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Gauge-invariant perturbations in a universe with a collisionless gas and a fluid
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Bardeen's formahsm for cosmological perturbations is extended to a system of a fluid and a col-
lisionless gas which is the best candidate for the dark matter. For the latter, a kinetic approach is
taken and the linearized coupled Einstein-Boltzmann equations are derived. %'hen we solve them,
no truncation is performed in our formalism. Because of its gauge invariance, this formahsm is

especially suited to the study of perturbations of the dark matter in an early stage of the Universe,
which eventually grow to form the large-scale structure of the Universe.

I. INTRODUCTION

The linear perturbation theory of spatially homogene-
ous and isotropic cosmological models, which was
pioneered by I.ifshitz, ' has been studied by a number of
authors concerned with the formation of galaxies and the
large-scale structures of the Universe. As the perturba-
tions of the metric and the energy-momentum tensor gen-
erally depend on chaices of coordinate gauge, we must im-
pose some conditions to eliminate the gauge ambiguity.
Usually the synchronous gauge condition has been chosen
for historical reasons, but unfortunately we could not
eliminate gauge modes completely in this gauge. So we
had to be very careful about the physical interpretation of
the perturbations of superhorizon size in which unphysi-
cal gauge modes might dominate.

On the other hand, Bardeen2 formulated the perturba-
tion equations in a completely gauge-invariant way. The
advantage of his formalism is that "it is canceptually
straightforward and mathematically elegant. " His hy-
drodynamic treatment of matter is not appropriate to a
collisionless gas which is the best candidate for the dark
matter, and we must take the kinetic approach for them.

Some work has been done on the gauge-invariant for-
mulation of perturbations by the kinetic approach. For
example, Moody discussed the gauge-invariant treatment
of perturbations of a cold collisionless gas, but he adopted
the constraint that the distribution function was isotropic
in p space, and did not couple the Boltzmann equation
with the Einstein equations. Kodama and Sasakis also
showed in their comprehensive review a kinetic theory in
the gauge-invariant formalism, but because they formulat-
ed the equations in terms of the macroscopic quantities
which were integrated in p space, they needed a nontrivial
additive assumption about a higher-moment truncation
which is necessary to close the system of equations.

In order to avoid unclear results which may be brought
by such an assumption, in this paper we shall take the
viewpoint that unphysical gauge modes must be eliminat-
ed from the perturbations of the distribution function it-
self. For this purpose we shall derive the gauge-invariant
quantities for them and formulate the gauge-invariant
equations for the coupled Einstein-Boltzmann equations.

The plan of the paper is as follows. In Sec. II we sum-

II. BACKGROUND MODEL
AND METRIC PERTURBATIONS

As a background spacetime, we consider the spatially
fiat Friedmann universe whose line element is expressed

ds2=S (~)( dd+5jdx'dxj )—. (2.1)

Nonzero components of the unperturbed energy-
momentum tensor are

T o
—— E(r), T'J —P(r)5&= (2.2)

where E and I are the total energy density and pressure.
Time evolution of the background is determined by

= —6(E+3P)SS 2
6 (2.3a)

2

=—ESS
S 3

(2.3b)

~ SE=—3—(E+P) .5
(2.4)

The metric perturbations are classified into the three types
and expressed as follows in Bardeen's notation.

marize the backgraund model and the metric perturba-
tions which are necessary for the description in later sec-
tions. In Sec. HI we introduce in a single collisionless gas
the gauge-invariant quantities for perturbations of the dis-
tribution function and derive the linearized Baltzmann
equations in the case of scalar, vector, and tensor pertur-
bations. Moreover, in order to consider a mare realistic
model, we treat in Sec. IV the perturbations in a universe
with a fluid and a collisionless gas. Section V contains
concluding remarks. Units are chosen as c =SAG = 1.
Indices A, , p, v, . . . and a,b, c, . . . run from 0 to 3, and
i,j,l, . . . run from 1 to 3.
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A. Scalar perturbations

These perturbations are represented by

5goo ———2S A(~)Q(x),

5go; ———S B(r)Q;(x),

5gj =2S [HL, (~)5~kg(x)+Hr(r)gj(x)],

where the scalar harmonics in the flat space are

Q =exp(ik x},
. k'

