk) .

(30)

(31)

In these equations we have effected the change of integra-
tion variable y;=x; —x; i. However we cannot find a
representation for V(x) analogous to Eq. (16) that we may
insert into the integrals above. Despite this difficulty, we
can determine much of the analytic properties of g (x)
without solving the integral equation explicitly.

Employing standard techniques, it may be shown that

vox/2

~
Ak(x)

~ (, [I(x}]", (32)

where

I(x)=f dy ( V(x+y)
~0 1+vy/2

(33)

Here we have imposed the restriction Rev=v~ &0. The

series (30) converges for all such v.
'Ne may relax the restriction on v by contour rotation.

If we allow y to be comple~, setting y = ~y ~

e'e in the
mth integral of Eq. (31), and let v=

~

v
~

e'&, then the in-
tegrals remain convergent if we choose 8 such that

i 8+(I}i
&ir/2. (34)

By choice of 8 we may extend the domain of analyticity
for g (x) to any complex v. We cannot, however, ex-
clude the very likely possibility of a branch point far
g (x) at v=0. Therefore we conclude that
6 (g)=()+I} 'g (x) is analytic on the complex v
plane with cut —oo g v&0.

By determining the analytic properties of 6 (f} and
pi"(g'), we determine the properties of the individual
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Wronskians that appear in Eq. (25). Until now we have
excluded the case for which v is an integer. Since qi"(g)
for n =1,2,3, . . . can be written explicitly [Eq. (11)],it is
clear that, although pi "(g} has poles at the positive in-

tegers, qi"(g} does not. The negative integers are excluded
from the domain of v by the position of the branch cut.

A remaining possible source of poles for qi"(g) is the
fact that W[pi"(g), G (g)] may have zeros for certain
choices of 1 and v. In that case, there would exist a solu-
tion which tends to zero as both g~ao and as (~1.
That no such solution exists for 1 real has been proven by
Zerilli. s (Note: an elegant summary of this proof appears
in the first of the celebrated papers by Press and Teukol-
sky. } However, we shall see in the follawing section that
there exist discrete complex values of 1 for which such a
solution does exist.

In conclusion, we state that for g and 1 real, qi"(g) is an-

alytic on the v plane cut —oo & v & 0.

VI. THE ANALYTIC PROPERTIES OF pi"(f}
AND qi"(g'} AS FUNCTIONS OF I

The differential equation (4) is unchanged by the re-
placement 1~—1—1. Since the boundary condition

pi"(f)-(k- I)"" as 4 (35)

determines the solution uniquely for Rev & 0, it is immedi-
ate that pi"(f) satisfies the relation

(36)

The function qi"(g) —q" i i(g) satisfies the differential
equation and is of order (g—1)"~~ as /~ 1+. It alsa tends
to zero as g-+ oo and hence is identically zero. Thus

qi"(4) =q i i(4)- (37)

More generally, from Eq. (20) it is clear that since V(x}
is a simple polynomial in 1, each term in the infinite series
for f+(x) is an analytic function in l. As the series also
converges unifarmly for any 1 in the complex plane, we

may conclude that f+(x) and therefore pi"(g) are analytic
functions of 1 '0.

As in Sec. III, the case for qi"(g) is the more trouble-
some one. If we divide the Wronskian equation (6) by
[pi"(g)] and integrate, however, we obtain a convenient
expression for qi"(g) in terms of pi"(g):

IXI
I

qi 0 pi 0 I (gg z I )y~(g&)]i

It is apparent that qi"(g) has a pole for those values of 1,

t 1,I, for which

(39)

TABLE II, Some radial eigenvalues A,k.

1.8110
2.6665
3.4622

3.1057
4.0202
4.8840

k=1,2, 3, . . . . At these values q" i~q+ii(g} has a pale.
Let us define a new set of functions

Qk uk
k=1

The uk's are the "exterior" counterpart of the radial
eigenfunctions which are zero at /=+I described by
Matzner and Zamorano. ' Some values of the eigenvalues

Ak are given in Table II.' Graphs of the first three uk's

for v= 1 are shown in Fig. 1.
It has been shawn' that the unique solution of

r

4

d g d g 16(('—1)
((i—1 } l(l + 1)—— i gi"(g, g')

= —5(g—g') (42)

which is regular as g~l and which tends to zero as

g~ oo is given by

Pi(g&)Qi(C&) for v=o,
pi"(f&—)qi"(g&) for v'&0,

V

(43)

where g& (g& ) is the lesser (greater) of (g,g'). For v+0 an

alternative representation for the Green function gi" is fur-
nished by the functions uk(g):

uk(4) =&ip" in+ i,„(C) ~

The uk's satisfy the boundary conditions (35) and (39) and
form a complete set on the open interval $6(1,oo ). The
constants Nk are chosen such that

As discussed in the previous section, it has beam shown
that there are no solutions to (4) which satisfy both (35)
and (39) for 1 real. There are, however, discrete values of
(real) A, for which p" i'+, i (g) does satisfy both boundary
conditions. Standard theorems reiating to Sturm-
Liouville theory assure us that, " for 1 set to ——,

