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We discuss an approach to understanding the saturation of forces in chromodynamics. Our for-
mulation is suggested by the observation that many lattice-gauge-theory calculations give results
well approximated by considering the dynamics of stringlike flux tubes. By looking at multiquark
Green’s functions in the strong-coupling, quenched, approximations of lattice chromodynamics we
find examples of configuration mixing which can allow the binding of color-singlet hadrons into
larger composite systems. We surmise that this configuration mixing is crucial to the understanding
of nuclear binding. As a simple example we discuss the binding of two mesons composed of heavy,
static, quarks into a deuteronlike object. Our results suggest that the magnitude of nuclear binding
can be deduced by measuring a finite number of Wilson-loop configurations in lattice QCD.

I. INTRODUCTION

The assembly of protons and neutrons into larger com-
posite objects plays such a crucial role in nature that it is
important to understand the nuclear binding force from
first principles. There now exist strong indications that
quantum chromodynamics (QCD) provides the underlying
theoretical basis for the strong interactions' and, hence, it
is compelling to look for an explanation of nuclear bind-
ing in QCD. The task will not necessarily be straightfor-
ward. QCD is a gauge theory which describes the interac-
tions of fundamental quarks and gluons. The binding of
quarks and gluons into color-singlet hadrons is already
known to be a topic which cannot be treated in perturba-
tion theory.? Therefore, the idea that one can calculate
the properties of nuclei in terms of the short-distance in-
teractions of quarks and gluons seems quite remote.

There is, however, a viable alternative to perturbation
theory for some observables in QCD. The lattice approxi-
mation of a gauge-field theory involves the replacement of
the space-time continuum by a discrete number of points.
The formulation of the theory on these points can be done
in a way which explicitly preserves gauge invariance and
allows a continuation between the strong-coupling regime
and the weak-coupling regime.> In lattice calculations,
many observables can be reliably estimated by sampling a
finite number of gauge-field configurations. The formula-
tion therefore yields quantitative, systematically improv-
able predictions.

A simpler question then arises. Can one construct ob-
servables in lattice QCD which can be used to understand
the existence of nuclear binding? From the point of view
of QCD, the problem of nuclear binding can be seen as
merely one aspect of the general problem of the long-
distance saturation of the chromodynamic force. Other
aspects of this subject include the properties of ‘“‘exotic”
hadrons, the possible existence of hybrid meson-glueball
states, and the study of other types of nonminimal color-
singlet states.* The dramatic suggestion that stable
strange matter could account for the dark mass of the
Universe or special cosmic-ray events® shows how the sub-
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ject of color-force saturation can lead to new areas of
speculation. Understanding the saturation of forces in
QCD involves looking at general multiquark states, exam-
ining how quarks cluster into color-singlet hadrons, and
deducing the residual interactions between the color sing-
lets. This basic problem was first addressed in nonrela-
tivistic potential models. However, several authors have
pointed out the difficulty that two-body quark potentials
lead to a long-range van der Waals force between two
color-singlet hadrons which is in violent disagreement
with experiment.® Subsequently, multiquark systems have
been examined in the MIT bag model’ and in simple
string models.® These models explicitly postulate dynami-
cal mechanisms which naturally isolate color singlets and,
hence, remove the problem of long-range van der Waals
forces. However, they do not solve the problem in a
manner which can be seen to be a natural consequence of
the underlying QCD dynamics.

Suppose we want to study color-force saturation in non-
perturbative QCD. We can, in principle, look at general
multiquark Green’s functions in the lattice approximation
to QCD. We recall that for a heavy static QQ pair one
can deduce the effective interquark potential in the
quenched approximation (ignoring the effects of light
quarks) by measuring Wilson loops® of different sizes.
We find that the study of multiquark systems can be done
in a similar manner by looking at more complicated Wil-
son surfaces. We will illustrate this by looking at the sur-
faces which give the “potential” for a QQQQ system. The
QQQQ system is chosen for study since it is the simplest
multiquark system which gives nontrivial results concern-
ing color saturation. In addition, it has been argued that
this system can serve as a prototype for simple nuclei'®
and it is therefore interesting to look at its behavior in lat-
tice QCD as a guide to what we might encounter in more
complicated systems.

