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In the context of the expanding Universe, we solve the Boltzmann equation to obtain the relic

abundance of a stable, weakly interacting massive particle species with arbitrary mass and interac-

tion strength. We provide approximate analytic formulas for the evolution of the abundance and

the final abundance. Our formulas are typically accurate to better than 5%.

INTRODUCTION

Because the Universe was very hot during its earliest
history, T=(t/sec) '~ MeV, all kinds of interesting
particles —some known and some yet to be discovered—
were present in great abundance. For T ))rn (=the mass
of the particle in question), the equilibrium abundance is,
to within numerical factors, equal to that of photons. For
temperatures (rn, the equilibrium abundance is less than
that of photons by a factor of order

(m/T)~~ exp( —m/T),

Of particular cosmological interest are stable, weakly in-
teracting massive particles, because eventually their in-
teractions catinot keep pace with the changing tempera-
ture and equilibrium abundance caused by the expansion
of the Universe and their abundance per comoving
volume "freezes-out, " i.e., becomes constant relative to
that of photons. The abundance of such relics can be in-
teresting because they can contribute significantly to the
present mass density of the Universe —perhaps even dom-
inate it, or be present in significant enough abundance so
as to be detectable today.

If freeze-out occurs when the species is still relativistic
( T & m), then its relic abundance is simple to compute —it
is, up to factors of order unity, that of the relic photons.
The case of freeze-out occurring when the species is non-
relativistic ( T(m} is somewhat more interesting and dif-
ficult to handle. In this paper we treat this case in full
generality, presenting approximate analytic solutions for
the evolution of the relic abundance and for the final
abundance. We compare our formulas with numerical in-
tegrations of the Boltzmann equation and find that our
formulas are quite accurate, typically to within a few per-
cent.

This problem has been addressed previously by many
authors for specific particles: heavy neutrinos, ' super-
symmetric relics, ' light neutrinos with "stronger than
weak" interactions, ' ' and a variety of stable, weakly
interacting particles. ' ' Our purpose here is to provide
approximate solutions of good accuracy to the general
case of a relic whose abundance freezes out when it is

nonrelativistic. In the main body of the paper we will as-
sume that the species of interest has zero initial chemical
potential p; in the Appendix we will briefly discuss the
case of initial p&0.

THE BOLTZMANN EQUATION

It follows from the Boltzmann equation (which governs
the evolution of the phase-space number density of a par-
ticle species} that the number density of a species obeys
the equation'

ri+3Hn =—(ou)(n —nE& ),
where an overdot indicates a time derivative, (o U ) is the
thermally averaged annihilation cross section times rela-

tive velocity, '9 H:R/R is th—e expansion rate of the
Universe, and n and nF~ are, respectively, the actual and
equilibrium number density of the species in question. It
is useful to measure the abundance relative to a quantity
which evolves as R; in doing so one is then actually fol-
lowing the number of particles per comoving volume
( ~ nR ). Assuming that the expansion of the Universe is
isentropic, the entropy density s is such a tIuantity, since
the entropy per comoving volume, 5ocsR, is constant.
The entropy density s is given by the following sum over
relativistic species:

s =g (p;+p;)/T;,

=(2&/45) g gitT; + —, g gFTt
Bose Fermi

—=(2&/45)g„Tr

where Tt is the temperature of species i and g„ is defined
to be the effective number of relativistic degrees of free-
dofn which mould have the same entropy density at the
photon temperature Tr. If some relativistic species have
decoupled from the rest of the Universe and thereby
separately conserve their own entropy per comoving
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volume (e.g., massless neutrinos decouple at T=few
MeV), one might wish to use only the entropy in the de-
grees of freedom which are in thermal equilibrium with
the photons as the fiducial entropy (denote this entropy
density as sr). Whenever g„ is constant, the constancy
of the entropy per comoving volume implies that
T~R ', so that the number density of photons also
evolves as R and could be used as the fiducial quantity
to which n is compared. For reference

s„=(26/45)g, r T„'=0.439g,„Tr',
n„=[2g(3)/m ]Tr'=0.244T„i,

s =1.80g ~any,

s(today)=1 71T&.i 7 0—4—nr. ,

where s(today) includes the entropy density in the mi-
crowave photons and three massless neutrino species. De-
fining

Y=n/s, n /sr, or n/nr

Eq. (1) becomes

this form because in the nonrelativistic regime (x ~~3, the
regime of interest here), (cru) ~uP, where p =0 for s-
wave annihilation,

p
=2 for p-wave annihilation, and so

on. Since u ~x, this implies (ou) ~x ", where
n =0 for s-wave annihilation, n =1 for p-wave annihila-
tion, and so on.