' +lA, , A, ,
and v real, Eq. (4) will have real solutions which are zero
at r=2M and r=ao for discrete values of A.; IA,kI, FIG. 1. The functions uk for k =1,2, 3.
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(44)

Comparing Eqs. (43) and (44}, we find the interesting rela-

tion

where @=a+p—y —5+1. I.et a=«a. The equation can
be written

de 5 «a ~ dy «aP(z —q)
dz z —1 z —a z dz z (z —1)(z —a)2+ + + + y=0.

ak(k)uk(4')
p'i" 0( qi" 0) = X (45)

V. POSTSCRIPT ON THE PROPERTIES OP eI"

from which we can see explicitly that qi"(g) has simple
poles when 1=——,

' +i&k.

Taking the limit a~ oo, we have
T

dy 5 dy 1 —q«P— ++ y=O.
z —1 z dz z —1

I J

(A2)

(A3}

In light of the established properties of pi"(() and qi"(g)
we record here some properties of the coefficients a~" and
y~" which appear in Eqs. (10) and (11).

In writing

va~
e"~f)=Pi "(4)+ 2„„Pi"(4) (46)
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we first notice that, as pi "(g) has poles in v at the posi-
tive integers and ql"{f) does not, the coefficient of
(v n) —' in pi "(g) as v approaches n =1,2,3, . . . must
cancel that of the sicond term to yield a finite remainder,
given by Eq. (11). For certain values of {complex} I, how-

ever, pi "(g') has no pole at v=n. For these values of 1,

q~"(g') is given by Eq. (11) with yl" set to zero. These
choices of l(n} correspond to those yielding the "exact
solutions" described in Appendix B.

From Eq. (45) and the fact that pI"(g') is analytic in 1 we

conclude that ai has simple poles for 1 = —,' +1Ak—,

We are left with an equation with regular singularities at
z =0, 1, and an irregular singularity at z = ao. This is the
confluent Heun equation.

If we rewrite Eq. (4) in terms of the variable
z =(g'+1)/2=r/2M and set

g (g) (z 1)v/2ev(g —1)/2y(z)

the equation for y is

d y v+1 1 dy
dzi z —1 z dz

(A4)

We see that y is a confluent Heun function with p= 1,
5=v+ 1, y = 1, k = —v, and q =1(l+ 1)/v (Ref. 16).

APPENDIX 8 (Ref. 17)

Although Eq. {4) is not solvable in terms of familiar
functions for general v and 1, Whiting" has shown that
there exist such solutions to (4) for particular values of 1

and v. We give here a method of constructing such solu-
tions.

Let us restrict our attention to v =n =1,2, 3, . . . . Let

g (g) (g 1) lllzeN(g —i)/4g(g—)

in Eq. (4). One solution for g has the form

APPENDIX A

Heun" has given the general form for a differential
equation with four regular singular points:

z(z —1)(z —a)
d 2y

Z2

g(g) = g ck(g —1)",
k=O

where the ck's satisfy

[2( k + 1 n)(k + 1)]ck—+ i

+ [k(k+ 1) n l(l—+ 1)—]ck

(82)

+ I {a+p+1)z' [a+p 5+1+(y—+5)a]z—

+ay] +aP{z—q)y =0 .
cfs

Heun's equation may be summarized by the Riemann
scheme:

0 1

P ~ 0 0 0 a z

1 —y 1 —5 1 —e P

g'/$

{g—1}i/2
' (84)

A second solution may be constructed using standard
methods:

+[(k —n)n /2]ck, =0 . (83)

A moment's examination reveals that if l is chosen so that
1(1+1)= —1 and n =1 the power series terminates after
one term. Therefore a solution to Eq. (4) with v=1 and
1=—,' +i v 3/2 is—
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e(g—i)/4 Ei[((+1)/2]
/+I~3/2

( 1)1/2 E (1)(g)=

For n =2, the constructed solutions are
e(g' —1)/2

fi(P= I 1 ——,
' [l(1+1)+4](g—1)I

g'/4

f2(4)= i/i Ei[(4+1)/2]
1)1/2

where E, denotes the first exponential integral

e
—t

Ei(x)= J dt .

p and q are given by

~ —1/2+i~3/2 &(~~)

e (g'+3)/4

, /2 IEi[(/+1)/2] —Ei(1)I,

(85)

(86)

(87)

(88)

f2(g) =fi(f)I(g), (89)

I(~) J'& (t —1)e " "dt
' (t+1)[1——,

' [l(1+1)+4](t—1)j'
(810)

I't'(4) =4f2(4»

'It'(4) =fi(C) —[I(")] 'ft(g) .
(Blla)

(Bllb)

This construction generalizes. For each integral n & 1,
there are n choices of l and I' which give pairs of exact
solutions.

and l(l+1)= —3+@3 or I= ——,'+i(11+4& 3)'/x/2. p
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