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To describe singularities using the notion of c-boundary, it is necessary to divide the c-boundary

into two portions, one of them represents the singularity while the other represents infinity. By in-

vestigating the globa1 structure of Taub s plane-symmetric static spacetime in detail we prove that
the singular portion of the c-boundary of this spacetime is a single point. This suggests that it

might not be fruitful describing the structure of singularities using the c-boundary construction.

The possible difficulty in singling out the "singular portion" of the c-boundary is also discussed.

I. INTRODUCTION

A lot of spacetimes are known to be singular within the
framework of classical general relativity. To describe the
singularity better, one wants to make precise the meaning
of some relevant notions such as the location, shape, size,
and the vicinity of a singularity. However, it has proved
rather difficult to do so since the "singular points" do not
belong to the spacetime manifold M. An intriguing idea
is to attach some sort of boundary t) to M to obtain a to-
pological space M, the boundary points being interpreted
as singular points of the singular spacetime. The con-
struction of 8 should be determined by the geometrical
structure of the spacetime itself. At least three boundary
constructions along this line (or with certain modifica-
tions) have been proposed: the g-boundary, ' the b
boundary, and the c-boundary. ' It has been known

since 1977 that the b-boundary construction gives an
unacceptable topology even for the extended
Schwarzschild solution. Although the g-boundary does
not suffer from a difficulty of this sort, it does yield an
unphysical topolop in an example pointed out by Geroch,
Liang, and Wald. The example is as follows in short. In
two-dimensional Minkowski spacetime (N=R, ri&) let
s EN and let r lie on a future-directed null geodesic from
s. Construct a four-dimensional spacetime (M,g~) by
taking the cross product of (N s,Q si~) an—d the flat
spacelike plane, where Q is a conformal factor. It was
shown that by choosing Q suitably one can make the
singular boundary point s fail to be T, related to the reg-
ular point r, thus obtaining an unacceptable topology for
M. Moreover, this example is valid for any singular
boundary construction, provided that it possesses the fol-
lowing two properties: (i) Every incomplete geodesic in
the original spacetime terminates at a singular point of M;
(ii) the resulting space M is geodesically continuous, in a
sense made precise in Ref. 8. The g- and b-boundary con-
structions both possess these two properties.

Assuming the reader is familiar with the indecompos-
able past (indecomposable future) [IP (IF)] approach, we
here give a brief review of the c-boundary construction. '

Let (M,g~ ) be a spacetime that is at least past and future
distinguishing. Denote by M the collection of all IP's of
M, and M the collection of all IF's. Introduce an inter-
mediate space M by taking the union M UM and identi-

fying I+(p)GM with I (p)EM for each pGM. The
element of M+ corresponding to an element P of M or M
is written as P'. Thus, if p GM, then I+(p)'
=I (p)'GM+. The open sets of M~ are defined to be
the unions and finite intersections of subsets of the form
A in& A ex& Bin& and Bex&

A'"'=IP'~PeM ~d PnA~8),
A'"'= IP'

~
PEM and P=I (S) =-I+(S)CA

for all SCMj,

B'"' and 8'"' being defined similarly, with the roles of
pmt md future interchang~. The topological space M
so defined is not, in general, a Hausdorff space. To obtain
a Hausdorff space M, we might have to identify certain
points of M+. More precisely, M is defined as the quo-
tient space M+/RH, where R~ is the intersection of all

equivalence relations R CM~XM~ such that M~/R is
a Hausdorff space. It can be shown that there exists a
natural, dense topological embedding of M in M; hence
M=MUG, where t) is the collection of all ideal points
(after necessary identification) of (M,g~), and is referred
to as the c-boundary of the original spacetime (M,g,b ).

An important difference between the c and g-boundary
(or b-boundary) is that the c-boundary represents not only
singular points (if any) but also "points at infinity. "
Therefore, in order to describe singularities it is essential
to write t) =t), UB;, where t), and (); represent, respective-
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ly, the singular portion and the nonsingular infinity por-
tion of the c-boundary. Penrose suggested a number

of slightly different criteria to distinguish the singular
ideal points from the infinity ones, the simplest is as fol-
lows. An ideal point [a terminal indecomposable past
(TIP) or a TIF] is said to be at infinity (an ao-TIP or ~-
TIF) if there exists a semi-infinite causal curve of infinite

proper length which has that ideal point as its ideal

end point; otherwise the ideal point is said to be a finite
one. In the case that we have a spacetime which is maxi-
mally extended, all finite ideal points may be reasonably
interpreted as singular points (singular TIP's or TIF's) of
the spacetime. One might also consider some of the
points at infinity to be singular. We shall get back to this
issue later.

