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Distorted-field approximation to the static pion potential
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The interaction potentials for two static sources of the m-meson field are calculated in the
distorted-field approximation. The spin- and isospin-dependent parts of the potential are shown to
be close to the corresponding one-pion-exchange potentials. In addition, there is a very strong
Wigner potential that is not present in the one-pion-exchange potential. All of the components of
the potential depend significantly on the shape of the assumed pion-nucleon Yukawa interaction.

I. INTRODUCTION

The calculation of the interaction potential energy be-
tween static sources of the meson field has recently be-
come an interesting field because of several developments.
First, it seems likely that the form factor for the pion-
nucleon Yukawa interaction is related to the quark-gluon
structure of the nucleon core,! so that any measurable
quantity that is sensitive to this form factor may eventual-
ly give information about the nucleon core. It is shown in
the following that the static pion potential is indeed sensi-
tive to the structure of the Yukawa interaction at the
7NN vertex, so that accurate determination of the
nucleon-nucleon potential may provide information about
the wNN vertex. Second, the development of meson field
theories of nuclear binding and structure? has so far not
been extended to the two-nucleon problem, and the con-
straint of fitting the two-nucleon data has not yet been ap-
plied to the parameters of the meson theories. The static
meson potential provides a way of computing two-nucleon
properties from meson theory that is valid for the strong
couplings that are currently fashionable. Third, recent
work® has shown that the one-pion-exchange (OPE) po-
tential describes several features of the two-nucleon sys-
tem quite well; it is therefore important to know the ex-
tent to which the actual nucleon-nucleon potential due to
pion exchange is represented by the OPE potential, and a
quantitative answer to this question can be provided by
the static pion potential.

An earlier paper* on static meson potentials developed
the basic ideas needed to treat two interacting static
sources of the meson field. That paper gave the first
correct treatment of the static potential due to isoscalar
vector-meson exchange. In the case of non-Abelian
source current operators, the use of just two modes of the
meson field was shown to be adequate for the calculation
of the static meson potential, and a coherent-state method
valid for all coupling strengths was used to treat both the
single source and the two interacting sources. The asymp-
totic behavior of the potential was not handled correctly
in Ref. 4; suitable methods for handling the asymptotic
region were developed subsequently’ and shown to give a
new distorted-field approximation (DFA) scheme for
computing the potential. These techniques were then sup-
plemented by special methods developed to treat the
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short-range potential and used to compute the potentials
in the case of isovector scalar meson field interaction,® in
order to show that the static meson potentials in the iso-
vector scalar case depend on the form factor, and, there-
fore, that there are cases in which the determination of
the static meson potential can be used to gain information
about the mesonic form factor of the individual sources.

The present paper applies similar methods to the case
of the static pion potential, with results that are shown
and discussed in Sec. VI. The general Hamiltonian for
the interaction of pions with static sources is given in Sec.
II. Section III summarizes the aspects of the static model
for a single source of pion field that are needed for the
two-source problem, and Sec. IV describes the DFA for
the pion-field case. The discussion in Secs. II—-IV follows
the procedure in the same sections of Ref. 6, with devia-
tions appropriate to the pseudoscalar nature of the field in
the present case. Section V summarizes efforts to find an
approximation that excels the DFA for small source
separations. The results of the numerical calculations of
the potentials are discussed in Sec. VI, and a summary of
the paper is given in Sec. VIIL.

II. FORMULATION OF THE PROBLEM

Consider the case of two sources of pion field; the
Hamiltonian is taken to be of the Yukawa form, as in
Refs. 4—6,

H=H,+H;+H],
H,= [ o(ka](kla,(k)dk ,

ki *(k)
[16m3w (k)]

(2.1

2 .

