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IV. Initially empty universes

Paul R. Anderson
215 Williamson Hall, Uniuersity ofFlorida, Gainesuille, Florida 326ll

{Received 15 October 1985)

The behaviors of solutions to the semiclassical back-reaction equations are investigated for con-

formally invariant free quantum fields and a conformally coupled massive scalar field in spatially
flat homogeneous and isotropic spacetimes with no classical radiation or matter. The quantum
fields are all initially in their vacuum states. Only solutions beginning with the scale factor equal to
zero are considered. The behaviors of solutions depend upon two regularization parameters a and P
aud on the mass m of the scalar field. For P& 3a & 0, all solutions beginning with the scale factor
equal to zero are without particle horizons, while for 3a &P & 0 a one-parameter family of solutions

with no particle horizons exists. For P & 0, u & 0 a one-parameter family of solutions with no singu-

larities or particle horizons exists if m =0 and may exist if m &0 as well. For m&0, a & 0 there is

evidence that a one-parameter family of solutions which expand like classical matter-dominated
Friedmann universes at late times compared to the Planck time exists. For a g0 a two-parameter
family of such solutions exists. In both cases particle production due to the massive scalar field fills

up the spacetimes.

I. INTRODUCTION

Studies of free quantum fields in homogeneous and iso-
tropic spacetimes allow one to address several issues in
cosmology. These include the following questions. Did
the Universe begin with an initial singularity? Does it
have particle horizons? Where does the matter come
from? In Refs. 1 and 2, hereafter referred to as papers I
and II, we examined the effects of conformally invariant
free quantum fields in homogeneous and isotropic space-
times containing classical radiation. Fischetti, Hartle, and
Hu and Frenkel and Brecher had previously found one
solution to the semiclassical back-reaction equations in
this case with no particle horizons. We found many more
such solutions as well as solutions with no singularities
and one solution which undergoes a time-symmetric
bounce and has no singularities or particle horizons. In
Ref. 5, hereafter referred to as paper III, we added a con-
formally coupled massive scalar field to the models and
found, for spatially flat spacetimes, that in the limit that
the scale factor vanishes, the mass of the field has no ef-
fect on solutions to the semiclassical back-reaction equa-
tions. However, it does significantly affect the late-time
behaviors of many solutions.

In each of these papers, classical radiation was included
so that at late times compared to the Planck time, when
quantum effects are expected to be small, the Universe
could expand like a classical radiation-dominated Fried-
maim universe. However, as might have been expected,
we found in paper GI that significant particle production
occurs for the massive scalar field provided that m & 10'
GeV. This opens up the possibility that classical radiation
might not be needed to support the expansion at late times
since the produced particles might do the job as well. In
fact, if no classical matter is included and if the quantum
fields are initially in their vacuum states, then the result-

ing models provide a natural explanation for the origin of
the matter in the Universe.

In this paper, we investigate the behaviors of initially
empty spacetimes which are homogeneous, isotropic, and
spatially flat. We first consider models with conformally
invariant free quantum fields. In this case no particle
production occurs and the spacetimes remain empty.
Then we also include a conformally coupled massive sca-
lar field. Particle production can, and usually does, then
occur.

As discussed in paper III, we consider spacetimes that
are homogeneous, isotropic, and spatially flat because of
their simplicity and because the Universe at the time of
the decoupling of matter and radiation exhibited these
properties, leading one to believe the early Universe may
have had them as well. We exclude massive spinor fields
but the conformally coupled massive scalar field should
provide a great deal of insight into their effects since both
are conformally invariant in the limit that either the mass
or the scale factor vanishes. Because of the technical dif-
ficulties involved, we do not consider gravitons or
minimally coupled scalar fields.

Our models should provide a good approximation to
the early Universe provided that the fields in the early
Universe can be approximated as free fields when the
scale factor is small, that most scalar fields are confor-
mally coupled, and that there are a large number of fields
so that the effects of gravitons and minimally coupled
scalar fields are negligible. However, in the actual limit
that the scale factor vanishes the effects of gravitons and
minimally coupled scalar fields may dominate.

Empty homogeneous and isotropic spacetimes contain-
ing conformally invariant free quantum fields have been
previously investigated by Starobinsky and Azuma and
Wada. Starobinsky has shown that de Sitter space with
an effective cosmological constant on the order of the
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Planck scale is a solution to the semiclassical back-
reaction equations for all values of a if P & 0, where a and

P are the two regularization parameters in the problem. It
turns out that P&0 for all quantum fields. Starobinsky
also showed that if a &0 then a family of solutions exists
which initially expand like the de Sitter solution and thus
have no singularities or particle horizons. These solutions
along with many others are asymptotically classical solu-
tions (ACS's}. For a & 0, no ACS exist.