In this paper we look at the Euclidean Green’s function
for a QQQQ system in the strong-coupling, quenched ap-
proximation to lattice QCD. The Euclidean-space
Green’s function consists of a 2 X2 matrix in color space
with entries which can be calculated by tiling the ap-
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propriate Wilson surfaces. Since the strong-coupling limit
of the theory is known to give a string picture, where
color flux between sources is confined to stringlike flux
tubes, it is not surprising that we can reproduce the gen-
eral clustering properties of string models. However,
there exists another important element in the complete
calculation since the strong-coupling expansion gives a
calculable overlap between different color-space configu-
rations. We interpret this as configuration mixing fami-
liar from simple multichannel quantum mechanics. It is
easy to convince oneself that configuration mixing allows
for the formation of a composite “nucleus” with lower
overall energy than two individual hadrons.

Our sample calculation is done in the quenched approx-
imation where all light quarks are suppressed so it is not
convenient to describe the resultant hadron-hadron bind-
ing in terms of meson exchange as is customarily done in
nuclear-physics models. To understand physical hadronic
systems, we must obviously also include meson-exchange
effects. On the lattice, it turns out that one can calculate
configuration mixing without reference to the strong-
coupling expansion by measuring different types of Wil-
son surfaces in Monte Carlo simulations. In fact, if these
measurements can be done in sufficient generality, taking
into account dynamic quark degrees of freedom through
the fermion determinant, it should be possible to include
meson exchange and mixing effects on a comparable foot-
ing. We believe that this will be necessary in order to
achieve a “first-principles” understanding of nuclear bind-
ing from QCD.

The remainder of this paper is organized as follows. In
Sec. II we set up the QQQQ Green’s function in the
strong-coupling limit of Euclidean lattice QCD. Section
IIT gives the results obtained by diagonalizing the color-
space operator. Section IV discusses the extension of the
approach beyond the limits of the strong-coupling approx-
imation and some aspects of the extension to other multi-
quark systems. Section V attempts to make contact with
standard nuclear-physics techniques and formulates some
tentative conclusions.

II. THE STRONG-COUPLING EXPANSION
AND A SIMPLE EXAMPLE
OF COLOR-FORCE SATURATION

The strong-coupling approximation is a useful
beginner’s tool for the understanding of lattice-gauge-
theory results.’ For non-Abelian gauge theories, the
strong-coupling approximation forces color flux to be
confined to stringlike flux tubes. Unlike weak coupling or
“ordinary” perturbation theory, the expansion in (1/g%
for strong coupling has a finite radius of convergence for
many types of observables. High-order calculations in
(1/g% can be continued using several approximation
schemes such as Padé approximates!! to extend the region
of applicability still further. As g2 gets smaller for any
given theory, one encounters, at some point, a roughening
transition which for some observables invalidates con-
tinuation of the strong-coupling results. At very small
values of g2, lattice-based perturbation expansions are
valid.!? For the calculation of a given observable, one
must consider the renormalization effects through the re-

lation g2—g*a) where a denotes the underlying lattice
spacing. To make contact with continuum physics, we
must eventually consider the extrapolation ¢—0 and
gXa)—0. However, this does not invalidate all con-
siderations based on the dynamics of the strong-coupling
limit. Monte Carlo simulations can be used to connect
the strong-coupling and the weak-coupling regimes. Mea-
surements of Wilson loops suggest strongly that the flux-
tube !)icture of the strong-coupling approximation is
valid"® for large loops even though the strong-cougling
string tension cannot be naively extrapolated to g“=0
This indicates that strong coupling may provide a good
starting point to examine the long-distance properties of
more general multiquark systems. ‘

We will define a lattice gauge theory for SU; with no
dynamic quarks in terms of the Wilson action

SW==2 3 [1-1ReTr(UY)], 2.1)
g i

where Up= U? UT U? U? and the path ’i\l o -/i\4 surrounds
1 2 3 4

a fundamental plaquette. The generating functional is de-

fined

Z= [ d[Ulexp[-S(V)] . 2.2)
We can calculate the expectation value of local observ-
ables (observables which involve only a finite number of
points and links) by

(0)=2z"" [ d[UJO(U)exp[ -5 (V)] . 2.3)

These expectation values involve the group-invariant Haar
measure defined by

d[Ul=d[U~']=d[UV]. (2.4)

Qa L Qg

FIG. 1. Wilson loop W(L,T;g? in the strong-coupling limit.
It takes a minimum of N =LT/a? fundamental plaquettes to
tile the area in such a way that the group integral does not van-
ish.
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The group integrals for SU; can be evaluated using
[ d[ul=1,
[ duu= [duw'=o, 2.5)
f d[U]Uij U£I=‘;_8i15jk .