The equilibrium abundance of a particle species of mass
m and spin degeneracy g at temperature T is

nEQ (g——/2n )T J u duIexp[(uz+»2)'~z]+HJ

where 8=1 (Fermi-Dirac), 0 (Maxwell-Boltzmann), or
—1 (Bose-Einstein). The relative equilibrium abundance,

YEQ —nEQ/s, nEQIsr, or nEQ/nr, is then, respectively,

[45((3)/2n ]a g,ff/g„=0. 278(g,ff/g„)a

YEQ ~ [45$(3)/2n ]a g,ff/g, r
——0.278(g,ff/g, r )a

(g fr/2)a',

(for x «3),
s

Y'= —(ou) s„(Y —YEQ ) .

eely

The physical meaning of Eq. (2) is manifest: the number
of particles per comoving volume decreases due to annihi-
lation, with a rate proportional to Y YaQ. —

During the epochs of interest the Universe is radiation
dominated, so that the expansion rate is

H=l. 66,g'~ Tr /mp) .

(45/2n')(n/8)' 'a'(g lg )»' 'e ",
YpQ (45/2n )(n/8)'gaza (g/g, r)x i2e " (for x ~&3),

(~/8)'"[g/2@3)]a'x'"e "

=ax'~'e -"

where g,ff =g (for bosons), 3g/4 (for fermions).
By employing the dimensionless quantities definml

above the evolution equation becomes

As usual, g, is given by the sum over the relativistic
species:

dY/dx = —Ax " (Y —YEQ ) . (3)

g, = g g~(T;/Tr) + —,
' g gp(T;/Tr)

Fermi

where T~ is the temperature of species i Note t.hat if
T, =T„ for all i, then g, =g„; if not, then g, &g„. It is
very useful to introduce the following dimensionless quan-
tities:

x =m/T,
a= TITS,
(ou ) =(ou)0»

A=02 6(4g, ~g g/,
' )mp~m(au)o/a (Y=n»)

=0.264(g, „/g,' )mp~m (ou)u/a (Y=n/s„)'
=0 147g. '"m

p, m .(au), -/a (Y=n/n„),
where m and T are the mass and temperature of the parti-
cle species of interest.

%'e have parametrized the thermally averaged annihila-
tion cross section as

(Ou ) =(ou)0»

where (ou )0 is temperature independent. We have chosen

For reference, A, /x" + is just equal to I /xH, where
I = (ou ) (s, sr, or nr ). Equation (3) is a particular form
of the Riccati equation. In general, there are no closed-
form solutions to the Riccati equation,

Qualitatively the solution to Eq. (3) is simple to under-
stand. As long as the annihilation rate I is greater than
the expansion rate H, Y tracks YEQ. Eventually, I be-
comes equal to and falls below the expansion rate H; say,
that I =H for x~f (xf will be defined more precisely
later). Thereafter, Y(x)=YEQ(xf ), that is the number of
particles per comoving volume has "frozen out. " If this
occurs when the species is still relativistic, x ~~ 3, then the
final value of Y, Y„,is just

0.278(g,fr/g„)a
Y = 0 278(geff/g, .r)a

(g,ff/2)a' .

This occurs for light neutrinos (m &few MeV) with the
ordinary electroweak interactions, and today n/ny
and n/s =0.039. We will be concerned with the more in-
teresting and complicated case where xf &~3—freeze-out
occurs when the species is very nonrelativistic. In this
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case the final abundance is more difficult to calculate.
It is useful to rewrite Eq. (3) instead for the evolution of

5:—Y —Y~, the departure of Y from its equilibrium
value:

db, /dx = —d Y~/dx —& " 5(2YEq+b ) .