In Sec. II we derive and discuss the wave equation for
the massive scalar field and the semiclassical back-
reaction equations. In Sec. III we complete the investiga-
tions begun by Starobinsky and Azuma and Wada and
find that for P & 3a &0 no solutions with particle horizons
exist. We also find that the only nonsingular solutions are
the de Sitter solution and those solutions for a &0 which
initially expand like the de Sitter solution.

In Sec. IV we discuss the behavior of solutions when
the conformally coupled massive scalar field is also
present. We find that the effective cosmological constant
for the de Sitter solution is decreased by the presence of
this field and that there exists a maximum mass m
such that for m &m~ &24n'1 ' the de Sitter solution no
longer exists. ' Here l =(16trG)'i is the Planck length. "
We find that the rest of the initial types of behavior of
solutions are not significantly affected by the mass of the
massive scalar field. However, the final behaviors of
many solutions are affected by the mass. For a &0 a fam-
ily of stable ACS s still exists while for a &0 there is evi-
dence that particle production due to the massive scalar
field results in the existence of an unstable family of
ACS's.

12
G,b ———(Oi T,b i 0) .0 (2.1)

Here G,~ is the Einstein tensor and T~ is the stress-
energy tensor operator for the quantum fields. Note that
although the geometry is left classical in this approxima-
tion, first-order quantum fluctuations of the gravitational
field, gravitons, can be included in (0

I T.b I
o) We shall

not do so.
The metric for spatially flat, homogeneous and isotro-

pic spacetimes has the form

ds~=a (ri)( —drt2+dx ), (2.2)

where a(ri) is the scale factor and the proper time of a
comoving observer is dt =a dq. G~ for this metric is
well known, so we will concentrate our attention on
(oi T.b io).

II. DERIVATION
OF THE BACK-REACTION EQUATIONS

In this section we derive the back-reaction equations
appropriate for our models. We use canonical quantiza-
tion and adiabatic regularization to treat the massive sca-
lar field. These subjects are reviewed in paper III as well
as in Ref. 12 and references contained therein. When
canonical quantization is used and the fields are in their
vacuum states, the semiclassical back-reaction equations
are

The metric (2.2) is clearly conformal to Minkowski
space. For conform ally invariant fields the obvious
choices of vacuum states are those obtained by conformal-
ly transforming the usual Minkowski space modes to
curved space. Then, since no particle production occurs
for these fields in Minkowski space, none occurs in space-
times conformal to Minkowski space. The regularized ex-
pression (0 i T~ i

0) for conformally invariant fields in
conformally flat spacetimes is known to be' '

(0
I T~

I
0) = (g~—R';, R;~—+RR~ ——,g,bR )

+P( —', RR~ R, 'R—b,

ed i 2+ ag~RcaR" ag—abR» (2.3)

where g~ is the metric tensor, R~ is the Ricci tensor, R
is the scalar curvature, and a and P are regularization pa-
rameters that depend on the number and types of fields
present and for spin-1 fields on the regularization scheme
used. For scalar fields P=a=(288&r } ', for four-
component spinor fields P= —", a= 1 1(2880ir ) ', and for
vector fields dimensional regularization gives
P= —,a=62(2880ir ) ' while g-function regularization
gives P= ——", a =62(2880tr )

In paper III we derived a regularized expression for
(0i T,b i0) using adiabatic regularization. We sketch
that derivation here.

The starting point is the wave equation which for the
conformally coupled massive scalar field is

Clg —(m + 6R)/=0. (2.4)

Expanding the field P in terms of the modes u»(x), one
finds

P= f d k(a»u»+a»~u» ),
where a» is an annihilation operator and

u» ——(2m) 3ize'"'*a '(ri)g»(ri) .

(2.5)

(2.6)

a» i0)=0 (2.9)

for all k. Thus, choosing initial values for g» for all k is
equivalent to choosing a vacuum state.

An unregularized expression for (0
i T~ i 0) can be ob-

tained by substituting Eqs. (2.5) and (2.6}into the classical
expression for T~ and taking the vacuum expectation
values. The result is' '

Substitution of (2.5) and (2.6) into (2.4) shows that g» is a
solution to the equation

d 0»
i +(k +m a )P» ——0. (2.7)

dn'

Requiring the modes uq to be orthonormal with respect to
the usual Klein-Gordon inner product gives the condition

A 4» 4» 4» =t-6f

d ri d'g
(2.8}

The vacuum state is defined as the state for which
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b=l 'a . (2.11}

Note that since classical radiation is present, this is a dif-
ferent definition of b than that used in papers I—III.

Combining Eqs. (2.1)—(2.3), (2.7), (2.10), and (2.11) and
Eqs. (2.19) from paper III, we find the following set of
coupled equations to be solved:

d2
+(k +m lib )f»=0, (2.12a)

d'g

b l2 b Illb 1 b Itb I2

=2a
b4 2b' b'

1 b"
4 b'

bl
1+ 6I), (2.12b)

(0
~

T 0 ~
0)~es (4HQ )

x J dkk~[
~

@' ~2

+(k +m a ) (P)i] .

