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Gravitational Casimir energy in even dimensions
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A method is described for calculating the one-loop gravitational effective potential {gravitational
Casimir energy) in Kaluza-Klein theories with an even number of dimensions. The self-consistency
condition that the effective potential vanish at its minimum is used to fix the subtraction point for a
renormahzation of the graviton wave function. The method avoids the use of a higher-dimensional

cosmological constant. The calculation is performed for the background manifold {Minkowski

space}{¹phere), in which case the potential is shown to be real and to possess a single stationary

point, which turns out to be a maximum. A higher-dimensional cosmological constant appears to be
necessary for global stability of the potential.

Kaluza-IGein theories' are an interesting attempt to
explain the observed gauge symmetries of nature as being
a consequence of general relativity applied to a world hav-

ing more than four dimensions. The extra dimensions are
taken to be closed and very small —not much larger than
the Planck length. To explain the very small sizes of
these extra dimensions it has been suggested that, in anal-

ogy with the Casimir effect, quantum fluctuations of the
gravitational field might cause the extra dimensions to
contract. To test this hypothesis one computes the quan-
tum effective potential of the metric field (the gravitation-
al Casimir energy) on a particular background mani-
fold. 5 To obtain a non-Abelian gauge field theory as
part of the dimensionally reduced theory requires that the
compact internal space have curvature, but when the
internal manifold is curved the calculation of this effec-
tive potential could previously only be performed in an
odd number of dimensions. The purpose of this paper is
to describe a method by which this calculation can be per-
formed in an even number of dimensions.

The usual reason offered for why the one-loop gravita-
tional effective potential can only be computed in an odd
number of dimensions is that the curvature invariants
from which renormalization counterterms can be con-
structed are all of even order in derivatives, so that one-
loop counterterms can only be constructed in an even
number of dimensions. In an odd number of dimensions
there are therefore no renormalizations that can affect the
calculation, while in an even number of dimensions the
(unknown) renormalizations destroy the predictive power
of the calculation. The calculation of the gravitational
Casimir energy to one-loop order is most easily performed
using the method of zeta-function regularization, and it
is useful to see how the difference between even and odd
dimensions manifests itself in the zeta-function formal-
ism. Coven a general field P(x) with action S[P] the
one-loop effective potential is given by

ff(p) = S[p]+i—ln Det
5'S
5/i

where the classical field P is a space-time constant, and
Q~ is the (infinite) volume of Minkowski space. The
functional determinant represents a quadratic path in-

tegral of the form

Z= exp x M x x
2

—1/2
M= Det

2&@
(2)

where A,„are the eigenvalues of M. Differentiating this
with respect to s and setting s =0 then gives'0

ln Det = —ln(2np )g(0) .M —d
2$'p ds

g 0
(4)

At this point the difference between even and odd num-
bers of dimensions can be seen. In an odd number of di-
mensions it is found" that g(0)=0, in which case the
expression for the functional determinant is independent
of the parameter p~, as expected. In an even number of
dimensions g(0) generally does not vanish if there is curva-
ture present, in which case the functional determinant de-
pends upon the unknown p .

A seemingly unrelated problem in previous calculations
of the gravitational Casimir energy is that of the four-
dimensional cosmological constant. Given a solution to
the quantum-corrected equations of motion (i.e., a
minimum of the effective potential) the value of the effec-
tive potential represents a constant vacuum energy densi-
ty, which may be interpreted as an effective cosmological
constant in four dimensions. But to match observation
the four external dimensions are taken to be Poincare in-

where M is the operator 5 S/5$ and p sets the scale of
the measure of the path integral, and has the units of a
mass squared. The functional determinant is regularized
and evaluated by forming the generalized zeta function

g(s)= gA, „
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variant, and the presence of a cosmological constant is in-
consistent with this assumption. Another way to say this
is that the Minkowski metric is a solution of the four-
dimensional components of the quantum-corrected Ein-
stein equations only if this cosmological constant van-
ishes. ' One therefore requires of the quantum effective
potential the two conditions

=0 (solves the one-loop

equations of motion}, (5a)

V,tt(ro) =0 (no observed

cosmological constant) . (5b)

These are two independent equations in only one un-
known, so solving them simultaneously requires the intro-
duction of an additional parameter into the theory. In all
previous attempts to solve these equations' ' ' ' a cosmo-
logical constant has been introduced into the original
higher-dimensional action, with the value of this cosmo-
logical constant tuned so that Eqs. (5) are satisfied. Given
the discussion above about the difficulties encountered in
calculating the gravitational Casimir energy in an even
number of dimensions it should be possible to solve Eqs.
(5) in an even number of dimensions using the unknown
mass scale p as the second parameter, without a higher-
dimensional cosmological constant. Since p sets the scale
of the measure of the path integral, changing p may be
viewed as a multiplicative renormalization of the wave
function. The condition V,tt(ro)=0 can then be viewed
as a renormalization condition that fixes p. This is simi-
lar to what happens in the renormalization of a scalar
field theory, where the renormalization conditions on the
renormalized one-particle-irreducible n-point functions
become conditions on derivatives of the effective potential
and p is the subtraction point. '