Qi= —k 'Qi= —1 Q

(2.5a)

(2.5b)

(2.5c)

(2.6a)

(2.6b)

and the Einstein equations reduce to

k yg(1) 5T0
2S

C. Tensor perturbations

Using tensor harmonics

Qi(j2) s——,jexp(ik x},

(2.13)

(2.14)

(2.15}

~ ~

Qij=k Q ij+T5ijQ= 2 + 3 5ij 0 ~ (2.6c}

with k =
~

k
~
. These amplitudes of the perturbations are

not invariant under the following gauge transformation:

where s,j is a constant tensor with s'; =0 and s;Jk J=0, the
perturbations are expressed as

5g,,=2S2H,("(r)g,(j2)(x) . (2.16)

The amplitudes HT' are automatically gauge-invariant
and the Einstein equations are given by

7.=~+T(~)Q(x),

x '=x'+L(r)Q'(x) .

(2.7a)

(2.7b) S—2 H'r +2 H (2)+k2H(2) Q(2)i 5Ti
J J (2.17)

The gauge-invariant quantities for them are
1

1 ~ 1 ~ 1S 1
(()g

—=A +—8——H + 8— Hr, —(2.8a)
111. PERTURBATION EQUATIONS

FOR A COLLISIONLESS GAS

1S 1
itpH= HL+ 3H—r+ 5 (2.8b)

The linearized Einstein equations in these variables be-
come

In this section we derive the gauge-invariant perturba-
tion equation for a system of a single collisionless gas.
For that purpose we must analyze the Boltzmann equa-
tion based on the relativistic kinetic theory. It is ex-
pressed by use of an orthonormal tetrad frame e~(, ) as

k—2 (()HQ=5Too —3k 2—(5T;)',s
= s

k2

g2, (4'~+Pa)Q'j =5T'j —
1 5'j(5T'i) .

(2.9a)

(2.9b)

~(F) p(o)eP () I ~ p(&)p(c) F(x p) 0
5p (i)

(3.1)

where p" is defined by

5g„=—S'a("(i)g'",(x),

5g; =2S H'"( )Q "(x) .

Here the vector harmonics are

Q;"'=n;exp(ik x)=n;Q,

(2.10a)

(2.10b)

(2.11a)

B. Vector perturbations

In this case, the metric perturbations are expressed as

{a) e{a)dx"
P S

{i) q
& b =e{s)ep e{c);x

(3.2)

are the Ricci rotation coefficients, and F(x,p) is the in-
variant distribution function defined on the sphere bundle.
In the background spacetime, a solution of Eq. (3.1) is of
a form of

F(x,p) =Fa(S(r)p ),
g(1) 1 k —1(g(1)+g(1))

k'(kinj+k n;)Q—, (2.11b)

where p = [(p' ")'+(p"')'+ (p"')']' '
The energy-momentum tensor is expressed as

T&"=eI{'.)e" p")p{b)I'm- . (3.3)

x '=x'+L, ("(~)g""(x),
(2.12a)

(2.12b)

the above amplitudes are not gauge invariant. The only
gauge-invariant variable for the metric perturbations is

where n' is a constant vector with n'k;=0. Under the
gauge transformation Here n is an invariant p volume element defined by

d p
7T j{0) (3.4)

where p' '=(p +m )'~, and m is the mass of a col-
lisionless particle. The background quantities are given
by
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P= —,
'

Tg' ———,
'

p I'gm .

(3.5)

A. Scalar perturbations

As for tetrad frames we use in this paper orthonormal
frames defined in Appendix A.

Now let us consider the perturbation of the distribution
function 5E=E Fs,—where E and Fs are the total and
unperturbed distribution functions.