(2.10a)

(0( T [0)~,s m——(2' a &

' f 1kk [g( . (2.10b)

Homogeneity and isotropy allow one to deduce the other
components of (0

~
T~

~
0) from these.

To regularize (0
~
T~

~
0) s we use adiabatic regulari-

zation since this is the scheme most amenable to numeri-
cal computations. Birrell has shown that it is equivalent
to point splitting for spacetimes with the metric (2.2).'

Essentially, one solves Eq. (2.7) using a Wentzel-
Kramers-Brillouin (WKB) approximation, substitutes this
into (2.10), and subtracts the resulting expressions from
those for the exact modes. The adiabatic expressions are
explicitly given in Eqs. (2.19a) and (2.19b) of paper III.
One of the terms in each of these equations is proportion-
al to Go and R, respectively. Fulling, Parker, and Hu'
suggest that these terms correspond to a finite renormali-
zation of the gravitational constant. We shall treat them
as such and therefore exclude them fram the back-
reaction equations.

Before writing the explicit form of the back-reaction
equations that we shall use, it is useful to define the di-
mensionless variable

fields plus a contribution of (2880ir )
' to both from the

conformally coupled massive scalar field. Thus, the mas-
sive scalar field adds terms to the back-reaction equations
which are the same as those contributed by a conformally
invariant scalar field along with the terms Ii and I2
which depend on the mass. In the limit m —+0 the mas-
sive scalar field becomes conformally invariant and Ii
and I2 vanish if the field is in a vacuum state which
reduces to the conformal vacuum in this limit.

Equations (2.12) are all explicitly independent of g so
solutions are invariant under the translation il~g+r10,
with r10 an arbitrary constant. They are also invariant
under the transformation g~ —r1, although their solu-
tions, in general, are nat. Equation (2.12c) is a fourth-
order equation so one expects a four-parameter family of
solutians to it. However, the constraint equatian (2.12b)
accounts for one of these parameters and the invariance af
solutions under time translation accounts for another.
Thus, one effectively has a two-parameter family of solu-
tions to Eq. (2.12c). When we talk about families of solu-
tions in the following sections it is this effective two-
parameter family that we shall be referring to.

III. SOLUTIONS FOR m =0

In this section we discuss solutions to the semiclassical
back-reaction equations (2.12) when m =0. Since P is
positive for all quantum fields we only consider solutions
for P&0. If m =0, all the fields are conformally invari-
ant so Ii Ii ——0 a—n—d we can dispense with Eq. (2.12a).
Salutions to Eqs. (2.12b} and (2.12c) have been discussed
by Starobinsky for a & 0 and Azuma and Wada9 for both
a g0 and a gO. However, their discussions do not expli-
citly include the initial and final behaviors of all of the
solutions and, in particular, the question of which solu-
tions have singularities and particle horizons is only par-
tially answered for a & 0. Because of this incompleteness
and because we shall be comparing the behaviors of solu-
tions for m +0, we give in this section a complete descrip-
tion of the initial and final behaviors of all solutions and
how they match up, for m =0.

There are two solutions to (2.12b} and (2.12c) that occur
far all a. One is the trivial Minkowski space solution,
b =const. The other, which only occurs for P&0, is the
de Sitter solution

—b"
=6a

b3

blllt l blltbt l bit I bllbl2

)2b5 3 b6 4, b3 2 b7
b =(Pn)'"(q.—~) (3.1)

4
b I b lib I2

+P (2.12c)

~here primes denote derivatives with respect to g and

I,:(4m b ) 'f dk—k [~g'~ +(k +m1b }(g~
—(k'+m'1'b')'"],

Ii—=m 1(4m b )

&( J dk k~[
~ y ~

i —'(ki+m212bi) —'~2] .

A,if=61 p (3.2}

The de Sitter solution begins at g= —Oo, and a glance
at the metric (2.2) shows that for solutions beginning with
i1= —00, all of the past light cones intersect. Such solu-
tions have no particle horizons. For spacetimes with the
metric (2.2) the scalar curvature is

where qo is an arbitrary constant corresponding to the
time translation invariance of Eqs. (2.12b) and (2.12c}.
The value of the actual cosmological constant in our
models is zero. However, for the de Sitter solution (3.1)
the effective cosmological constant is

The values of a and P in (2.12b) and (2.12c) are equal to
the sum of a and P for each of the conformally invariant 8 =61 b b" (3.3)
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Substitution of (3.1) into (3.3) shows that R is a constant.
Thus, de Sitter space has no curvature singularities.