It is worth noting that the c-boundary construction
does not admit property (ii} mentioned in Ref. 8, since, as
pointed out by Geroch, c-boundary is purely conformal
while geodesic continuity is very nonconformally invari-
ant. Hence, the conclusion of the example in Ref. 8 does
not necessarily hold. In this example there are simply two
singular ideal points in M¹,namely, s as a TIP and s as a
TIF. Therefore, the only identification in passing fromM¹to M is the identification of these two ideal points.
The M thus obtained must be a Hausdorff space, as can
be inferred from the following assertion on p. 564 of Ref.
3: ".. .the space M¹/R is Hausdorff, where R is the
equivalence relation which simultaneously identifies all
the elements of M¹not in P(M)."

Despite the fact that the c-boundary survives the exam-
ple of Ref. 8, we verify in Sec. II that the singular portion
8, of the c-boundary of Taub's plane-symmetric static
vacuum spacetime is, in fact, a single point of M. This
suggests that there might be some difficulty in describing
the structure of singularities using the notion of c-
boundary.

II. c-BOUNDARY OF TAUB'S STATIC SPACETIME

The line element of Taub's spacetime reads'

dSz=z '~
( dt +dz —)+z(dx +dy ), z&0.

The spacetime is timelike but not null geodesically com-

plete, and the singularity z =0 can be reached only by null

geodesics confined in t-x planes. This is analogous to
Reissner-Nordstrom spacetime. The singularity z =0 in
Taub spacetime is also a scalar-polynomial curvature
singularity, since calculation shows that Rb, ~R
as z~0.

Taub's spacetime is obviously stably causal and hence
the "TIP approach" applies. To figure out the c-
boundary it is essential to categorize all TIP's and TIF's.
It follows from (1) that d(t+z)d(t z) &0 for any time—-

like curve; hence, (t+z) and (t —z) are increasing along
its future direction. Therefore, a future inextendible time-
like curve y must fall into one of the following types: (i)

(t+z) and (t —z) are both bounded along the future
direction of y; it then follows that y approaches the
singularity z =0; (ii) ( t +z) and (t —z) are both unbound-

ed along the future direction of y; (iii) (t —z} is bounded
while (t+z) is unbounded, it follows that (t —z) ap-
proaches some limit while ( t +z) goes to infinity.

Lemma 1. Given two points pi ——(ti,zi,xi,yi} and

p2 ——(t2,z2, x2,yz) in Taub's spacetime manifold M, then

ti —zi & tz+z2 iinplies p2EI (pi }.
Proof. Consider two points p i ——(t i,z', x i,y i ) and

p2 (t2 z xz y2} satisfying ti z—'=ti —zi, t2+z'=t2
+zz and z'&zi, z'&zz, then pi EJ (p, },pz &J (p2}. It
follows from (1) that the coordinate straight line connect-

ing p i to p2 can be made timelike by choosing z to be suf-

ficiently small. Thus pz&I (p'i) and paFI (p, ).
Lemma 2. If y is a future inextendible timelike curve

with z~0 and t approaching a constant c along the fu-
ture direction, then I (y )=&„where

&,= [(t,z, x, y) ~
t+z &c J .

proof. Since (t+z) is increasing along any future-
djrected timelike curve, it is clear that I (y) &&,. To
show the inverse, let p G &,. Since (t+z}&& c and

(t z)„—c, one can choose q &y such
(t —z) &(t+z)&, and hence p&I (q)CI (y) by virtue
of lemma l.

Note that these two lemmas are also valid for
Reissner-Nordstrom spacetime with the role of (t,z,x,y)
replaced by (t,r, e,p).