The strong-coupling approximation consists of taking the
expansion of the exponential

exp[— S(D]=1-2[Q]+ - - (2.6)
g
with
Q=3 [1-3ReTr(Up)], 2.7

and evaluating the integral (2.3) as a power series in 1/g?.

One of the simplest operators which can be calculated
in the strong-coupling expansion is a Wilson loop
W(L,T;g%. This operator can be considered to represent
the creation of a massive, static QQ pair separated by a
distance L at time t =0, the propagation of this static
pair through Euclidean time to ¢t =T and its subsequent
annihilation. As pictured in Fig. 1, the lowest-order con-
tribution to this operator in the strong-coupling approxi-
mation consists of tiling the minimal area enclosed by the
loop, with LT /a*=N elementary plaquettes in order to
get a nonvanishing group integral

1 LT/a?
lim (W(L,T,g»))~ l——2 =exp(—oLT)
glow 3g
(2.8)
with
a=0'(a,g2)=-—1;ln(3g2) . 2.9
a

The parameter o with dimensions (length) =2 can be inter-
preted as a string tension giving rise to a linear confining
potential between widely separated color sources. When
one considers the renormalization of the theory one must
assume that physical quantities such as o are independent
of the underlying bare parameters in the calculation. This
means a relationship between a and g2 of the form

lim a(g?)~[In(3g?)/a]'/?.

gl

(2.10)

Higher-order terms in the strong-coupling expansion lead
to corrections to o(a,g?) in (2.9) and, hence, higher-order
corrections to a(g?).

For large T, one can interpret the coefficient in (2.8) as

(W(L,T;0))=exp[—V(L)T], (2.11)

where V(L) is the potential between the static quarks.
The strong-coupling result, therefore, leads to a linear po-

tential
Lli_{r; VQQ(L)~UL . (2.12)

We have gone over this familiar result in order to intro-
duce the nomenclature we will be using to discuss the

" T T T
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FIG. 2. Otto and Stack’s potential from Monte Carlo data on
a 123X 16 lattice. In Ref. 9 they have fit these data to the
phenomenological potential given in Eq. (2.14) of the text.

QQQQ system. We want to emphasize, however, that the
strong-coupling result (2.12) is approximately valid for the
large-distance behavior of the QQ potential. Figure 2
shows results from the Monte Carlo simulations of Otto
and Stack® for the QQ potential. These involve calcula-
tions done in the “scaling region” of g? <1 where the
strong-coupling expansion is not valid. However, the
large-distance behavior of the potential is still linear. If
we are interested in the behavior of systems with

L>5GeV™! (2.13)

then a linear approximation is reasonably valid. Otto and
Stack’® give a fit to their Monte Carlo data of the form
VIL)=T+0oL (2.14)
with @=0.2540.02 and o'/*=260+10 MeV which gives
a QQ potential with a wider range of validity than (2.12).
When we consider the large-distance limit of multiquark

“potentials” in the remainder of this paper, however, we
will assume that (2.12) is an adequate approximation for

VQQ'
A simple example of Q0QQ dynamics

We can now turn to the QQQQ system. To simplify
the geometry we will assume that the massive scalar static
quarks are confined to the x-y plane and are located at
the corners of a rectangle as shown in Fig. 3. The labels
ABCD denote distinct “flavors.” In the strong-coupling
limit there are two flux configurations which associate
QO pairs into color-singlet “mesons.” These are shown in
Figs. 3(b) and 3(c). There are different ways to
parametrize the color-space degrees of freedom for this
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FIG. 3. The sketch in (a) shows the geometry of the Q0QQ0
system discussed in the text. The two quarks and two anti-
quarks are held rigidly at the corners of a rectangle as shown.
The two distinct ways of grouping the quarks into color-singlet
mesons are shown in the sketches labeled (b) and (c) by drawing
a flux line between the Q and Q which form a color singlet.
The two configurations are labeled (4B),(CD); and
(AD)y(CB),.

system. One basis, in color space, is given by

| (Q4038)1(Qc0Op)1)1= | (AB)(CD)),,

o o (2.15)
[(Q405)8(QcQOp)s)1= | (AB)g(CD)g), ,
and another basis
[1)=1(Q,408)1(Qc0Op)1)= | (4B),(CD),) ,
(2.16)

[2)=(Q40Qp)1(QcQp)1)= | (AD),(CB),) .

