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From the effective action of long-range Yang-Mills theory, we derive a classical spherical solution
which can be interpreted as a glueball. The field configurations in the gauge we have used describe
a system with one unit of color-electric flux crossing any median plane, and thus can be regarded as
two gluons bound together. The glueball has J~=O+. Its mass depends on the parameters in a
phenomenological potential, and lies in the range of one to four GeV for all choices of those param-
eters which we have considered.

I. INTRODUCTION Gij =~ijkDk (1.4)

This paper describes the application of an effective La-
grangian for long-range Yang-Mills theory, ' recently pro-
posed by us, to the study of classical glueballs. The La-
grangian is the simplest one satisfying the following con-
ditions: (i) that in the Abelian limit it reduces to one
describing a dielectric medium with dielectric constant
e=CI /M; (ii) that it is expressed in terms of the electric
vector potential C„rather than the usual magnetic vector
potential, as is appropriate for a medium satisfying (i);
(iii) that it is invariant under magnetic gauge transforma-
tlolls c„-U-'c„v t /gv 'd„U. —-

The Lagrangian is

2

1

2 G~„G~„—8'(F)

Here

G„„=t)„C„—B„C„—ig [C„,C„],

u„(C)=a„—ig~c„, ], (1.3)

and g is related to the usual Yang-Mills coupling constant
e via eg =An. . The function W is a phenomenological
"potential, " which we discuss below. In (1.1), the in-
dependent fields are C„and I'„„;F„„is related to the
dual electromagnetic field tensor and necessarily appears
as an independent variable. Its use replaces nonlocal
operators such as 1/& (C). The antisymmetric field G„„
defines the electric displacement and magnetic H field:

and

Go =8
We refer to the analogous components of I' „„asthe elec-
tric and magnetic fields,

F "=—e"kEklJ IJ

and

Fp; ———8;~

though these are the actual electric and magnetic fields
only in the case that all fields are Abelian —that is, all
fields are in a single color direction.

We wish to obtain a spherically symmetric solution to
the classical field equations obtained from (1.1). This, as
will become clear, is to be interpreted as a glueball. In I
we studied cylindrically syminetric solutions to (1.1). We
found that there exist solutions which are vortexlike tubes
of quantized color-electric fiux, so that (1.1) is the La-
grangian for a medium which is like a dual superconduc-
tor. i i It therefore confines color charge, just as an ordi-
nary superconductor would confine magnetic monopoles.
These cylindrical solutions arise when 8' is such as to
cause dynamical symmetry breaking, through its having a
minimum at a nonzero magnetic field 8, much like what
occurs via the Higgs mechanism. The nonperturbative
vacuum here is, however, oriented in space according to
the direction of the flux tube. The true vacuum is an
average over all orientations of this direction, and gauge-
invariant quantities are the same in both the oriented and
true vacuums. %e shall see that very much the same situ-
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ation obtains in the spherical case. In spite of the nonzero
8 field far from either flux tube or glueball, physically
relevant quantities, such as the energy density, vanish ex-
ponentially at long range.

II. DERIUATION OF THE ErrECTIVE LAGRANGIAN

Let us first discuss the extent to which the effective La-
grangian (1.1) can be shown to be a consequence of Yang-
Mills theory.

The Lagrangian of the Yang-Mills quantum theory is
of course known: L (A) = ——,

' +&+„„,with

This is equal to a Lagrangian L(C), expressed in terms of
the electric vector potential C„,but what explicit function
L(C) is of C is not known, because we do not in general
know how to translate from A to C. What is known is
that L (C) is invariant under dussl gauge transformatians

C„U-'C„U——'U-'a„U,
g

just as L(A ) is invariant under ordinary gauge transfor-
mations

A~-+V 'A~V ——V i(j„V,
e

with eg =4m Therefo. re the dual proper vertex functions,
associated with L(C), satisfy Ward identities of the same
form as do the ordinary proper vertices, coming from
L(A ).