1 O 1S 1
e Q=———5T ()+3(E+p) 8 —H—T QkS k

T

(o)2 3E P 15 ~ 1~
I

(3.12)

where the perturbations of the energy-momentum tensor
are given in Appendix B. Using (3.5) and (3.10) and doing
partial integrations, we obtain

In the case of scalar perturbations, let us expand 5E in
terms of the scalar harmonics p(O) 2I~ 2~p(O)I 2, (3.13)

5F(x,p) =f(r, p)Q(x}, (3.6)

then straightforward calculation shows that the linearized
Boltzmann equation becomes

p(0)f p(0)p(l) +iiikpf
S Bf
S 5p(()

The velocity amplitudes u„which expresses the shear of
the matter velocity field, is

1 1
U, Q'—= — 5T'0——HrQ'E+P k

(H + ,'H }p' 'p-
Jp

+i@[(kA+, z8)(p' ') + &
8in ]

+p' —8—HT p"'p, (3.7)
2

where )M =k;p("/(kp). Under the gauge transformation of
Eq. (2.7), it is shown in Appendix A that the amplitude f
changes like

E+P
0' J pto'ppIw= 0' J 2wp3pldpdp,E+P

(3.14)

and the traceless anisotropic stress perturbation rrr is

~ 1
&rQ'J = [5T'J —,

' 5', (5T—'I—)]J P

= ——Q', f p [ ,'(3p—1)]I,~—

f=f— Tp —, ip, (L kT—}p-—aF,
p 5 (3.8)

dF~ 1 SI=f+ ——8 Hr p- —
ap TS T

Therefore we can define the following gauge-invariant
quantities:

= ——Q'1 J 2rr (0) [—,'(3p —1)]Idpdp .

Here let us expand I as

I(r p,p)= g a„(rp)P„(p)i"
g=0

(3.15)

(3.16)

+~IM Ts ——aT p (O) (3.9)

and

J=f (HI + , HT)p —ip —,8———HT p—(0)

Bp
' ' k

(3.10)

Here these two are connected by the relation

in terms of the Legendre polynomials P„(p}. Then we
can see that the p integrations of a0, ai, and a2 with ap-
propriate weights [see Eqs. (3.13)—(3.15)] correspond to
eg, U„and m T, respectively.

As for J,

p'"' ~+3Z+P 0, +-,'H, .

(3.17)

(3.1 1)

Next, we consider the physical interpretation of I. Fol-
lowing Bardeen's terminology, an invariant energy density
perturbation eg, which measures the energy density con-
trast relative to the zero-shear hypersurface, is

Therefore the coefficient of J(r,p,p) for P0(p) determines
the energy density perturbation relative to the "flat" hy-
persurface, s where flat means that the perturbation of the
intrinsic curvature on the constant rhypersurface —van-
ishes, i.e., HI. + , Hr 0. Eliminating —ffro——m Eq. (3.7) by
Eqs. (3.9) and (3.10), we obtain the linearized Boltzmann
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equation in terms of gauge-invariant quantities as follows:

p' 'I ——p' 'p"' + pkpI
S (); BI

gp (i)

p(0)J p(0)p(i)
~ S (}J

gp
(i)

(Vk[(p"')'4 p'—4 ] .

(0)[p'"pklr + iwkk~ (p'"')'] Hereafter we use Eq. (3.19) for mathematical convenience.
The solution to Eq. (3.19) is expressed as a function of
q =S(—r}p, p, , and r

J(q, ((i, ,~)=exp I ipk—[g(q, ~) g(q—,r; )] IJ(q,p, r; ),

+ip kq f dx pq (x)— 0 (I}H(x) exp (

i@k�
—[g(q, r) g(q,—x)]I,~FB ~ q (x) q

(}q +i q q0(X)
(3.20)

where a subscript i denotes an initial time,

q0(x) =[q2+mtst(x)]'~ and

g(q, r}=-
[q~+m S (x)]'

(3.21)

By use of Eqs. (2.9a), (2.9b), and (B2)—(B4), the linearized
Einstein equations are expressed in a form without time
derivative of 4H as

8. Vector perturbations

(3.24)

g (t'(1)
p(0)f ( 1 ) p(0)p(l) J +&pkpf ( 1)

gp
(i)

(}FB )
' S) g (1)( (0))2+ g(l)mi

2 2g

A vector-type perturbation for 5F can be expressed as

(i)
5F(x,p) =f("(r,p,p) Q("(x) .