It is easy to convince oneself that the states (2.16) are
more convenient for the quantum mechanics of the

Ly

A (5] A
B c = c
(a) w,, (b) Wy,
A D
c B c
(c) Wy, (d) Wy,

FIG. 4. These sketches show the Wilson surfaces whose
values correspond to the elements in the Euclidean Green’s
function for the Q0QQ system.

strong-coupling limit where one has to take into account
both the color carried by the quarks and the orientation of
the color flux. At short distances, where one can ignore
the extra complications associated with the flux the set
(2.15) may be more convenient. For quarks at a single
point, there are algebraic relations between the color com-
ponents of (2.15) and (2.16). For the remainder of this pa-
per we will be using the basis vectors (2.16) for describing
this system. In any dynamical approximation consistent
with confinement, we can see that these are adiabatic
states for the Hamiltonian at large distances.

We can easily see that the Euclidean-space Green’s
function which corresponds to the creation of the Q0QQ
system at £ =0 and its annihilation at t =T is then a 2 X2
matrix in color space. The generalization of the Wilson
loop for a single QQ pair is the operator which is a 2 X2
matrix

WIJ(Ll,Lz,T,U)

with I,J =1,2 and the color states defined in (2.16). The
components of this operator are indicated in Fig. 4. The
diagonal components correspond to the product of two
Wilson loops. The off-diagonal components correspond
to the connected surfaces shown in Figs. 4(b) and 4(c).

In the strong-coupling limit, we can compute the con-
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FIG. 5. Shading or crosshatching in sketches indicate
minimal tilings in strong coupling which lead to (2.17). In the
limit (L,—L,)T > L,L, the minimal tiling for W, switches to
that shown in (e). This indicates that in this limit the configura-
tion (2) is unstable against decay into state 1. The propagator
for 2—2 consists of jumping to state 1, propagating for time T
and then jumping back to state 2. For the discussion in the text,
it is more instructive to consider the tiling in (d).
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tribution of each of these Wilson surfaces, by tiling the
minimal area enclosed by the loops with fundamental pla-
quettes. In order to show some definite results, we will
assume L, <L, and (L,—L,)T <L,L,. Following the
same arguments which led to (2.8), we then have

-oL,\L,
—20L,T 1 €

Wy =e —oL,L, —20(Ly—L,)T 2.17
e e

The tilings which give this minimal area are shown in Fig.
5. Note that if we look at (L, —L )T >L,L, then the
minimal tiling of the surface which corresponds to W,
changes to that shown in Fig. 5(e). We want to make
some simple observations about (2.17). In the configura-
tion discussed above, it is clear the off-diagonal elements
are small compared to the diagonal ones. This confirms
the general picture that the color-singlet mesons interact
only weakly. However, we cannot completely ignore the
configuration mixing represented by the off-diagonal ele-
ments. They tell us that the physical states do not consist
of independent mesons but that there exists a linear com-
bination of the states |(A4B),(CD);) and |(AD)(CB);)
which has a lower energy than the two mesons. Clearly, if
we are interested in the binding of color-singlet hadrons,
we must consider these mixing effects.

III. CONFIGURATION MIXING
AS A CONTRIBUTION TO BINDING

In Sec. II we showed how the Euclidean-space Green’s
function for a QQQQ system can be thought of as a 2 X2
matrix operator in color space. In the strong-coupling
limit with two meson states as an appropriate basis, we
can see how the tiling of Wilson surfaces of different to-
pologies gives the entries in this matrix. In the QQQQ
system, we are therefore confronted with the classic exam-
ple of a two-channel problem in quantum mechanics
where the appropriate physical states can be deduced by
diagonalizing this operator. Our simple model indicates
that the mixing will, in general, be small and the main
dynamical feature of the system is the confinement of the
QQ pairs into hadrons. However, the fact that mixing
can occur allows the formation of a larger bound state in-
volving all four sources.