We seek to construct the simplest effective Lagrangian
L, (fCr) corresponding to L(C) which contains the essen-
tial long-range features af the theory. The most impor-
tant feature ta be maintained is current conservation. In
many problems, both classical and quantum mechanical,
the requirement of current conservation has major effects
at long range.

One example of this is provided by the motion of an ex-
citation through the quantum ground state of liquid heli-
um. If one attempts to form a localized excitation, and
improves the trial wave function sufficiently to guarantee
current conservation, then the necessary backflow in the
surraunding medium induces effects at long range falling
off only as a dipole.

The same feature appears in classical incompressible
fiuid flow. An exact solution to Euler's equation and the
equation of continuity (current conservation) is Hill's
spherical vortex, 6 which describes a vortex propagating in
a fiuid originally at rest. Again the flow at long range is
that of a dipole; no localized excitation exists.

These examples indicate the importance of preserving
exact current conservation in obtaining long-distance
physical properties. This is particularly true for Yang-
Mills theory where perturbation theory yields long-
distance singularities in the gluon propagator
h~ (x,y ) = (A&(x )A (y ) ).

The Fourier transform of d ~ (q ) is given in terms of the
dielectric constant e(q ) by

The dielectric constant e(q )—:I z(q} in turn is deter-
mined in terms of b, q and the vertex functions I s and 1 4

by the Schwinger-Dyson equations. Corresponding equa-
tions determine higher vertex functions I „" in terms of
r„"+,and r„"+2.

Current conservation is guaranteed if the vertex func-
tions satisfy the Ward identities. Combining the Ward
identities with the Schwinger-Dyson equations therefore
yields a sequence of iterations, at each stage maintaining
current conservation, determining the vertices. In the
first step of this sequence the Ward identity for I's is used
to (approximately} express 1 s in terms of b,„.The Dyson
equation for e then becomes an integral equation for e,
containing the backflow (the global rearrangement of the
vacuum current distribution necessary to preserve current
conservation).

We have solved this integral equation and found the
following long-distance behavior: 's as @2~0,

2

e(q 2)
M

(2.2)

(2.3)

(2.4)

where the permeability p is related to the didectric con-
stant by up=1. Since the dielectric constant vanishes at
long range, the permeability is singular: as we see from
(2.2), as q ~0

(2.5)

(we have added a constant, called llf 2, to represent the
next term in the low-q expansion of p; on physical
grounds, f must be positive to have a positive energy
density, exponential decay and the right sign in the dielec-
tric constant) and so from (2.4) we find that

The next step in the approximation procedure should
now be to use the Ward identity for I 4 to express it in

terms of I s, and then to solve the coupled Dyson equa-
tions for e=I s and I's. But, because of the singular
long-distance behavior for hq(q ) which we found at the
first stage, the procedure is evidently not convergent.
Each successive stage gives a more singular b,z, indeed,
the exact propagator may well not exist. 9

These singularities make it clear that the vo:tor poten-
tials A„are not convenient variables in terms of which to
describe long-distance Yang-Mills theory. We need a
more natural set of variables. What these are is suggested
by (2.2} and. (2.3).

In the first stage of our iteration procedure, we found
that all vertices I'„" vanished as the momenta go to zero.
Therefore, at this stage, long-distance Yang-Mills theory
is an Abelian theory with a propagator b, „(q ) =M /q .
But an Abelian theory can be equally well described in
terms of the electric vector potentials C„and for these the
propagator is
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4c(q')
q2 f 2M2 (2.6)

and A, or between 4c(q ) and 4&(q ): L@t(c) does not
describe a theory for which 4&(q )~M /q as q ~0.

It is convenient to rewrite (2.7) in terms of the dual
field tensor F»„ in the form

as q2~0. In terms of the C„variables, therefore, our ap-
proximate current conserving solution of long-range
Yang-Mills theory is well behaved. The singularity at

q =0 is not present; instead the C„propagator develops a
mass. The backflow due to current conservation screens
magnetic charge, and {2.6) describes a magnetic supercon-

ductor.
At the Abelian level, since (2.3) and (2.6) describe exact-

ly the same physics, the use of the electric vector poten-
tials shows us that our current conserving approximation
to long-range Yang-Mills theory is not in fact singular.
The singular behavior of 4q (q ) does not imply any phys-
ical singularity; it only reflects the fact that the variables
A»(x ) are singular at long range.