Of course when the underlying theory is gravitation
rather than scalar field theory one must approach any dis-
cussion of renormalization with caution, because general
relativity is not a renormalizable theory. Still, in these
kinds of calculations one may adopt the view that al-
though general relativity is not a consistent quantum
theory it is the correct classical limit of the "true" quan-
tum theory of gravity, whatever that may be. One then
expects the quantum corrections to this classical limit to
be a good reflection of the "true" theory provided that the
perturbation expansion parameter is small. In the calcula-
tion of the Kaluza-Klein Casimir energy this requires that
the size of the internal dimensions be larger than the
Planck length. 'z The determination of ro and of the sub-
traction paint p may both be considered reliable when
this condition is satisfied.

As an example of the strategy described above the grav-
itational Casimir energy has been calculated and solutions
sought for Eqs. (5) on the background manifold M S
with an even number of dimensions. The mathematical
techniques needed for this calculation are described in
Ref. 12. For the gravitational field the one-loop effective
potential is given by

1 5 (SE+SGF)
V ff(g) = SE(g)+ —,

'
ln Det

M 5g„„5g ti

—ln Dethpp (6)

where SE(g) is the dimensionally reduced Euclidean con-
tinuation of the Einstein-Hilbert action, now without the
cosmological constant, Sop is a gauge-fixing term, EFp is
the appropriate Faddeev-Popov ghost matrix for this
choice of gauge, and Qsr is the (infinite) volume of the
m-dimensional external space M . The evaluation of the
functional determinants using the zeta-function method
will be described shortly, but at this point we note that be-
cause the effective potential must have the units of an m
dimensional energy density the potential can be written as

N(N —1) Fi+Fz»(2~p }
2 + (7)

16m') p2 (2nr )

Here r is the radius of the N-sphere and p is the dimen-
sionless radius p =p r „Qz is the volume of the unit N
sphere, Gn is the D =m+N dimensional Newton con-
stant, and I"

~ and I'q are constants that are to be obtained
from the zeta function. The first term is the classical con-
tribution while the second is the one-loop correction.
Furthermore, Fz ————,

'
g(0), where g(s) is the sum of the

zeta functions for the graviton and ghost determinants in
Eq. (6) (with appropriate factors of + —,

' and —1, respec-
tively) and F, is obtained from the derivative of g(s). The
constants I'~ and I'q are expected to be real, because
without a higher-dimensional cosmological constant there
are no "tachyonic" negative eigenvalues in the zeta func-
tion. (Negative eigenvalues were found to cause the effec-
tive potential calculated in an odd number of dimensions
to have an imaginary part. )

Using Eq. (7) and imposing condition (5b) gives

Vett(r) =

ro + 16' Fi+F2in(2mpo )

(2~) Q„N(N —1)

where po pro . Condi——tion (5a}becomes

0=(N+m —2)[Fi+Fi ln(2irp ) —2F ] . (9)

This equation determines po in terms of the constants F,
and Fz. Using this in Eq. (8) then gives

N+m —2ro 1677 2F2
(1(})

(2~) QN N(N 1)(N+m —2)—

V,tt(r}-+—ao as r~ao (classical term),

V,tt(r)~ —ao as r~0 (quantum term) .

(11a)

(11b)

Thus ro is determined entirely by the constant
F2 ——,g(0}. This e——xpression only gives a positive ro if
E2 is positive. Assuming I'"2 &0 the asymptotic behavior
of the effective potential is then known: as r gets large
the quantum term vanishes as (1 rn)/r and the classical
term dominates, making the potential negative; while
when r becomes small the classical term vanishes as r
and the quantum term becomes negative because lop &0.
In short,
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Thus we have a real potential with a single, uniquely
determined stationary point, which unfortunately is a
maximum instead of a minimum.