Since we are treating Q’s and Q’s as simple static color
sources, we must examine Wj; for a range of L, and L,
in order to understand the dynamics of the system. In
particular, we need to be able to deal smoothly with the
case (L, —L;)—0 in order to describe all allowed config-
urations. It turns out that the tilings of the Wilson sur-
faces leading to (2.17) do not adequately deal with the de-
generacy of allowed configurations. For the off-diagonal
elements of Wj;, we must also consider tilings of the Wil-
son surface such as that drawn in Fig. 6. In these tilings,
the spacelike surface with area L,;L, occurs not only at
t=0 or t=T but at any ¢, subject to 0<t, <7T. In the
strong-coupling limit, the contribution of each such tiling
is

—oLLy, ~20Ly(T~t;) ~20Lyt,

O(Ly,L,y,t,,T)=e 3.1

[ 1

1

i |
T-ta !
1 3 Eisem
ta NN ARNY

R A8
o I

FIG. 6. The T dependence of the operator is not properly
described by the tilings in Fig. 5 which ignore the degeneracy as-
sociated with the fact that the spacelike surface of area L,L,
can occur at any time 0<t, <7. Summing over configurations
leads to (3.2) and the matrix operator (3.3).

Summing over these configurations gives

IL —20L\T e —20L,T
—o e —
E(LI,LZT)ze "2

, 32
20(L,—L)a 3.2

where a =a(g?,0) denotes the fundamental lattice spac-
ing and is assumed to be small compared to the size of the
figure. Notice that this form is smoothly behaved in the
limit L, —L;—0,

e(L,L,T)=e~L*(T /a)e LT (3.3)

After realizing that (2.17) is not strictly correct, we can
improve our calculation of the matrix to

—20L\T
e

W= —20L,T 3.4)
e

€

with € given by (3.2). We now proceed to diagonalize (3.4)
and write D =RWR ~! where R is a 2 X2 rotation matrix
and

2e
tan20=—— o —5L,7
e —e
—oL,L,
— 2 (3.5)
20(L,—L)a
The diagonal elements are then
~20L,T  —20L,T
D, =2 +e
1 2
o WLiT_ —20LsT
+ > cos20+€sin26 ,
(3.6)
—20L,T  —20L,T
D, +e
22 2
—20L,T  —20L,T
- ; cos28—esin28 .

From (3.2) we see that € is small. For the case of small
mixing (L 5£L,), we can write
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62
= —_—=Wy][1 _(m},
Dy=W,+ W —Wa nll+x_(1]
2 (3.7)
Dyy=Wypy—————=Wxy[l+X_ (T)].
2 T 2l +(1]
From (3.2)
~2LiL, | F20(L,~L)T
Xo(T)=E 1—e (3.8)

40'202 (Lz-—Ll)z

In the case of small mixing we can therefore deduce the

energy shift attributed to mixing to be approximately

—20L\L, 1

20‘(12 (LZ_LI) )

In the limit of L, =L =L, we have sin20=1 and € given
by (3.3). This gives

Dy =e—20LT+e=e—2aLT(1+e——aL2T/a) ,

——IT—unD“—ler”)srr ¢ (3.9)

) (3.10)
Dyy=e LT _e—e=29LT(1_¢~oL°T /q) .
From this we can deduce the energy shift
— Dy, —Wy)=Fe~oH' L (3.11)

The mixing is maximized for L,=L,;=L. For both (3.9)
and (3.10) we see that the amount of the energy shift de-
pends sensitively on the interquark spacing because of the
factor exp(—oL,L,). For fixed L, the “binding” poten-
tial falls off exponentially with L,. This rapid falloff
guarantees that at asymptotic separations, the correct
physical states consist of bound mesons with no residual
forces.