H=-L 3% [ a (ke ek
m ;2

where R, is the position of the pth source; it is assumed

that all sources have the same form factor #(k) and cou-

pling constant f. The coupling constant y that appears

later is related to the coupling constant f by

=-‘L2 N
4’ 2.2)

for the pion case the renormalized coupling constant ¥y is
0.08. The isospin index A=1,2,3 and the space index
J=x,y,z are subject to the usual summation convention.
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As in Ref. 5, single-source normalized meson mode
functions ¢;(k) are defined by

fkjit(k)
m[16mw(k)]'/?

where the normalization constant and dimensionless cou-
pling constant G is given by

f2 k?| (k) 1* 4 2

. 2.9
m? J 1611'3&)3(k)

The absence of any extra energy parameter in the defini-

tion of ¢ follows from arguments given in Refs. 7 and 8.
With the definition of ¢ of (2.3), H; takes the form

ka

H,——Gzﬁo’fw(k)tﬁ,(k)ak(k)e *dk . (2.5

=Golk)g;(k) (2.3)

III. SINGLE SOURCE

As in Refs. 5 and 6, it is necessary to solve for the
single-source energy in order to compute the DFA to the
two-source potential energy. When there is just one
source, it can be taken to be at the origin of coordinates,
so that the three normalized meson mode functions for
the single source are just the functions ¢;(k) of (2.3); these
are then used to decompose the pion-field annihilation
operator a, (k) into internal and external parts:

ar(k)=Ay;¢;(k)+ay, (k) , 3.1)

where the 1 subscript is used to indicate orthogonality to
the internal mode functions ¢;(k);

[ ¢ (k)ay, (k)dk=0, j=1,2,3. (3.2)

Corresponding to the decomposition (3.1) of the field, the
single-source Hamiltonian also splits into internal, exter-
nal, and coupling parts:

H=H,+H, +H +H},
HA = WaahA ]

hy=A"4—-Gp(4T+4),
. (3.3)
H, = [ olka], (klay, (k)dk

H,=(4"—Gp)-J*,
It= [ [o(k)g;(k)]ay (k)dk

where p,; stands for AT and the dot product now in-
volves both the A and j indices; W (smgle source infin-
itely far removed from other sourc&s) is given by

W= [ ok)|g;k)|%dk. (3.4)

It has been shown’ that the ground-state energy of the
internal Hamiltonian H, is a good approximation to the
ground-state energy of H. Reference 10 is a detailed
study of the properties of the Hamiltonian & 4; in particu-
lar, it gives methods for the accurate computation of the
ground-state energy of h, for weak and intermediate
values of the normalized coupling constant G.

From the commutation relation of 4 with H 4, it fol-
lows that if | au) is a multiplet eigenstate of H 4,

H, |au)=¢,|au), u=1.2,...,da), (3.5)
then
(au| A |av)=G(au|p|av) . (3.6)

The renormalization constant 7(G) is obtained from the
lowest isospin-+ spin- eigenstate |g) of H, by

(glplg)=rGp. (3.7)
IV. TWO SOURCES

As in Refs. 4—6, the two-source normalized meson
mode functions ¢;.(k) are defined by

¢;(k) _ikR,  —ikR,
ds(k)= n,-,\/i (e e ), 4.1)
where s takes the values + and —, or sometimes + 1

and —1. The mode normalization constants n; are given
by

nj,z(R)=l+scj(R)

4.2)
¢j(R)= [ |4;(k)|*cosk-Rdk ,
and R is the source separation vector

In terms of the orthonormal mode functions ¢ (k), the
two-source interaction Hamiltonian H; of (2.5) is

— 3 Gx(R)pys [ 0lb)gh(klar(k)dk,  (4.4)
Js

where the operators p,j; are (note that they are defined as
in Refs. 5 and 6, not as in Ref. 4)

1
Pri="75Phs+3P%)) » (4.5)
and G;(R) is given by
G;(R)=Gn;(R) . (4.6)

The decomposition of the field operator a; (k) in terms of
the mode functions ¢ (k) gives

ar(K)= A ;0 (K) +az, (K) 4.7)

where a,, (k) is now orthogonal to all of the mode func-
tions ¢ (k)

[ ¢5(K)ap (K)dk=0, s=+,—, j=x,y,z, (48)

and the summation convention is now used for the sign
subscript s. In the case of two sources, the subscript 1
will be used generally to indicate orthogonality to the
mode functions ¢;. Substitution of (4.7) into the Hamil-
tonian gives
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H=H,+H, +H +H|,
Hy=3 Wi(R) AL, As;—Gps(R)paje(AL ;s + 421,
Js