The behaviors of the rest of the solutions is different
for a & 0, a=0, and a &0, so we shall discuss these cases
separately. For a =0, p & 0 there are no other solutions to
(2.12).

A. a&0

For a &0, the qualitative behaviors of solutions can be
determined from a phase-plane analysis. With the change
of variables

w=ln(
~

a
~

'~ b'),
r=6 e

~

b'~

TS= 7

dw

Eq. (2.12b) becomes the first-order equation

ds i pr —a in
dr 12a t'ai

(3.4)

(3.5)

A phase-plane analysis of (3.5) shows that for a=O, all
solutions spiral into the point s =0, r =(12a/p) ~ . This
point corresponds to the de Sitter solution (3.1), so all
solutions are asymptotically de Sitter in this case.

The early-time behaviors of solutions are different for
different values of p/a. For 0&p/a&3, Azuma and
Wada showed that a two-parameter family of solutions
exists with the initial behavior

b =const X(iI—imp)' (3.6)

where the constant gp is the trivial one corresponding to
the time translation in variance of Eqs. (2.12) and
o —= —,(1——,p/a)'~ . Substitution into (3.3) shows that
these solutions begin with an initial singularity. Since
they begin at a finite value of iI they have particle hor-
izons.

Azuma and Wada also found a one-parameter family of
solutions with the initial behavior

b=constX(il(i —iI) ', il~ —oo (3.7)

when 0&p/a&3. Substitution of (3.7) into (3.3) shows
that these solutions also have initial singularities; howev-
er, they do not have particle horizons. A phase-plane
analysis shows that no other initial behaviors exist for
solutions if 0 &p/a & 3.

For p ja 3, the initial behaviors of solutions have not
been previously discussed. For P/a=3 a phase-plane
analysis shows that a two-parameter family of solutions
has the initial behavior

b =exp[Ci(iI —imp) ] (3.8)

b =exp[Cd(iI —imp) ] (3.9)

for a positive but otherwise arbitrary constant Ci. Substi-
tution of (3.8) and (3.9) into (3.3) shows that these solu-
tions begin with initial singularities. They do not have

for a positive but otherwise arbitrary constant Ci. Also a
one-parameter family of solutions has the initial behavior

particle horizons.
For P/a&3, o is imaginary. If the (b') b term on

the left in Eq. (2.12b) is neglected, then the exact solutions
to the resulting equation are

b'=eh[sin (3
~

cr
~

Inb+5)]'~ (3.10)

For small enough b, these are clearly much larger than
(b') b . For larger values of b' the terms proportional
to

b [sin (3
~

a
~
lnb+5)] ~

are also important. Again for small enough b, (b') b
will be much smaller than both these types of terms.
Thus, (3.10) describes the approximate behavior of solu-
tions in the limit b ~0

Substitution of (3.10) into (3.3) shows that these solu-
tions begin with an initial singularity. The curve b =e'&
serves as a lower bound to these solutions as b~0 since
b~~ =cb Thu. s, they begin at iI = —ao and do not have
particle horizons.

This ends our discussion of the behavior of solutions
for a & 0. We have seen that all solutions approach the de
Sitter solution (3.1) at late times and that except for the de
Sitter solution, all solutions begin with an initial singulari-
ty at b =0. For p & 3a & 0 no solutions have particle hor-
izons while for 0 & p & 3a most, but not all, solutions have
particle horizons.

B. a&0

For a&0, Starobinsky has shown that along with the
exact de Sitter solution, there exists a one-parameter fami-
ly of solutions which initially expand like the de Sitter
solution (3.1). Thus, these solutions have no singularities
or particle horizons. He has also shown that their late-
time behavior is given by

b = birl —6'~ r7) 'cos[6'~ (9r) 'birl +5], (3.11)

where bi and 5 are arbitrary constants and r=
~

a/3
~

'

On time scales Ag &&~, the second term averages to zero,
and the solutions expand like classical matter-dominated
Friedmann universes. Thus, they are ACS's. However,
since no particle production occurs these spacetimes are
still empty, even though they expand classically at late
times.

The initial behaviors of the remaining solutions for
a &0 are given by Eq. (3.6), so these solutions have singu-
larities and particle horizons. Starobinsky showed, using
a phase-plane analysis, that there are three possible late-
time behaviors for these solutions. A two-parameter fam-
ily has the behavior (3.11) and the solutions are thus ACS.
A one-parameter family approaches the de Sitter solution

where c and 5 are arbitrary constants. These solutions go
through an infinite number of infiection points as b~0
but have no maxima or minima.

Substitution of (3.10) into (2.12b) shows that near
b'=0, the dominant terms on the right in (2.12b) are pro-
portional to

b [sin (3
~

o
~

lnb+5)]' ' .
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(3.1) at late times and a two-parameter family has the

late-time behavior

b =const X(g, —rl ) (3.12)

where q& is an arbitrary constant. These solutions expand
so quicldy that R~ao in the limit b~ao and they reach
b = 00 in a finite amount of proper time.