Putting in some numbers, we find that this type of con-
figuration mixing has the ability to quantitatively account
for a significant amount of nuclear binding. For
L,=L,=L we show the order of magnitude of

AH
H
107 — —
1072 — —
1073 |— —
1074 —
1075 — —
1078 | | | |

0.0 0.5 1.0 15 2.0 2.5

L/a
FIG. 7. AH/H vs L /a from (3.12).
separations we get energy shifts of 1073,

For physical values of

FIG. 8. The four sources 4,B,C,D determine the vertices of
an irregular tetrahedron in three-space. The six edges of the
tetrahedron have lengths L 5, Lyc, L 5, Log, Loy, and Lgp.
The T=const slices of Wilson surfaces involve the Lz and
L g or the L 5 and Ly edges as shown.

AH _ exp(—oL?)
H = 20La

for various values of (L /a) in Fig. 7. For “physical”
values of interquark separation we achieve binding ener-
gies in the MeV range. Surprisingly, the overall picture of
color force saturation which emerges from the strong-
coupling limit of lattice QCD seems to have several nice
features which naturally account for physical phenomena.

It is obvious that there is a long way to go from the
study of our simple example of static spinless color
sources before we can deal with physical states of nuclear
matter. For example, one aspect of the QQQQ problem
which needs to be treated more completely before drawing
firm conclusions involves the geometry of the system. We
have, for simplicity, been treating the color sources as oc-
cupying the corners of a rectangle. As sketched in Fig. 8,
we should in general consider the Q’s and Q’s to be locat-
ed at the corners of an irregular tetrahedron in three-
space.

The more complicated geometrical setup can still be un-
derstood using the basic ideas discussed above but there
are some features which require extra care. The diagonal
elements of the Euclidean-space Green’s function still in-
volve two disjoint Wilson loops. However, the loops may
intertwine. To see how this can happen we can consider
the configuration shown in Fig. 9 where, again, the four
color sources are confined to a plane. In this configura-

(3.12)

B e O A
(a)

De oC

Be —0 A
(b)

D e —o ¢

B A
(c)

D c

FIG. 9. Another orientation of sources confined to a plane.
One of the flux configurations which separates the system into
mesons involves flux crossing as shown.
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]~

T

(a) (b)

FIG. 10. Wilson surfaces for diagonal (a) and off-diagonal (b)
propagators involving crossed flux orientations.

tion, however, the two quarks and the two antiquarks oc-
cupy adjacent corners of a rectangle. Flux lines connect-
ing quarks and antiquarks are drawn and, it is obvious
that, in one of the possible configurations, the lines over-
lap. The types of Wilson surfaces which must be calculat-
ed for this geometry are shown in Fig. 10.

Obviously, to attempt to calculate the contribution of
these diagrams in strong-coupling lattice approximation,
we must take into account the non-Abelian nature of color
flux. For general configurations of Q’s and Q’s, tilings of
the surfaces with junctions as shown in Fig. 11 must be
considered.

We want to point out that it is possible to do a more
systematic and thorough treatment of the QQQQ system
which takes into account the full complexity of the
geometry of the static sources. The basic conclusion
which emerges from our simple numerical example
above—that configuration mixing in the two-channel
meson-meson basis leads to the possibility of binding
these mesons into a larger object—remains valid. We will
not deal in detail with all these geometries at this time
since we are not yet trying to construct a realistic model
for the QOQQ potential but only to introduce the basic
concepts and calculating tools. Note that we also have to
consider the sensitivity of our calculation to the approxi-
mations of the strong-coupling expansion. We will ad-
dress some aspects of the problems of extrapolating away
from strong coupling in the next section.

IV. MIXING AND THE STRONG-COUPLING
APPROXIMATION

There are several facets of our calculation of Sec. III
which depend on the strong-coupling expansion. Since
the details of continuum physics should not depend on

| AN

B Qa
Flux Junction in SU4

FIG. 11. Tiling of Wilson surfaces in many configurations
involve the non-Abelian nature of the charges and the fact that
€7*q;qx transforms like an antiquark. For the special geometry
in our simple problem, these flux configurations are not impor-
tant.
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any artificial lattice approximation scheme, we have to
consider the extrapolation away from this limit to see
whether our results remain valid. Fortunately, it will not
ultimately be necessary to rely on specific arguments con-
cerning the extrapolation away from strong coupling since
it is possible to do Monte Carlo explicit simulations which
can statistically measure the appropriate Wilson surfaces.