4.9)
H, = [ ok}, (K)ay, (k)dk ,

Hy= 3[4}, —Gnu(Rpys] [ [0(k)p(K)]ias (K)dk ,
Js
where Wj;(R) is given by

Wi(R)=—— [ w(k)|4;(k)|2(1+s cosk-R)dk

n,-,Z(R)
W, +sw;(R
=:++c,(11:)_) (4.10)
wj(R)= [ w(k)|4;(k)|*cosk-Rdk .
W . is the same as in the single-source case,
W, =w;(0) (4.11)
and
[0(k)pjs (k)] =[w(k)— W (R)]ds(k) . (4.12)

The term H , in H is the “internal” part of the Hamil-
tonian, involving just the internal modes ¢;. The term
H,, gives the noninteracting energy of the external modes
created by aI, and H, describes the interaction between
the internal and external modes. For many purposes, the
ground-state energy of H, gives a useful approximation
to the ground-state energy of the total Hamiltonian; in
this paper, some approximations to the ground-state ener-
gy of H, are computed. It has been suggested'! that the
external modes be treated by diagonalizing the total Ham-
iltonian successively in spaces with 0,1,2,... external
mesons.

The first step in dealing with H , is, as was noted in
Ref. 5, to separate the functions W,(R) and
Gjs(R)W(R) into spherically symmetric s-wave and ten-
sor d-wave parts. Let R be in the z direction, so that
W (R)=W,(R) and G, (R)=G(R); then the s-wave
(0) and d-wave (2) parts of W and GW are

Wos(R)=+[Ws(R)+2W(R)],
Gos(R)Wo(R)=+[Gx(R)W(R)+2G,(R)W(R)],

4.13)
Ws(R)=+[Wy(R)— Wy(R)] ,

Go(R)W5(R) =3[ Gy (R)Wy(R)— G (R)W(R)] .

With these definitions, H, splits into a spherically
symmetric part H 4o(R) and a spin-2 part H 4,(R):

H,=H,o(R)+H_,yR),

H o (R)=W,(R){A] 4,}F (4.14)

—GLS(R){pS’(AI+AS)}L »

where, for present purposes, the L =0 and L =2 com-
binations are

{A4,B}°=4-B,
(4.15)
{A,B}>=A)B)x+As,By,—24,,B), .

As was shown in Ref. 5, in the asymptotic region it is
useful to introduce the distorted-mode functions ¢,
p=1,2, that go over into the single-source mode func-
tions as R — oo and the corresponding single-source mode
annihilation operators 4,; these modes and operators are
given by

1
¢j’(k)=—‘7—_2-[¢j1(k)+s¢j2(k)] )
(4.16)

1
AUS=72—(AU1+SAU2) .

In terms of these modes, H o, and H 4, become

Hu=3 HY (R)+H,(R),
V4
H5 (R)=W,(R){A],4,}* —GL(R){p,,(4; +4,)}* ,
H (R)=L[W, (R =W, _(R))([A], 4y} +{4},4,}5)
— 1[Gy L(RIW, ,(R) =G, _(R)W, _(R)]

X[ {p1, (4] + A4} + (o (AT + 4D},
4.17)
W, (R)=+[W, . (R)+W._(R)],

Gy (RIW, (R)+Gy _(RW, _(R)
G.(R)= ,
WL+(R)+ WL_(R)

where p, is used interchangeably with pf. The Hamiltoni-
an H%,(R) has the same form as the single-source Hamil-
tonian H , of (3.3), so that its properties are the same as
those of the single-source Hamiltonian with appropriately
chosen values of the parameters W and G.

The distorted-field approximation® (DFA) uses the
product ground state

lgn)=181)82) (4.18)

of H)o+H3, as an approximate ground state of the two-
source system. The single-source results give

(8 | 4, 18,)=Go(R)(g, |py |8,

(g |P°|8,)=r[Go(R)]pP=ro(R)p, ,

so that the expectation value of H,(R) in this approxi-
mate ground state is

Ey(R)=2E,(R)+ 3, UL(R){pnp}*t,
L =0,2

(4.19)

(4.20)
where E,(R) is the ground-state energy of H,'(R) and
U (R) is given by
UL(R)=roXR)Go(R){Go(R)[ W, .(R)— W, _(R)]
—2[Gr L (R)W ,(R)
~Gr _(R)W, _(R)]} . (4.21)

Thus, the DFA to the potential energy of the two sources
is
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+ 2 UL(R){pl,Pz}L . (4.22)
L=0,2
Since R is in the z direction, it follows that
[pl,p2}2=—7'1‘T2(30'1'ﬁ02'ﬁ—0'1’0’2) ’ (4.23)

and this gives the relation between {p;,p,} and the usual
forms of the tensor operator.