This ends our discussion of the behavior of solutions
when a & 0. We have seen that a one-parameter family of
nonsingular ACS's with no particle horizons exists. A
two-parameter family of ACS s with singularities and par-
ticle horizons also exists.

IV. SOLUTIONS FOR m+0

Having discussed the behavior of solutions for m =0,
we now turn to their behavior for m+0. As in paper III,
we shall only discuss solutions that begin with b =0.
However, for a&0 it is likely that nonsingular bounce
solutions exist and we shall speculate on their probable
behavior in Sec. IV A 3. Because the behavior of the solu-
tions is different for a&0 and a &0, we again discuss
these cases separately.

For m+0, Eqs. (2.12b) and (2.12c) depend upon the
solutions to Eq. (2.12a) so we shall consider solutions to

this equation first. For each k there exists a two-

parameter family of solutions to (2.12a). One of these pa-
rameters is effectively used up by the orthonormality con-
dition (2.8). The other corresponds to the choice of vacu-
um state. In the limit b~O, the general solution to
(2.12a} is

ge ikg—+geikv (4.1)

Substitution into (2.8) gives the condition

[
~ ]'- [a ~'=(2k)-'.

In paper III we chose the vacuum state

(4.2)

~=(2k)-'", S=O (4.3)

because it is the only state which reduces to the conformal
vacuum in both the limits m ~0 and b-+0. We showed
that it is also the only state for which (0

~
T,s ~

0) has no
piece that acts like classical radiation in the limit b~O
Further, this choice gives the usual de Sitter —invariant
vacuum for de Sitter space' and the Chitre-Hartle' vac-
uum for the spacetimes with a =ape&. For all these
reasons we choose (4.3) as the vacuum state in this paper
as well.

With this choice of vacuum, the solution to (2.12a) for
a spacetime beginning with b =0 is

g =(2k) ' e ' "+(2k) ' g ( —1)"(ml) "k
a=1

u] u u) . . u„sin g —u) sink u) —u2

X sink(u„ i —u„)e "], (4A)

where b (w}=D. We showed in paper III that a sufficient
condition for the convergence of this series is

f du b'(u) & oo . (4.5)

This is satisfied by all of the solutions that we find.
With the choice of vacuum (4.3) there is one solution

that occurs for all a if P & 0. This is the de Sitter solution

b =(3/A, ff)'/ (rip —rl ) (4.6)

~here, as usual, go is an arbitrary constant corresponding
to the time translation invariance of Eqs. (2.12). For de
Sitter space (0

~
Tp

~
0), and therefore I, , are well known

for the massive scalar field. ' Substituting these expres-
sions and (4.6) into (2.12b) one finds the following equa-
tion for Adf.

2A,ffl2= —,PA,ff l

4 4
+ [g( —,

' +v)+f( —', —v) —ln(3m /A, ff)],

For 12m /A, ff« 1, one can expand the g's in a Taylor
series about m =0 with the result that, to lowest order,

m44
A ffl =6p ' 1+ [1—2y —ln( —,

'
m I p)]

4608fr

(4.8)

where y is Euler's constant. Thus, the presence of a mas-
sive scalar field decreases A@f for small m. For the values
of p one expects in the early Universe, (4.8) should be a
good approximation for ml & l.

If m /A, ff is large, one can also expand the f's with
the result

m I
Adfl =6 1 — [p—(288Orr ) ']

576&

P&(288(hr )
' (4.9a)

(4.7)

where v—:—,
' —3m /A~ and g —,

' +v) is a digamma func-
tion. For m =0, A,if=61 p

mil2
A,ffl = 13608 —1

576m

1/2

P=(288Orr )
' . (4.9b)
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both cases for large enough m, de Sitter space is not a
solution to Eqs. (2.12). In Fig. 1 we show a plot of A,ff vs
m for P(2880rr )=1,2,6.

The only other solution that occurs for all a (and p) is
the trivial Minkowski-space solution. For a =0, there are
no other solutions to (2.12) with the choice of vacuum
(4.3) if ml &24rr F.or a+0, there are many other solu-
tions and we discuss them next beginning with the case
a~0.

A. a~0

The techniques used to determine the behavior of solu-
tions for m+0 are different for the initial, intermediate,
and final behavior of the solutions. Therefore, we shall
discuss these types of behavior separately.

l. Initial behavior

0
0

FIG. 1. In this figure the value of the effective cosmological
constant A~ for the de Sitter solution is plotted as a function of
the mass of the conformaHy coupled massive scalar field. From
top to bottom the curves correspond to 288(hr P=1,2,6. Note
that the curve for P=(288(hr )

' is double valued for rnl &24m.
In each case, the curves end at ml =24m and have a maximum
value m l &2M. For larger m, the de Sitter solution does not
exist.