All TIP's in Taub spacetime are oo-TIP's since each of
them [including those of type (i)] can be written as I (y )

for some timelike curve y of infinite proper time. To sin-

gle out those TIP's which represent the singularity (those
oo-TIP's which are also singular), we make use of an al-

ternative criterion given by Penrose: A TIP is called
null-finite if it is of the form I (p, ), where p is a null

geodesic of finite affine length; otherwise it is called
null-infinite. Bach null-finite TIP may be thought of as
defining a sort of singular ideal point. All TIP's of Taub
spacetime generated by curves of type (i} represent singu-
lar ideal points for they are null-finite. All curves of type
(ii) generate a single TIP—the whole spacetime manifold
M. This is null-infinite yet is relevant to the singularity
in some sense since it is generated by a timelike curve de-
fined by t= 1/z, x=const, y=const, and the curvature
scalar R~R is unbounded along y. Thus, if the cri-
terion is widened a little such that a TIP is said to be
singular if it is null-finite or if any curvature scalar is un-

bounded along some curve generating it (see p. 225 of Ref.
4), then all TIP's of types (i) and (ii) are singular. We
shall adopt this criterion in this paper. On the other
hand, TIPs of type (iii) are null-infinite, they are ir-
relevant to the singularity in any sense, and hence
represent nonsingular, infinity ideal points.

Because of the static property, statements dual to lem-

mas 1 and 2 can be obtained by simply interchanging the
roles of past and future, and TIF's can be categorized
similarly. In the light of lemma 2 and its dual, the set
consisting of all singular TIP's (TIF's) of type (i} is "one-
dimensional" in the sense that each element of it is
characterized by a real number e. Further, this set is
timelike according to Penrose's definition, since for any
TIP of type (i), denoted IV, there exists a PIP (proper IP},
denoted V, contained in some TIP of type (i) such that
WC V. It turns out that the set consisting of all non-
singular TIP's (TIF's) is a "three-dimensional" null set.

Introducing retarded Eddington-type coordinates
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u =t —z and Z = 1/V z, one obtains a conformal metric

dSz=QzdS = —ZIdu +4du dZ+dxz+dy

with Q=Z '. Define

Jr+ = I (u, Z,x,y }
~

Z =0, —ao (u & ao,

—ao & x & a&, —m &y & ao I

and M'=M Ud'+, since the conformal metric g,s is non-

singular at W+, one obtains an unphysical spacetime
(M',g~ ). It is not difficult to show that any past-directed
timehke curve having p E'M as its future end-point never
intersects W+; hence I (p,M}=I (p,M') and
I (S,M)=I (S,M') for any SCM. We shall denote
I (S,M) simply by I (S). If yCM is a curve of type
(iii), i.e., if u

~
r~ oo and u

~
r~c, then a simple calcula-

tion using the Schwartz inequality shows that x
~ r and

y ~ &
must approach some limits a and b, respectively;

hence

fl (lI {rl ")'"'(ll (I}' )'"'

while any open set containing I (rP+
)' CM+ contains

(4)

e —t7)int{lI+{ ' I' 1)ext2= 7l- '9+

(lI+(~ ' I' I)ext(lI+(~e )ext

is equal to the whole spacetime manifold M, and M„ the
set of all PIP's. Similarly, M=M, UMI U WU M„where
each subset has a dual meaning to its counterpart.

The intermediate space M~ of Taub spacetiine with to-
pology defined by Ref. 3 is non-Hausdorff. We next veri-
fy that in order to get a Hausdorff space M all singular

V'

ideal points (points of Mi, Mi, W, and W) have to be
identified.

Lemma 3. Any open set of M ~ containing
I+(Il' )'GM~ contains

I—(Ile+N)tnt(lI —
(~

I' I }ext

I (y)=I (C,M')=I (I}"),
where eGJr+ is the point with

( u, Z,x,y), =(c,O, a,b),

(2) where a)0; a,t. . . , a'kb ,i. . . , b k a)0; ai, . . . , at',
b I, . . . , bt are some real numbers.

Proof. Any open set of M+ containing I+(rl' )' con-
tains

and ale'e's denotes the null geodesic defined by I —z=c,
x=a, y=b.

Analogously, in advanced Eddington-type coordinates
u=t+z one obtains an unphysical spacetime (M",g~)
where M"=MUd', with

=I(u, Z,x,y) HZ=0, —ao &u & oo,

—oo & x ( ao, —ao (g & ao I .