The term 2E;(R)—2E;(«) is a spin- and isospin-
independent or Wigner term in the potential; the other
two terms are of the same type as appears in the usual
one-pion-exchange calculations.

V. TREATMENT OF THE SHORT-RANGE
HAMILTONIAN

The form of the Hamiltonian that is most useful for
small values of the source separation is given in (4.9). In
the case of the isovector scalar meson field, special
methods were applied to the analogous short-range form®
in order to get values for the potential energy that are
better than the DFA values for small values of R. (Since
all the calculations are variational, it is simple to decide
which values are better.) Similar methods were tried for
the pion-field case, but these methods did not give better
values of the potential energy for interesting values of R.
Therefore, only the DFA results are shown in the follow-
ing section.

VI. CALCULATIONS

In order to examine the effects of changes in the form
factor, the simple form

1
1+k2/A?
was used for the form factor, where the parameter A
determines the size of the source. For each value of the
source-size parameter A, the bare coupling constant f was
adjusted to make the renormalized coupling constant
fr*/4m, computed by using the methods described in Ref.
10, equal to 0.08, and then the static pion potentials were
computed in the DFA. The results for the two values 3m
and 7m of the source-size parameter A are shown in Figs.
1—3 along with the corresponding one-pion-exchange

(k)= (6.1)

Wigner potentials in units of m
4 §

\=3m
A=7m

1+
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FIG. 2. The spin- and isospin-dependent terms U, and U,,
together with the corresponding OPE values for A=3m, where
A is the source-size parameter.

(OPE) potentials computed with the renormalized cou-
pling constant and the source density given by the form
factor of Eq. (6.1).

The most striking feature of these results is the rather
large Wigner potential, shown in Fig. 1, that occurs in
both cases. This potential is qualitatively similar to the
potential energy of two Skyrmions,'? although the Hamil-
tonians for the cases are entirely different. From Eq.
(4.22) it is evident that this Wigner term arises from the
fact that the presence of a neighboring source interferes
with a particular source’s optimization of its own pion
field. The dependence of the Wigner term on the source-
size parameter A is encouraging, in that it shows that an
accurate determination of the Wigner term in the
nucleon-nucleon potential can give information about the
nature of the form factor in the pion-nucleon Yukawa in-
teraction and, hence, about the size of the quark-gluon
core of the nucleon.

In view of the strength of the pion-nucleon coupling, it
is somewhat surprising that the spin- and isospin-
dependent parts U, and U, of the potential, shown in
Figs. 2 and 3, are very close to the corresponding OPE po-
tentials. For these components of the potential, this
means that the OPE values are probably valid to rather
smaller separations than have previously been supposed;
this behavior is consistent with the results of Ref. 3.
These components, like the Wigner term, show a marked
dependence on the shape of the pion-nucleon Yukawa in-
teraction.

0.2 : ;
POTENTIALS IN UNITS OF m
0.0 EEp—e
-0.2 e -
-0.4 e
-0.6
toff = 7 o
cutolt = /m U0 OPE
-0.8 u2
U2 OPE
-1.0
-1.2

0.0 0.2 0.4 0.6 0.8

1.0

12

14

16

0

—

g

0.0

0.2

0.4

0.6

0.8

1.0

12

mR
FIG. 1. The Wigner term in the static pion potential for two
values of the source-size parameter A.

mR

FIG. 3. The spin- and isospin-dependent terms U, and U,,
together with the corresponding OPE values for A=7m, where
A is the source-size parameter.
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VII. SUMMARY

The potential energy of interaction of two static sources
of the 7-meson field has been computed in the distorted-
field approximation. The spin- and isospin-dependent
parts of the potential were shown to be close to the corre-
sponding one-pion-exchange potentials. In addition, there
is a strong Wigner potential that is not present in the

one-pion-exchange potential. All of the components of
the potential depend significantly on the shape of the as-
sumed pion-nucleon Yukawa interaction.
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