Thus, for p& (2880tr ) it is likely that the maximum
value of ml is 24m For p&. (2880ir )

' the maximum
value of m must be larger than this which implies that
A ff is a double-valued function of m for ml & 24n In.

One of our main results is that the initial behavior of
solutions other than the de Sitter solution are no different
for m+0 than for m =0. To show this we consider each
initial type of behavior found in Sec. III and show that I i

in Eq. (2.12b) is negligible compared to other terms in the
limit b~0.

Substituting (4.4) into the expression for Ii below Eqs.
(2.12), the first thing one notices is that all of the integrals
over time vanish in the limit b~O Thu. s, Ii always
diverges less quickly than b as b~O. This alone is
enough to prove that I, is negligible compared to other
testis in (2.12b) for the initial types of behavior (3.6),
(3.8},and (3.9).

If (4.4) is substituted into Ii, then the first few terms
are

rn'l4 '— Q1

—,'y+ —,', + ,', ln(m l b )+—b "f duib(ui)b'(ui) f duzb(uz)b'(ui)ln
~
ui —uq

~
(4.10)

Substituting the initial behavior (3.7) into (4.10}one sees
that to this order

m'
I)—+ ——2 ln( —ri), ri~ —oo .

64rr'
(4.11)

The most divergent terms in (2.12b} have the form
constX( —g) as ri~ —ao. Thus, to this order Ii is
negligible as b —+0. Given that the convergence of the
series (4.4} for Pt, imphes the convergence of the series in
(4.10) for I„ it seems unhkely that higher-order terms
will diverge more rapidly than those explicitly calculated.
Thus, the initial behavior given in (3.7} should still occur
for m&0.

The last type of initial behavior found for solutions
when a & 0, rn =0 is given by Eq. (3.10). Substitution of
(3.10) into (2.12b) shows that terms are proportional to

b [sin (3~a ~lnb+5)J

b [sin (3
~
tr

~

1nb+5)]'r' .

Thus, except near points where b' and b" are small, these
solutions diverge more quickly than Ii as b~O. Near
points where b' and b" are small, Ii will be important.
However, since II will be much smaHer than other terms
for larger values of b' and b", the change it makes in the
behavior of solutions will be insignificant as b~O. Nu-
merical work bears this out and shows that the effect of
Ii is to ko:p the value of b' from dropping all the way to
zero as b" goes through zero. Thus, (3.10) is a good ap-
proximation to the initial type of behavior of solutions
when m&0, P&3a&0.

2. Intermediate values of b

The biggest difference between solutions at intermediate
values of b for m =0 and m&0, if a&0, is that the
former must expand or contract monotonically while the
latter may have maxima and minima. To see this, note
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that at b'=0 Eq. (2.12b) implies

b"=+b (2Ii la)'i (4.12)

0.02

Now, all of our numerical calculations of Ii show it to be
always positive for the choice of vacuum (4.3). This is
also true of de Sitter space for which Ii is known analyti-
cally. Thus, for rn =0, there are no maxima and minima
while for m&0, maxima and minima are allowed if a & 0
and not otherwise.

To solve Eqs. (2.12) for intermediate values of b, we nu-

merically integrated them beginning at some small value
of b and using the results of Sec. IV A 2 to obtain starting
values for b' and b" Equ. ation {4.4) was used to obtain
starting values for pk and 1' and Eq. (2.12b) was used to
obtain a starting value for b'". Our numerical methods
were discussed in some detail in paper III and we refer the
interested reader to that paper.

Some of our results for rnl =20 are shown in Fi s. 2
and 3 for P=6a=6(2880ir )

' and P=a=(288 )

respectively. In each figure a one-parameter family of
solutions is shown in which the parameter that is varied is
the starting value of b'. In general, we find there are al-

ways many solutions that are essentially indistinguishable
from those which occur for m =0. For P&3a&0 we
find that some other solutions undergo multiple bounces
for m+0. For 0&P&3a some solutions reach a max-
imum value of b after which they monotonically decrease.

O.G I

0.00.0 2.0 6.0
'9

FIG. 3. In this figure a one-parameter family of solutions to
Eqs. (2.12) is plotted for ml =20, P=a=(288&rr ) '. The start-
ing values of g, b, b" are fixed and the starting value of b' is al-
lowed to vary. The dotted curve on the left corresponds to the
solution with the smallest starting value of b' and the dashed
curve corresponds to the solution with the largest starting value
of b'. A solution is hinted at which comes arbitrarily close to
turning over. This solution would appear to expand more slow-

ly than the other diverging solutions and is probably an ACS.
In the region where solutions are either not quite turning over or
are just barely turning over the accuracy of the curves shown is
suspect due to the extreme instability of the solutions in this re-
gime.