p

Then the linearized Boltzmann equation becomes

k
2 t +3(E+P) (AHS2 g (1) 1 H (1) (0) (3.25}

p(0) 2g +3 p(0)p
5

Under the gauge transformation of Eq. (2.12}, it is shown
in Appendix A that f"' changes like

arid
f(() f(1) B 1

L (1) (0)
2

p
(3.26)

k2
2(Qg+((}Jr)=—,

' f p (3p 1)Jm .— (3.23) I(l)—f(1)+ 1 g( l) (0)BFB

p
' (3.27)

Therefore we can introduce the gauge-invariant quantity

The coupled equations (3.20)—(3.23} can be solved as
follows. We give first the initial perturbation of the dis-
tribution function J(q,p, r; }, and solve the coupled
Volterra-type integral equations for ((}z and PH with
respect to time, which are derived by substituting Eq.
(3.20) into Eqs. (3.22) and (3.23). Finally we obtain
J(q,p, w) from Eq. (3.20). In the process of these calcula-
tions no truncation is necessary.

Then the linearized Boltzmann equation reduces to

"'I"'——p'"p"' . +ipkpI( '= ipkp( )pP.
~ S aI")

s gp( )
=

ap

(3.28)

The solution of this equation is given in terms of q, )(i, , and
1 as

(3.29)I("(q,p„r)=exp {—i(Mk [g(q, ~)—g(q, r; )]]I (q,p, ,r; )+ipkq f dr'g(r')exp I ipk[g(q, r} g(q, w')]—I, —
+i
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and the Einstein equation becomes

k I (1 p2)p(0)pI(1)~ (3.30)

motion is produced spontaneously in contrast with ideal
fluids (irT ——0).

C. Tensor perturbations

The invariant velocity amplitude u,"' is

0(i)Q(1) (E +P)—15T0

1 (E+p)—1 f (1 2)p(0)pr(1) Q(1) (3.31)

and the traceless anisotropic stress perturbation m'T" is

For tensor perturbations, 5I' can be expanded as

(i) (j)
5F f(2)(~ p p)P P Q(2)(x) (3.34)

where f' ' is gauge invariant by itself. In terms of it, we
obtain

~(1)~(1 )i p —15TiT J' — J
Q(l)ii I (~ p3)p21(l)~ (3.32)

f (2)
p

(i) +iI2kpf (2)/p(0) prf (2)S; Bf(2) BFj)
gp(i) Bp

for the Boltzmann equation, and

(3.35)

From the conservation law 5T/.'„=0 we can obtain the
equation of motion expressed by these quantities:

g —2 H' (2)+2 ~ (2)+k20(2)

v (1)
y

v(1)
C 5} ~ C

E
kI' (1)

E+P (3.33) 1 —2@ +@ p ' 'm 336

This equation shows that in a collisionless gas, rotational
for the Einstein equation. The solution of Eq. (3.35) is ex-
pressed as a function of q, )u, and T:

f(2)(q, (u, r)=expI ipk[(,"—(q, T) g(q, r;—)]jf(2)(q,p, T;)+ipkq J dT'H(T2)(T')expI ipk[g(—q, T) g(q, T')—] j .
~i

(3.37)

IV. A COUPLED SYSTEM OF A FLUID
AND A COLLISIONLESS GAS

T v= T(f)v+ T(c)v= g T(a)v t (4.1)

In Sec. III we have derived gauge-invariant perturba-
tion equations for a single collisionless gas. But actually
our Universe is filled with a multicomponent matter
which consists of, e.g., radiation, baryonic matter, and

probably a collisionless gas as the dark matter. Kodama
and Sasaki extended Bardeen's formalism to a multifluid

system. In order to consider the perturbations in a more
realistic model universe, in this section, we treat the in-

variant perturbations in a system of a fluid and a col-
lisionless gas. In spite of different treatment, much of our
notation is consistent with Kodama and Sasaki.