Since I+(S,M)=I+(S,M") for any SCM, we shall
denote I+(S,M) by I+(S). For a past inextendible time-
like curve y CM of type (iii) [the dual to type (i')], i.e., if
u

( „~—ao, u
( „~c,one has

I+(y ) =I+(f,M")=I+(rl'+""), (3)

where fGW is the point with u =c,Z =O,x =a
—=lim„, x ~„,y=b= lim„,y ~„, a—nd II+" denotes the
null geodesic defined by t+ zc, xa,y =b Further, .
lemma 2 implies that I (rt'+' ) and I+(rl" ) are in-

dependent of a and b; hence, we shall denote them simply
by I (rl'+) and I+(rl' ).

Expressions (2) and (3) imply that TIP's (TIF's) of type
(ul) arc II1 oIlc-to-oIlc corrcspondencc wlt11 poIIlts at
W+(W ). The set W+(W ), therefore, is a representation
of the set of TIP's (TIF's) of type (iii), and it is "three-
dimensional" in the sense that each element is character-
ized by a triple of real numbers. Furthermore, it is easily
checked that this set is a null set according to Penrose's
definition. e

To sum up, the set M of Taub spacetime can be divided
into four disjoint subsets:

M=M) UM3 U 8'UM, ,

where Mi represents the set of TIP's of type (i}, MI the

set of TIP s of type (iii), 8' the set consisting of a single
TIP—the TIP generated by any curve of type (ii)—which

)tnt(l. . . {lI—(y )tnt

(lI {y,)'*'(l AI (y „)'*',

where y; (i =1, . . . , m} and y~ (j =m+1, . . . , m+n)
are future-directed timelike curves satisfying I+(I}' )'

(yt) ' and I+(rt' )'GI (y~)'"'. A straightforward
argument using lemmas 1 and 2 then shows that 8'I can
be sharpened by writing I (rI'+ )'"' instead of

)int (l. . . (lI —
{y )int

where c' ~ c is some real number; and writing

I (rt' ' I)'"' instead of I (yj)'"' if yj is of type (iii);
and writing I (rt'+)'*' instead of I (yj )'*' if yI is of type
(i). Setting c" tobe

IIiaXtcm+ 1~ ' ~ ~ Cm+n l

and cx to be

min I (c' —c ), (c—c") I

one finally obtains (4). Expression (5) can be shown simi-
larly.

Lemma 4. Let (M,g,b) be a past and future distin-

guishing spacetime, p EM,BCM and A C M, then
I+(p)' CB'"' if and only if p KB, I (p)'C A'"' if and
only if p {toA.

Proof. Suppose I+(p)'6B'"', then there exists SCM
with I+(S)=I+(p) and I (S)CB. The first together
with the future distinguishing condition require pES;
hence p EI (p) C I (S)CB. To show the inverse, it suf-
fices to note that p EB implies I (p) CB, contradicting
I+(p) EB'*'. The dual statment can be similarly veri-
fied.

Lemma 5. I+(Il' )'EM~ and I (rt~+)'eM~ are
non- T2 related in M~ provided that e ~ e.

Proof. It suffices to show that any open sets 61 and 8'I
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of the form (4) and (5) with c & c must intersect each oth-
er. Without loss of generality, we set tz =tz in (4) and (5).
Define

with

I—(~e+a)intAI —
(~ t tt t' t)ext

2,c

98=I(t z x y) i
c —tz&t —z&c &c &t+z&c+a) .

Consider a point eEW+ with u, =c—a and a point

p E9FAI (e,M), let y be a timelike curve connecting p
to e, define

r(t) ((x a )2+(y b )2)ii2

where a;,bt (i =1, . . . , k) are those in (4). Then a simple
calculation using the Schwartz inequality shows

I

rip ( (up —c+Cx) J Z du —4Z3t
J

Since Z (V2/a along y, there exists a real number p de-
pending only upon c, c, and a such that r~"'&p for any

p ESF. Similarly, there exists p depending only upon c, c,
and tz such that

r'J'=[(x —a ) +(y —b ) ]' (p
where aj and b& (j=l, . . . , /) are those in (5). Choose
qESP with rq''&p (i =1, . . . , k) and r&q &p
(j=1, . . . , 1), then

qfKI (2)
' ')(i=1, . . . , k)

q eI+(q+ ' &' ')(J = I, . . . , i) .
This, on account of lemma 4, establishes I+(q)'
=I (q)' E d'i A 82.