0.05-

O.OI 5-

0.0
O.O 2.0 4 0

'9
6.0

FIG. 2. In this figure a one-parameter family of solutions to
Eqs. (2.12) is plotted for ml =20, P=6a=6(2880m ) ' The.
starting values of g, b, b" are the same for each solution and the
starting value of b' is different. The dotted curve on the left
corresponds to the solution with the smallest starting value of b'
and the dashed curve corresponds to the solution with the larg-
est starting value of O'. A solution is hinted at, though not ex-
plicitly shown, which comes arbitrarily close to turning over but
does not quite do so. This solution would appear to expand less
rapidly than the diverging solutions and is probably an ACS. In
the region where solutions are either not quite turning over or
are just barely turning over, the accuracy of the curves shown is
suspect due to the extreme instability of the solutions in this re-
gime.

As in papers I—III the cutoff point for multiple bounce
solutions appears to be P=3a. The plots in Figs. 2 and 3
show all of the generic types of solutions that we find for
m +0.

3. Late time be-havior of solutions

For m =0, all solutions approach the de Sitter solution
(3.1) at late times. For m&0, we shall argue that solu-
tions can approach the de Sitter solution (4.6), have some
other type of divergent behavior, be asymptotically classi-
cal, or approach b =0 at late times. We shall discuss
these possibilities separately.

In Figs. 2 and 3 there are solutions that diverge very
rapidly at intermediate times. For intermediate values of
b, Ii and I2 have no real influence on these solutions so
we expect that they will begin expanding like the de Sitter
solution (4.6), particularly for ml « 24m. . It was shown in
Sec. IV C 2 of paper III that once solutions begin expand-
ing like the de Sitter solution they tend to continue to do
so despite particle production. Thus, we expect that for
m &m, where rn &24nl ' is the maximum value
of m for which the de Sitter solution exists, a two-
parameter family of asymptotically de Sitter solutions will
exist. For m & m our numerical vrork shows that solu-
tions still diverge rapidly at intermediate values of b, but
we do not know their specific late-time behaviors.

There is another type of solution hinted at in Figs. 2
and 3. That is an ACS. In both figures a one-parameter
family of solutions is plotted and some of these turn over
while others do not. Continuity implies the existence of a
solution which comes arbitrarily close to turning over but
does not quite do so. From the figures it appears that this
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b =const Xexp[c (t) i
—il )s], (4.13)

with c and rl, constants. We also expect that a one-
parameter family may have the final behavior

b =constXexp[ —c(rli —g) ], (4.14)

For 0&P& 3a, a two-parameter family of solutions will
have the final behavior

solution expands more slowly than those which are
asymptotically de Sitter just as an ACS would. In paper I
it was proven that for universes with classical radiation
and only conformally invariant fields such solutions are
always ACS's. In paper III we showed that when classical
radiation is present, a one-parameter family of ACS's ex-
ists for many choices of the initial vacuum state of the
conformally coupled massive scalar field. However, we
could not specify for certain whether all reasonable
choices led to the existence of ACS's. That argument is
trivially modified to include universes with no classical
radiation. So this result coupled with the numerical evi-
dence just described seems to imply the existence of a
one-parameter family of ACS's for the choice of vacuum
(4 3).

From Figs. 2 and 3 it is clear that the third type of
late-time behavior solutions can have is that they can turn
over and collapse to b =0. Since particle production will
occur for these solutions and since for small b the mass
term in Eq. (2.12a) becomes negligible, the stress energy of
the created particles has the same form as that for classi-
cal radiation as b~O Thus, . the final behavior of these
solutions should be the same as the initial behavior of
solutions in universes containing classical radiation.
These were discussed in papers I and ID. This means that
for P & 3a & 0 solutions will undergo an infinite number of
bounces, approaching b =0 at rl = ac. For P=3a we ex-
pect a two-parameter family of solutions to have the final
behavior

This ends our discussion of the behavior of solutions
for a & 0. We have seen that the initial types of behavior
of solutions are the same as for m =0 while the inter-
mediate and late-time behavior are the same for some
solutions and very different for others. Most importantly,
there is evidence for the existence of a one-parameter fam-
ily of ACS's for m&0 while no ACS's exist for m =0.

8. a(0

I. Initial behavior

For m =0, a two-paratneter family of solutions exists
with the initial type of behavior (3.6). For these types of
behavior the dominant terms in (2.12b) diverge faster than
b as b~O. It was argued in Sec. IVA1 that It
diverges less quickly than b in this limit, so these are
still solutions for m&0.

For m =0, a one-parameter family of solutions, which
initially expand like the de Sitter solution (3.1), also exists.
Since the de Sitter solution (4.3) is an exact solution for
m &m, we expect that a one-parameter family of solu-
tions exists in this case which has the initial types of
behavior given by (4.3}. This seems particularly likely for
12m /A, ff«1, since A,rr is almost unchanged from its
value for m =0 in this case. However, we have no proof
that such solutions exist.