In the present model, the total energy-momentum ten-

sor is decomposed into two parts,

A. Scalar perturbations

For scalar perturbations we have

5T0(a) 0= —Ea5a(~){?(x),

5T( ); (E +P )(0 ———8)Q;(x),

(4.3a)

(4.3b)

5T(a)j Pa[irL(a)5 jQ(X)+')TT(a)Q j(X)] ~ (4.3c)

l ~

vg(~) =v ——Hg,
k

(4.4a)

e ( }=5+3(1—+((} ) (u —8),1S
(4.4b)

For a fluid there is an equation of state constraining the
fluid quantities, while for a collisionless gas the fiuid
quantities are specified by a distribution function satisfy-
ing the Boltzmann equation, as can be seen from Eqs.
(4.3) and Appendix B. The gauge-invariant variables for
the above amplitudes are

where (2 takes f and c. Since the energy-momentum ten-
sor for a collisionless gas also can formally be described as
that of an imperfect fluid, let us express the coinponents
of two parts parallel as follows:

2
CN

la=~L(a) 5a ~

l8~

where

(4.4c)

T&(~)„diag( Ea,Pa, Pa, Pa)+5T(—a)„. — (4.2)
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I~
C~

The invariant quantities for a =c are

(E,+P, )u, (,»

——i f p' 'ppJn,

E, = p'" 'J-+—"-' p"pk

—3(E,iP, )PH,

(4.5)

(4.6a)

(4.6b)

S
Us(f)+ S "s(f)

k 2
Ijkg+ (cf Ef'E~(f)+Pff)f 3Pf'lT7(f))f+ f

(4.9b)

Equation (4.9a) reduces with the help of (4.7b), (4.8), and
(2.3) to

(SiEfEgg( f)) = S(E—f+Pf )ku, (f)

+ ', S5(E-f+Pf)(E,+P. ) '(u, (.) —u, (f))-

P,&, = —,
' f p'g~ ,—'f (p( )) g~ (46c)

Now let us derive the equations to be satisfied by these
qmntitim. Flnt the Einstein equations me given by

—2S SPg'777(f) e (4.10)

Eliminating u, (f) from Eqs. (4.9b) and (4.10) we finally
abtain a second-order equation for e (f)

2(k/S) PH =Em~,

(k/S) (—pa+QH)=Per .

(4.7a)

(4.7b)
(S EfE~(f)) +[(1+"3'f )+ W2(1+3~~ )] (S Efe—~(f)}

Here the total quantities, E, P, e, u„mz. , and g are de-
fined by

E= QE„P=QP, Ee = gE e, ,

Pq = g P~g~, (EiP)u, = g (E~iP~ )ug(~)
where

W)k =kii ', (E, iP, )S—2,

=s(f) is(c), (4.11)

i[W(k cf g(Ef+Pf)S ](S'Ef'E (f))

Per gP nT( ——
) .

The conservation law for the total energy-momentum ten-
sor is the same as that for a single fluid with the total
fluid quantities. From the above conservatian law, there-
fare, we obtain the equation for pH

fH+ pH ——,(E—iP)S——k 'u, SSk Pn z
—(4.8)

S

and

W2 ——,'(E, iP, )S—/(Wik ) .

The "source terms" af Eq. (4.11) are

s(f}=—W, k (S Pfgf)

i[—', k i2(P Ecf )S )(S—Pfn.z(f))

2S(S Pfwp(f)) —
y (4.12)

in the same way as Eq. (4.7) in Ref. 2.
Next let us consider the components separately. The

energy-momentum tensor af each part T~(f) and T~~,)„ is
conserved independently, because of

and W(F) =0 for a collisionless gas. For the collisionless
gas Eqs. (3.18) and (3.19) hold. For the fluid part we get
after straightforward calculations of 5(T~(f)o.&)=0 and
5(T(f)(.p) =0 the following equations:

s(c)= —,'(1+3m, )(Ef+Pf)S (E,e~(, ) 2W2S Sku, (,—))

i , (Ef+Pf)S P,g, —, (4.13)

k
2 i3(E iP)