Divide M+ into three disjoint subsets: M =M/
AMpUMp, where Mp=Mi UMiU WUW represents

xe'

the set of singular ideal points, while M~ =M3UM3
represents the set of nonsingular infinity points, and M,
represents the image of M, UM, under the identification
mapping I+(p)'=I (p)' for any pEM, then an argu-
ment using lemma 5 shows that the subset f(MP) C M is
a single point of M (where p denotes the projection from
M+ to M). We next prove that the only identification
one has to make in passing from M+ to M is to identify
all elements of MP. On account of the statement of Ref.
3 quoted near the end of Sec. I, the nontrivial task is to
show the following lemma.

Lemma 6. For any Pi ——I (2)
' ' ')'EM3 and

P2 EMp U M3 U M3, there exist open sets 8'i, d'2CM
such that (i) Pi E 8'i, P2 E 8'2, 8't A C'2 ——p, (ii)
8', AM@=((I; d'2AM/=((I or Mp C d'2.

Proof. Choose a point pi —(t„z,,at, bi)EM and a
number hi with ti —zi &ci &et+bi &t, +zi, define

and 8', AM/=/. The choice of 8'2, however, depends
on the Pz given.

Case A. P2 EM/. Define

I+( t t' t t t)extUI+( t t )tnt2= '9+

UI-(q"+")'"' U
C P tl +$1

2 extthen 8'2 ——I (p2)'"' A I (ri+ ')"' is the desired open
set.

Case C. P2 ——I (ri
' ' ')'EM3. Choose a point

p2 (t2,Z2, a2, b——2) EM and a nmnber h2 with

t2 —z2 &c2 & c2+h2 & t2+z2 .

Define

I+(p )tnt AI+( 2 2)ext
c +h

then I (2} ' ' ')'Ed'2 and d'2AMp=p. If ci&c2
(c2 & ci, say}, it is easy to check that 8'i A d'2 ——p provided
that p2 is so chosen that ci+h, &t2 —Z2. For the case
ci ——c2, a longer argument proves that d'i A 8'2 ——tA} pro-
vided that zi and z2 are sufficiently small.

Combining the previous results with lemma 6 and its
dual statement we finally obtain the following conclusion.

Conclusion The .c-boundary of Taub's plane-
symmetric static spacetime consists of a single point
f(MP) that represents the singularity, and two "three -di-

xe'

mensional" portions p(M3) and p(M3) that represent in-
finity.

It is worth noting that the c-boundary of the plane-
symmetric solution to Einstein-Maxwell equations (the
K.ar" or McVittie'2 solution} bears a similar property as
Taub's. The line element of Kar's solution is

—+ dt+ —+m 8 2 m 8

Z Z2 Z Z2
dZ

+z (dx +dy ),

where m and e are two parameters. If m &0 and z &0,
there is a singularity at Z=0 which, by an argument

I

A . AI (
' ''')'"'

where a is any positive number, while a, b
(i =1, . . . , k ) are so chosen that

I+(pi)AN'A&t: U I (e;,M'),
lgigk

where

&= ((t,z, xy)EM
~

t —z &ci+hi),
O'= I(t, ,zx,y) EM

~

z & (c+a t, +z—i )I2I,
and etEW+ with ut ——et+hi, x;=a,g;=b/ (this can
always be done). It is easily seen that Mz C d'2. A longer
argument also shows d'i A d'2 ——((}.

Cas eB P2 .—I+(ri+ ' ')'EM3. Choose apoint

p2
——(r2,zz, a„b2)EM

and a number h 2 with

r2 —z2 (c2 Il2 (c2 &—r2+z2 (ct
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try due to the compactness of 5 . Similarly, the singular
portion of the c-boundary of Reissner-Nordstrom space-
time with e ~m is not two points but two disjoint
"one-dimensional" sets.