2. Intermediate behavior

As for a & 0, the intermediate types of behavior of solu-
tions must be determined numerically. A glance at (4.12)
shows that if I»0 (as it is always observed by us to be)
then there are no extrema for solutions if a &0; that is,
solutions either expand or contract monotonically.

In Fig. 4 we show the behavior of selected solutions for
P= —a=(2880ir } ', ml =20. Note that one of the solu-

b =constX(i)i —rl)'~ (4.15)

and a one-parameter family should have the final
behavior

O. } 5

b =const Xexp( —cg), rl~ ao . (4.16)
0.(0

Note that in all cases solutions collapse to a final singular-
ity in a finite amount of proper time dt =lb dil.

Although we are restricting ourselves to spacetimes that
begin with b =0, there is one other type of initial
behavior for a&0. That is a solution which begins at
b = ao and initially collapses like the time reverse of the
de Sitter solution (4.6). Such solutions certainly occur for
m ~m . For m =0, they all collapse to b=0 and so
are not of interest. However, a nonzero value of I] for
m+0 allows for the possibility that some solutions
bounce. In paper I we found, for universes containing
classical radiation, that a two-parameter family of such
initially collapsing de Sitter solutions bounced at nonzero
values of b and that a one-parameter family of these are
ACS's. It is reasonable to expect that this is the case for
initially empty universes with m+0 as well. Of course,
we have no proof of this.

0.05

OO 2.0 4.0

FIG. 4. In this figure selected solutions for ml =20,
P= —a=(2889rr } ' are shown. The solution on the left
diverges rapidly and does not significantly differ from the corre-
sponding solution for m =0. The other solutions undergo
phase-plane oscillations and are thus ACS's. They differ from
their rn =0 counterparts in that they expand somewhat more
rapidly at intermediate times and in that b' stays positive
throughout the oscillation cycle instead of approaching zero
when b" does so.
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tions diverges very rapidly, while the others expand more

slowly. For the former, I2 is always negligible compared
to other terms in (4.12c) so this solution differs insignifi-

cantly from its counterpart for nt =0.
The solutions which expand more slowly undergo

phase-plane oscillations such as occur for rn =0. For
most of these solutions Ii and I2 are important at inter-

mediate values of b and there is some evidence that parti-

cle production (which is automatically taken into account

in the terms I
~

and I2) dissipates the oscillations.

Nonzero values of Ii and It do keep b' from vanishing

when b"=0, so the solutions do not go through an infin-

ite number of inflection points as they do for m =0.

3. Final behavior

For ttt =0, there are three types of final behavior solu-

tions can have: A two-parameter family has the very

divergent behavior (3.12); a one-parameter family ap-

proaches the de Sitter solution (3.1); and a two-parameter

family has the behavior (3.11}. For m+0, our numerical
work shows that a two-parameter family of solutions rap-
idly diverges at inteiuiediate values of b Thus, .we expect
that they will continue to do so, but we do not know
whether they will expand like the solutions in (3.12).
Since the de Sitter solution (4.3) is an exact solution for
m+0, we expect a one-parameter family of solutions to
be asymptotically de Sitter solutions at late times, but we
have no proof that such a family exists.

For nt&0, a two-parameter family of solutions have
late-time behaviors similar to those in (3.11). They are

given by

b=b, +BE, ' cos ( —')' r ' b~dri, b~ao2

(4.17a)

where r=
~
a/3

~

', B is an arbitrary constant, and b, is
a solution to the equation

(b b
—2)2 B2b —3+ (4.17b)

It was shown in paper III that for the behavior (4.17a), the
leading-order terms in I i for large b are

Ii cb——, +m l (96vr ) '(b,'b, )

A third term was shown to be bounded by

ml6' (8n) 'b, b,'(b b,—) .

(4.18)

Thus, to a good approximation (4.17b} is just the equation
for a classical matter-dominated Friedmann universe.
This makes the solutions (4.17a) ACS's. As mentioned in

Sec. IV 83, our numerical computations show some evi-

dence that the phase-plane oscillations are dissipated by
particle production as the Universe expands.

This ends our discussion of the behavior of solutions
for a &0. We have seen that the initial types of behavior
of most, and possibly all, solutions remain the same as for
m =0. The intermediate types of behavior of solutions
which diverge rapidly are for the most part unchanged for
nt+0, but their late-time behavior is unknown. The in-
termediate and late-time behavior of the solutions (4.17)
are somewhat different from (3.11). This is primarily be-
cause the solutions in (3.11) go through an infinite number
of inflection points where b'=b"=0, while nonzero
values of I& and I2 keep b' from va»shing for the solu-
tions in (4.17).
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