S

where e (,), U, (,), and q, can be replaced by their integral
forms in Eqs. (4.6a}—(4.6c). Note that n z(,), the anisotro-
pic stress perturbation for a collisionless gas, does not ap-
pear as a source term. Finally, the Einstein equations
(4.7a) and (4.7b) are expressed as

(S Eff (f)}'—3S (Ef+Pf) u (f)
3 3 1 S

and

=Efe (f)i f (p' ') &~+3 p' 'ppJ~
kS

(4.14)

+S (Ef+Pf )ku, (f)+3S (Ef iPf)QH ——0, (4.9a) k
S2 (02+(t)H)=Pf~T(f)+ f (3P )p J')r . —
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B. Vector perturbations

The perturbations of the energy-momentum tensor are

5T(a); (E ——+Pa)(va ' —8(")Q ",
5T(a)j =Pa~T(a)Q j(1) (1)i

(4.16a}

(4.16b)

The corresponding gauge-invariant variables are FATTI")

themselves and

(1) (1) (1)
V~. (~)—=V~ —8 (4.17}

Equations (3.20) and (4.11)—(4.15) form the complete set
of scalar perturbation equations for a fiuid plus collision-
less gas system.

fundamental equation (3.21) deriving the perturbations
does not include any time derivative of gravitational per-
turbations such as ()}z and (()~. The equations for vector
and tensor perturbations also are interesting, because in a
collisionless gas rotation and gravitational waves are gen-
erated owing to its dissipative character (m T' and n'z are
nonzero). In our formalism, unphysical gauge modes are
automatically excluded, whereas in other gauge-specifying
methods they may not be. 'v It will, therefore, be a useful
tool for the study of linear perturbations of the dark
matter in the early stage of the Universe, which grow to
eventually form the large-scale structure of the Universe.
Numerical solutions for the perturbation equations in
some interesting cases will be shown in a separate paper.

For a=c we have

(c,+p, lu, (,'(= —, f (1 p)p' 'pI"—'w,

PcnT(,') ——. i j2—(j2 —1)p I n .(1) 2 2 (1)

For I'" Eq. (3.28) holds. The Einstein equation in Eq.
(2.14) is
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APPENDIX A

and the equations of motion are

v (i) S 2 (i) a (l)
vc(a) =

S (3+a 1)vc(a) E +T(a)E +Pa

(4.19)

(4.20)

In this appendix, we analyze the gauge dependence of
the tetrad components of momenta and the perturbations
of the distribution function. The perturbed metric has the

OITQ

ds =S (~)(Tj„„+h„„)dx"dx".

C. Tensor perturbations

The perturbations of the energy momentum tensor are

(2) (2)i8T(a)j =Pa~T(a)Q j .

For a =c we have

(4.21)

T(c)= g 1 —2p +p p m

where f' ' is given by Eq. (3.37). The Einstein equation is
expressed as

The equations to be solved are Eqs. (3.29), (4.18a), (4.19),
and (4.20} with a=f, while Eqs. (4.18b) and (4.20) with
a=c explain the production of rotation in a collisionless
gas. If the fluid is ideal (mT(f)

——0) and initially nonrotat-
ing, it is always nonrotating (i.e., the law of circulation
holds), while the rotation in the collisionless gas appeus
independently of the fiuid because of nonvanishing n (T(,).

I.et us introduce a tetrad frame

e" =—(8"——h")1
(u) ~ a 2 a

(A2)

Then it satisfies the relations e~(a)e'"'=5, and e~~, )e„"'=8„',
and is orthonormal, i.e., g„„e(,)e(b)

——21,(, . The tetrad in-
dices a and h run from 0 to 3. It is shown below that for
arbitrary gauge transformations the tetrad frames have a
vector transformation followed by a I.orentz transforma-
tion.