Some aspects of this continuation can be dealt with in a
fairly straightforward manner. We would like to discuss
these in order to show some of the things which need to
be done. The first aspect is the normalization of the
meson wave functions, the second involves the correlation
between Wilson loops. Finally, we would like to look at a
simple argument which suggests that the strong-coupling
approximation underestimates mixing.

The meson wave functions

In the strong-coupling limit, we can consider a “meson”
to be a QQ pair joined by a string non-Abelian flux tube.
As we go away from the strong-coupling limit while keep-
ing the color sources fixed, the color flux is no longer con-
fined to a narrow tube. We can define the state

W(Q0,L)= 3 ¢;| Q(0),flux i,Q(L)) , @.1)

where the label i refers to all the allowed flux configura-
tions connecting the Q and Q. When we calculate the
Wilson surfaces drawn in Fig. 4, the spacelike lines at
t =0 and ¢ =T represent projections of the meson state
onto the straight-line flux state. As we go away from the
strong-coupling limit, this projection becomes smaller and
the ratio between the Wilson operator and the meson
propagator diminishes. A little thought shows that the
important result of configuration mixing found in Sec. III
depends on the ratio of the off-diagonal elements to the
diagonal elements in Wj; as given in (3.4). We can still
calculate these elements using the Wilson surfaces as
shown in Fig. 5. The ratio of the Wilson surfaces to the
elements of the exact Euclidean-space Green’s function
denoted by Gj; is given in the form

G Wi | W(QQ,L,)W(QQ,L,)
Gn  Wu | ¥(Q0,L,)¥(Q0,L,)
¥o(QO,L)Wo(Q0,L,)
W(QQ,L)W(QQ,L,)

where ¥, represents the “straight-line” flux state where all
coefficients in (4.1) except ¢, are set to zero. As long as
the ratio of these normalization factors depends only
weakly on L, and L, then the ratio of the Wilson sur-
faces can be used to calculate the mixing in the Green’s
function as in Sec. III. We do not have to depend on the
strong-coupling expansion to calculate these operators.
We can investigate the ratios in (4.2) by changing the
edges of loops with different topologies in Monte Carlo
simulations.

) (4.2)

Other interactions

ln our example above, the diagonal elements of the
QQQQ Green’s function correspond to the independent
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propagation of noninteracting mesons. In the limit of
strong coupling, there is no correlation between the two
disjoint Wilson loops of Fig. 5. However, as we extrapo-
late away from the strong-coupling limit, this no longer
remains true.

We can study the correlation function between disjoint
Wilson loops numerically. In principle, this is similar to
studies involving the propagators of “glueball” states.
The correlation length should be dominated by the mass
of the lowest glueball state. Estimates of this mass

m¢, . ~0.66+0.03 GeV 4.3)

have been made using Monte Carlo data.!* Its value
remains more uncertain than is indicated in (4.3) because
the scaling (behavior with coupling) of the data on the
glueball mass and the scaling of the data on the string ten-
sion are not consistent. Without a single B function
which can describe both kinds of data, it is premature to
say that an overall scale is set which allows the mass of
the lowest glueball to be related to the string tension.
However, the mass scale (4.3) indicates that there will be a
force with range (o) even in the one-channel approxima-
tion.

In the language of potentials, glueball exchange gen-
erates a force between mesons just like the standard one-
meson-exchange potential used to describe the NN force.
In the quenched approximation or the absence of dynami-
cal quarks this is the only type of exchange allowed be-
tween heavy mesons. The configuration mixing calculat-
ed in Sec. III does not correspond to the exchange of a
heavy QQ pair since this would be suppressed by an extra
Yukawa factor

Y=exp(—2mgL) . (4.4)

Configuration mixing leads to a component of the binding
force more akin to covalent bonding in atomic physics
than to the exchange potentials used in nuclear models.