Even though a maximum of the potential is expected it
is stiH of interest to evaluate the constant Ez, both to

determine when F2 & 0 and to see how strong the Casimir
"force" is. The zeta function for both of the functional
deteivninants in Eq. (6} can be written as the sums of
several zeta functions of the form'

' —S

(12)

The sum on I is a sum over the orders of the spherical harmonics on S, with d;(I) an appropriate degeneracy factor,
while the integral over k is the sum over the continuous eigenvalue spectrum of the Laplacian on the external Min-
kowski space; ~i is an overall degeneracy factor, while c; is some given constant for a given set of modes (scalars, vectors,
or tensors) on S . This zeta function may be analytically continued to the contour integral

+ +&a sinh(a;z) z
gi(s) = I„(pz)dz, (13)

(2n ) I'(s) 1+e+-'~ —"+'a [2sinh(z/2)] +' 2p

where p =2s (rn +N—+1}and v=2s —(m +1)/2, and a; is either 1 or 2 depending upon the mode under considera-
tion. The difference between even and odd dimensions is contained in the factor (I+e-'~) '. If N+rn is odd then
1 + e +-'~=2 and the zeta function can be written as

(14)

where g;(s) is a well-behaved function of s. Then not only is g;(0}=0,but the derivative at s=O is g;(0). For N+m
even (1 + e- ~)=+s as s ~0, while I (s)= I /s in this limit, so g;(0) does not necessarily vanish.

The evaluation of g&(0) for even N follows closely the evaluation of g;(0) for N odd described in Ref. 7. Taking s~0
in Eq (13}g. ives, in the notation of Ref. 7,

&s —l 1 2g;(0) = . —I3[C5(P;+a;)—Cs(P; —a;)]—3P;[Cq(P;+a;)—C4(P; —a;)]+P; [Ci(P;+a;)—C3(P; —a;)]I .

(15)

For N even or odd the functions Cz(y ) are given by

(N+p) (&+ —J)
NCz(y) = —2n.i g aj «( —y) [1—( —1) ]Lej(y)+ —.

, 81(y)
j=p k =0

J Jt J (16)

Note that for N even this expression is a polynomial in y,
independent of the polylogarithmic functions Lei(y).

Using Eq. (16) in Eq. (15) the values of F2 ————,'g(0)
were evaluated numerically for N =2,4, . . . , 20 and the
results are listed in Table I. The condition F2 & 0 is satis-
fied only for N mod4=2. Similar behavior was observed'
in the odd-dimensional calculation of the corresponding
constant HO), and I conjecture that the sign of I'i is
—( —1) for all even N. In all cases F2 is found to be
real, as expected. For I'2&0 the values of the distance
around the internal manifold, LKz —2irro, are also tabu-
lated in Table I. In all cases L~K is above the Planck
length, so the one-loop approximation can be trusted. For
the purpose of comparison with previous calculations the
values of the gauge coupling constants corresponding to
these values of ro are also listed in the table.

The example above shows that it is indeed possible to
find a unique stationary point of the gravitational effec-
tive action in an even number of dimensions, although in
this particular case the solution is unstable. The behavior
of the solution for large r described in Eqs. (11) also

TABLE I. Values of the constant Ei ——,g(0} for vario——us

values of ¹ %hen F~ is positive the distance around the inter-
nal manifold and the resulting inverse gauge coupling constant
are also given.

I.~K ——2~ro

2
4
6
8
10
12
14
16
18
20

+ 15.94
—2.156X 10'
+ 6.242 X 10'
—1.074X 10'
+ 1.453 X 10'
—1.690X 10'
+ 1.775X10'
—1.732 X 10"
+ 1.600X 10"
—1.414X 10'

1.998

5.772

8.577

10.91

12.95

0.002 14

1.20

39.4

1.31X 10

4.44X10'

demonstrates that it should in fact be quite difficult to get
a globally stable quantum effective potential for the gravi-
ton on any background manifold M 88 without a
higher-dimensional cosmological constant. In general one
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expects (as is demonstrated here) that the classical part of
the potential will dominate for large r, with the quantum
fluctuations becoming significant only when r approaches
the Planck length. (Here r represents some characteristic
length scale of the compact internal manifold 8 . ) The
classical dimensionally reduced action goes like
SE= —r R/GD with R =1/r, so the effective potential
behaves like V,tt(r) = r —/GD for large r and is un-
bounded below. This defect may be cured by adding a
cosmological constant A to the action, so that R is re-
placed by R —2A. Then for A )0 the leading behavior of
the potential for large r is V,tt(r)=rNA/Gn, which
favors r becoming small. But this takes the problem back
to the uncomfortable situation of requiring that the four-

dimensional cosmological constant vanish while at the
same time requiring that the higher-dimensional cosmo-
logical constant not vanish. Furthermore, in an even
number of dimensions there do not appear to be other
conditions one cou1d impose to uniquely determine both A
and p along with ro, although perhaps some renormali-
zation condition on a higher derivative of the effective po-
tential could be found, as is done for scalar fields.
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