1. Scalar perturbations

Under the gauge transformation of Eq. (2.7), the tetrad
frame changes as

e ~(, )
——S )(5;——,

'
h ", )

0

S—2 H'(2)+2 ~(2)+k20(2) g ~ (2)

S (4.22} and (A3)

V. CONCLUDING REhhkRKS

%e have derived the gauge-invariant perturbation equa-
tions for a collisionless gas by introducing the gauge-
invariant quantities which correspond to the perturbation
of the distribution function. Our equations for scalar per-
turbation equations seem a little simpler than others, e.g.,
Bond and Szalay's in synchronous gauge, because our

and the metric perturbations are

b, h() ———(L+kT)Q'
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hh'= —2 L—+ T—5jQ —kLQjJ'--
3 S

If we consider a matrix defined by

a (}X v -(a)
b = (b) p()x

Therefore the perturbation f'" changes like

f (1) f (1) s Lp(0)
2 Bp

APPENDIX 8

(A9)

it is found that generally Lb is not 5b but a Lorentz ma-

trix, because the relation qabL,'L~ ——rj,~ can be derived us-

ing the orthonormality condition. The change in the
tetrad components p'" =—e&'dx&/ds is

{f) (i) {1)()x " dx" {;)dx"
" (}xv ds " ds

53 )p(a)

In this appendix, we calculate the perturbations of the
energy-momentum tensor for a collisionless gas. Here,
the subscript c is omitted. From (3.3), the perturbations
are expressed as

3 T"„=93'„'I, p "pg„5p~

+ ,
'

(5j'a—h „h",—5 „)f p")p(b)Fjim .

1. Scalar perturbations

=-,' (L —kT)p"'g'. (A5)

This difference comes from the Lorentz transformation

p
(i) I Ip(a)

The distribution function F(x,p) is a scalar, but

F(x,p) =Fjj(S(7)p)+fQ

=Fa(S(r)p )

(iF S 1
(0) (i)—pTQ+ (L—kT)Q; +—fQ.

()p S 2 p

Thus the perturbation f does change as

()Fa S i (0)f=f— Tp — js(L——kT)p-
ap S 2

From Eqs. (3.5) and (3.11)

5T'o=g f p'"p(0)frr

=Q fp' 'p(0)Jrr+3(E+P)(HI. + ,'Hr)—
J

5T', =g f p{0)p{)f~ ='(E+P)Bg
l

i —Q —f ip' )pjsfm —,(E+—P)BQ;

T

=Q; i i p' 'pppw (Z+P)(B —3/k—HT )

»'J=() Ip"pv~j~

k'kj= —,5jQ p fn —5j——

(&2)

(83)

2. Vector perturbations

Under the gauge transformation of Eq. (2.10), we have

h i'„=hi', + i(),hi'„,

XQ f p —,'(3p —1)fn

= —,
'

O'Q f p2Jm 3c2(E+P)(HL—+ ,
' Hr)—

where bh'0= LQ"' and hh—'j =2kLQ'"j. The change
in the component p" is, therefore, given by

—0' f p~ —'(3p' —3)1n .

2. Vector perturbations

(84)

(0)g(l)i+kL (j)g(l)i+Lp(j)gi—
z p p 3J (A7)

(j)
5 To g{1) (0) P f(1)p p(s)

p

Moreover we obtain

Fji(S(r)p) =Fjj(S(~)p)

P
(

3 L (0)g(1)i+kL (j)g{1)i
(i)

ap p

+Lp(j)g(1) i
)

g{1) 5) f 1 (1 +2)p(0)pl(1)

kjk;
F2 $ p (0)pI ( ~ )~

By use of Qj "kj=njk jg =0,

5TO Qi(1) f ( 1 ji2)p(0)pl(1)
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Moreover,

gTi Q(1) f p(i)~ p(m)p —lf())~

Q(1)i f p(p2 1)p2I(1) (87)

(i) (n) (I) (m) —2f(2)

=Xk'k "k'k ™+1'5""k'k )+Zg('ng'm) (89)

Since Q' ", =0 and Q' ~jkl=0, only the third term in the
right-hand side of Eq. (89) is relevant, and

3. Tensor perturbatians

{E) {m)
g Ti ~(2)g (i) (n) J Jl i (2)~g=~Im )e P P

The integral of Eq. (BS) can be decomposed as

Z5(inglm) 1 (ginglm+gilgnm+5impd)

X & —2p'+@4 p' {"m.
(88)

Then

gTi 1 Q(2)i f (1 2p2+p4)p2f(2)~
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