Enhanced mixing at low g2

We have discussed some of these effects briefly to indi-
cate that there is some reason to believe the overall result.
There is one dynamical effect which we do think will
prove to be important and which leads us to believe that
our quantitative estimates of configuration mixing may be
too low. In the strong-coupling limit, the tiling of the
spacelike surface which allowed the mixing necessarily in-
troduced a factor

X(Ll,Lz)—_—-CXp(—UL]Lz) . 4.5)

This can be understood in a simple flux model as shown
in Fig. 12. As we go toward smaller couplings there exist
correlated configurations for which the factor

X(L{,L,)=exp(—ocA’) (4.6)
with A4’ <<L L,. Our main expectation concerning the
results of the continuation away from strong coupling is
that configuration mixing will increase as g2 becomes
smaller. A simple parametrization of this general effect
would be to replace the value of o which occurs in (3.11)

Strong Coupling

e

Weaker Coupling

FIG. 12. As we go away from the strong-coupling limit so
that flux lines are not restricted to their minimum length, there
exist correlated flux configurations for which the area 4’ of a
spacelike surface which needs to be tiled is less than 4 =L ,L,.

or (3.12) as a measure of the energy shift by a value
o<o.

We would like to emphasize that it will not ultimately
be necessary to rely on unsupported theoretical arguments.
The Wilson surfaces involved in our calculation can be
measured using lattice Monte Carlo techniques. If these
measurements can be done with the same sort of accuracy
that has been done for the meson spectrum! or for the
QO potential,’ then we will have a fundamental measure-
ment of configuration mixing in chromodynamics. We
are currently setting up these types of Monte Carlo studies
and will report on them elsewhere.

To summarize our estimates concerning the extrapola-
tion away from the strong-coupling limit we find that
there are several effects which must be considered. It
seems probable that the amount of configuration mixing
will be larger than our simpler estimate.

V. QCD AND NUCLEAR STRUCTURE

The traditional approach to understanding the binding
of color-singlet hadrons into nuclei starts with fundamen-
tal pointlike nucleons and a phenomenological potential.'®
The essential components of the potential include a long-
range component associated with one-meson exchange and
a short-range repulsive barrier.!” The details of the poten-
tial can vary as more and more dynamical features are in-
put.

We do not wish to examine this traditional approach in
great detail. We simply do not believe that it constitutes a
satisfactory starting point for the study of nuclei and that
its overall validity must ultimately depend on the results
of a thorough understanding of quantum chromodynam-
ics. If available theoretical tools cannot succeed in
describing the confinement of quarks and gluons into
color-singlet hadrons and the binding of hadrons into ex-
tended nuclei in terms of the underlying dynamics we
must remain skeptical of the basic theory of chromo-
dynamics.

In our study of the QOQQ Green’s function in lattice
chromodynamics we have isolated a dynamical mecha-
nism which cannot be easily described in terms of the ex-
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change of mesons or glueballs. This means that there is at
least one aspect of QCD that would necessarily remain
hidden if one tried to construct an effective theory of nu-
clear binding involving only hadronic degrees of freedom.
It is essential to our approach that mesons consist of QQ
pairs and that the fundamental force involves color. The
details of our calculation, in particular the quantitative re-
sults which depend on the strong-coupling approximation,
are less important than the fact that we can set up a pro-
gram for calculating multiquark operators which can give
quantitative information about nuclear binding.

The generalization of our approach to the 6Q system is
reasonably straightforward once one considers the extra
complexity associated with the additional constituents.
With six static quarks, there are ten independent ways of
forming two color-singlet baryons. The Green’s function
is then a 10X 10 matrix in the basis of these two baryon
states. The calculation of the elements in this operator in
terms of the appropriate Wilson surfaces and the diago-
nalization of this 10X 10 matrix follows along the
methods outlined in Secs. II and IV. Of course, the types
of different geometrical configurations which must be
considered is larger than for QQQQ. Not only the loca-
tion of the quarks, but also the placement of the flux lines
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on the spacelike boundaries of the Wilson surfaces, must
be varied. Existing calculations of the baryon spectrum in
the quenched approximation to lattice QCD (Ref. 15)
have not dealt with the baryonic wave function in great
detail. This must be done at some level before one can ad-
dress the question of configuration mixing.

We have tried to emphasize in this paper that the ques-
tion of color-force saturation in non-Abelian field theories
is a very important one which deserves to be addressed
with a full range of theoretical techniques. A lattice cal-
culation of multiquark Green’s functions offers some new
insight into the problem. The fact that a mechanism for
the binding of hadrons appears in the strong-coupling
limit and that this binding can be calculated in terms of
the value of simple operators constitutes an important
new result.
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