III. DISCUSSION

In order to describe singularities using the notion of c-
boundary, it is essential that the c-boundary, BCM, of
any singular spacetime be divided into two disjoint
subsets —the singular portion 8, and the nonsingular in-
finity portion 8;. This division should be compatible with
the criterion distinguishing singular ideal points from
nonsingular infinity ideal points. According to the latter,M¹ can be written as M¹=M,¹UM~¹UM;¹,where

Ms is the subset consisting of all singular TIP's and
TIF's, and M; all nonsingular infinity ones. A necessary
premise for giving any reasonable definition of 8, and 8;
is that f(Ms¹)AP(M; )=8, for if there is an element

Q Gg(M¹)fl f(M~¹), then there exist Pi GMs¹ and

P2 EM; such that Q=g(Pi )=P(Pi ), and hence it is
impossible to tell whether Q should be in 8, or 8;. How-
ever, the answer to the question whether g(Ms¹)AP(M~ )
is empty depends heavily on the criterion used to distin-
guish singular ideal points from nonsingular ones. Take
Taub spacetime, for example. If we stick to the criterion
that an ideal point is singular if and only if it is null-

finite, then

Q(Mg¹)A f(Mg¹)=p(W') =Q( W')~8,

FIG. 1. Penrose diagram of Kar's spacetime.

analogous to that for Taub's, shrinks to a single point in
passing from M¹to M. In the case rn &0, z y 0, there is
also a coordinate singularity at zi ———e /m. This can be
eliminated and the spacetime extended by introducing new

coordinates. The Penrose diagram of the maximal exten-
sion is shown in Fig. 1. The two timelike singularities
shown will also shrink into two disjoint points in the pas-
sage from M¹to M.

On the other hand, despite the close analogy between
Taub s~acetime and Reissener-Nordstrom spacetime with
e2&m (or Schwarzschild spacetime with m ~0), the
singular portion of the latter is not a point but rather a
"one-dimensional" set, the essential reason responsible is
that lemma 5 fails for spacetimes with spherical symme-

V'

since 8' and W are both null-infinite. Nonetheless, if we
choose the widened criterion that an ideal point is singular
if it is null-finite or it can be generated by a curve along
which some curvature scalar is unbounded, then
W', W ' E MP and hence f(MP ) fl P(M¹) =8, as has

been adopted in Sec. II. %e can prove no assertion claim-
ing that there exists a reasonable criterion to divide MP
and M;¹ such that f(MP)lip(M;¹)=e for all singular
spacetimes. Suppose no such criterion exists, then there
will be no reasonable general definition for Bz and 8;; i.e.,
"the singular portion" makes no sense at all. On the other
hand, if such a criterion does exist, then it is natural to
define Bs and c); to be P(MP) and P(M;¹)and hence "the
singular portion Bs of the c-boundary" does make good
sense. However, it has turned out that c)z of Taub space-
time (and also Kar's) is a single point of M, this suggests
that it might not be fruitful to describe the structure of
singularities using the c-boundary construction.

~R. Geroch, J. Math. Phys. 9, 450 (1968).
28. G. Schmidt, Gen. Relativ. Gravit. 1, 269 (1971).
3R. Geroch, E. H. Kronheimer, and R. Penrose, Proc. R. Soc.

London A327, 545 (1972).
4R. Penrose, in Theoretical Principles in Astrophysics and Rela-

tivity, edited by N. R. Lebovitz, W. H. Reid, and P. O. Van-
dervoort (University of Chicago Press, Chicago, 1978).

5R. Penrose, in General Relativity: An Einstein Centenary Sur-
vey, edited by S. W. Hawking and W. Israel (Cambridge
University Press, New York, 1979).

6R. Penrose, in Gravitational Radiation and Gravitational Col-

lapse, edited by C. DeWitt-Morette (Reidel, Dordrecht, 1974}.
7R. A. Johnson, J. Math. Phys. 18, 898 (1977).
R. P. Geroch, Liang can-bin, and R. M. Wald, J. Math. Phys.

23, 432 {1982).
~S. W. Hawking, and G. F. R. Ellis, The Large Scale Structure

of Space Time (Cambridge -University Press, Cambridge,
1973).

oA. H. Taub, Ann. Math. 53, 472 {1951}.
' S. C. Kar, Phys. Z. 27, 208 (1926).
' Q. C. McVittie, Proc. R. Soc. London 124, 366 (1929).