At early times (x «xf xf to be defined below},
6« YEq and

I
6'

I « —d Ya~/dx and a simple approxi-
mate solution for 5 can be obtained:

6=—(dYEq/dx)A, 'x" + /(2YEg+5),

=(1—3/2x)x'+"/[l(2+ p)]~"+ /2A, ,

where P=—6/YE~. When d becomes of order Y~ (P of
order unity), both approximations (b, ' negligible and
p«1) break down. Define freeze-out (x =x/) by the
condition

b,( xf )=cYap (xf),
e'f =(2+c)acxf-"

xf-in[(2+ c)kac) —(n + —,
'

)ln in[(2+c)Mc] .

Note that xf depends only logarithmically on the yet un-

defined constant of order unity c (as will the final abun-
dance Y„}.

For x »xf, both the terms —2Ax "
EYE and

dYE&—ldx in Eq. (4) become negligible, so that

d 6/dx =—Ax (7)

During this time, particle creation is essentially not occur-
ring, but annihilations are still somewhat important, caus-

ing a slight reduction in Y compared to its value at
x =xf. Integrating this approximation to Eq. (4) from
x —xf to x = oo, we find that the final abundance is

(n +1)
00 Xf

(&)

10

10- l2

—I6
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I

100

imations given by Eq. (5}and the exact integration of Eq.
(7}. The values of xf calculated from Eq. (&) are indicated
by the arrows. The approximate analytic solution agrees
quite well with the numerical results. Figure 2 shows the
final abundance Y„calculated from our analytic formula
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FIG. 1. Evolution of 6= F—FEq, the departure from equili-

brium abundance. The solid curves are the numerical results for
the indicated values of A, and n, and the dashed curves are the

analytic approximation. The values of xf calculated from Eq.
(8) are indicated by the arrows.

xf-ln[(n + l)aA] —(n + —,
' )lnfln[(n + l)ak] I .

Note that the final abundance depends only logarithmical-
ly on the match point (through c}. We have chosen
c(2+c)=(n +1) to obtain the best agreement with our
numerical results. Since A, depends upon g, it is not real-

ly constant. However, it is the value of A, at x~f that is
crucial, and so in most cases it should be sufficient to set
A, =A,(xf ). Also note that Eq. (&) can be written in terms
of the annihilation cross section at freeze-out, (ou )f,

3.79(n +1)ag, '~ g„
Y Xf

m»m &~U &f
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here for Y=n/s. For n =0, this means that the relic
abundance Y determines the present annihilation cross
section.

In integrating Eq. (4) numerically, we used the exact
formulas for YE&, normalized to correspond to a = 1 for
x »1, for Fermi-Dirac, Maxwell-Boltzmann, and Bose-
Einstein statistics. Our numerical results are sho~n in
Figs. 1 and 2. In Fig. 1 the evolution of b, is shown. The
solid curves are numerical results, for the indicated values
of A, and n, and the dashed curves are the analytic approx-

FIG. 2. Final abundance F as a function of A, (with a =1)
for n =0, 1, and 2 calculated from our analytic fit Eq. (8). Also
shown are the errors made in using the analytic fit: solid curves
for c(2+c)=n+1, dashed curves for c(2+c)=1. Taking
c(2+c)=n +1 gives the best overall fit, while c(2+c)=1 con-

verges more rapidly to the numerical results as A,~ oo. The fi-
nal abundance is very insensitive to the statistics of the particle
(differences & l%%uo). Our analytic results are valid only for
xf & 3, corresponding to A, & 38 ( n =0), A, & 130 ( n = 1 ), and
X& 1300(n =2).
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[Eq. (8}]for a = 1, A, =10 —10, and n =0, 1,2. Our ana-
lytic results are only valid for xf & 3, which corresponds
to A, &38 (n =0), A, &130 (n =1), A, &1300 (n =2), so our
graphs have been truncated where necessary. Then for the
range of A, given in this graph, xf varies from 4—67
(n =0), 3—63 (n =1), and 3—60 (n =2). The percent
difference between our analytic values for F„and the nu-
merical values is given in Fig. 2 (solid lines}. The agree-
ment between the analytic results and the numerical re-
sults is quite good: for x/ & 3, typically to S% or better,
and no worse than 5% for n =0, 10% for n =1, and
50% for n =2, with the largest errors occurring for the
smallest values of A,. The dashed curves give the errors
for an alternate analytic fit: c (c +2)= 1. This fit results
in faster convergence to the numerical result as A, ~oo,
while c (2+c)=n +1 ensures smaller errors over a wider
range in A, . The final abundances are very insensitive to
the statistics of the particle; the values of F„ for Fermi-
Dirac, Maxwell-Boltzmann, and Bose-Einstein statistics
differ by & 1% over our range of interest.

From the relic abundance it is straightforward to calcu-
late the species' contribution to the present mass density

(Qh /T2 7 )=267(rn/keV)(n/s) (9a)

=38(m /keV)(n /n~ ), (9b)

where Q=p/p, „,is the fraction of critical density contri-
buted by the species, p,„,=1.88h2X10 29 gcm 3 is the
critical density, Ho ——100h km sec 'Mpc ' is the present
value of the Hubble parameter, and 2.7T27 K is the
current photon temperature. In Eq. (9), s is the total en-

tropy density, and n/s has been multiplied by s(today) to
calculate the mass density. Of course, if any entropy has
been produced since freeze-out, the relic abundance today
must be reduced by the factor y that the entropy has in-
creased; y =S( today) /S (freeze-out).
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APPENDIX

Throughout we have assumed that @=0 (or that p is
very small} for the species of interest. Suppose @&0,
which corresponds to a nonzero value for a conserved
quantum number (q) associated with the particle species.
For x & 3 and (m/T —

( p (
/T) & 1,

FFq ——e FFq,+

FFq ——e ~FFg,

Q q YE@ q YE(}

=2q sinh(g) YE&,

where YE~ are the equilibrium number of particles and

antiparticles per comoving volume, respectively, g=p—/T,
and Q is the net quantum number per comoving volume,
which remains constant. In the limits g«1 and g»1,
we have

g-(Q/q}/2Y«(g«1),
/=in[(Q/q)/YE&] (g»1) .

The value (=1 occurs for x~g.
x&-ln(2. 35aq/Q)+ —', in[in(2. 35aq/Q)] .

For g & 1 (corresponding to x &x~ },

F«YE@(1+/)
=YEg+ —,

'
(Q/q)

and the correction to YEq due to @+0is small. For g & 1

(corresponding to x &x~),

YE@-(Q/q) & YE@,

YE@-YEq /(Q/q) & YE@,

the effect of @+0is very significant.
If xf [defined in the usual way, cf. Eq. (6}] is smaller

than x&, then freeze-out occurs before the effect of )u+0
is significant, and the final abundances are given by the
usual formula

F-„=(n +1)xf"+'/A, .

In this case, the usual freeze-out abundance is much
greater than the abundance needed to conserve the initial
charge Q per comoving volume, so the final abundance is
not affected by the nonzero value of p, .

On the other hand, if x~ &xf, then the effect of @&0
on the final abundance is very significant. In this case it
is clear that we must have

Y+ Q/q .

The abundance of the antiparticle can track its equilibri-
um value as long as its annihilation rate, I
=(ou)(Q/q)s, is greater than the expansion rate H.
Freeze-out of the amiihilations of antiparticles on the few
excess (over Q/q) particles occurs when

I, (xf )=H(xf ),
xf =(XQ/q)'""+",

where we have used a prime on xf to distinguish it from
the usual xf. The relic abundance of antiparticles is just

Y„=FEq(xf')=FEg (xj )/(Q/q)

=~'(q/Q)(&Q/q)' '"+"

X exp[ —2(A Q/q) ' '"+"] .

Note that the relic abundance of antiparticles depends
exponentially upon A,, rather than as a power. The fact
that the abundance of particles remains nearly equal to
( Q/q), rather than decreasing exponentially as x e " in
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the @&0case, accounts for this fact.
Consider the case of baryons. Here Q/q =10 ' and

(cru) m'/m~, so that A, 10, a 1, n 0, and xf' 10
(corresponding to T~-10 eV). This results in a negligi-
ble relic abundance of antiprotons:

F„=10 exp( —2X10") .

This is an incredibly small number, so one should not take
it too literally, as other effects could allow the survival of
more antiprotons than this.
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