We can now use the C„ to extend our discussion
beyond the Abelian limit. For higher order, corrections to
a massive theory will not, in general, produce new low-
momentum singularities. Therefore we expect the exact
4c to also be finite as q ~0. Furthermore, we know that
the exact Yang-Mills theory is invariant under magnetic
gauge transformations, and consequently that the exact
vertices I"„are current conserving and satisfy Ward iden-
tities. Hence the exact effective Lagrangian, expressed in
terms of C„, inust satisfy the following conditions: (i)
that in the Abelian limit the permeability reduces to (2.5),
and (ii) that it is invariant under the gauge transforma-
tions

c U-'c U ——'U-'a U.
g

Iji

The minimal Lagrangian satisfying these constraints is

M 1
4tt(C)= 4 G»„2 2(c) f {2.7)

where

G»„—B»c„—B„c»——ig[C», C„] (2.8)

(2.9)

Equation (2.7) is (essentially) our effective Lagrangian
(1.1). It js important to emphasize that, while the Abelian
limit of (2.7) coincides with (2.3), once the non-Abelian

parts are included there is no simple relation between C

& (C) — 1L,tt( C)= , G»—„F»„4—F»„F»„—G»„G»„,
M 4f

(2.10)

with F and C as independent variables. This avoids the
use of the operator 1/& (C).

Equation (2.10) is the minimal choice for L,tt meeting
our constraints. Additional gauge-invariant terms involv-
ing C„could be present, but these will vanish exponential-
ly at large distances. However there could be additional
gauge-invariant terms depending on E&„because, as we
will sm later, F». b om~ constant at large distmcm.
We therefore add a phenomenological "potential" W(F)
to (2.10), thus finally arriving at our complete effective
Lagrangian (1.1).

Physically W(F) plays the role of the Higgs potential
V(P). Spontaneous symmetry breaking can occur when
W has a minimum at a nonzero value of F. The existence
of quantized electric flux tubes, and therefore of electric
confinement, and (as we shall see) of classical glueballs all
follow from a nontrivial minimum of W. The basic field
configurations, geometrically and in color, are also fixed.
Qualitatively, further details about W are irrelevant. But
quantitatively, numerical values for various quantities of
physical interest, such as the string tension, the vacuum

energy, and the glueball mass, depend at least soinewhat
on the details of W.

We do not know W. It represents that part of our ef-
fective Lagrangian which we do not know how to derive
from the quantum Yang-Mills theory, and appears be-
cause the Abelian limit and gauge invariance are not suffi-
cient to uniquely fix the effective long-range Lagrangian.

The simplest thing to do is to make W a polynomial, in

analogy to the standard choice of the Higgs potential:
V(P) =p

~ P ~
+A,

( P ~
. We have, however, imposed a

constraint on W, namely, that it should vanish when F is
Abelian —that is, when all its components lie in a single
color direction. This is in order that in the Abelian limit,
our effective Lagrangian reduces to one describing a
dielectric medium with dielectric constant and permeabili-

ty p, = 1/@=M /Cl. This constraint means that W con-
tains no term of order F, so we take Wto be of order F
andF .

The only possible fourth-order forms are Tr[F„F tt]
and Tr[F„F ] . There are, however, many different
sixth-order terms. In the cylindrical problem described in

I, only one fourth-order and two sixth-order forms are in-

dependent; for example, Tr([F»~[F~tt, F 2, ]]) and

(TrF»„[F„2,F2 ]) . In the spherical problem, described
here, there are more. We write, as one convenient choice,

W=~i2Tr[F» F ~] +42Tr[F tt [F„F t]]'+~2(2TrF»QF, F~])2+A,,2Tr[F„„[F„„F„]]2

+~ 2T'[Fl [F F ]][F! [FottFtti. ]]+~62T [F/ [F.i. FA ]][F tt [Fpy, F ]]. (2.11)
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The parameters here are constrained by requiring that the
asymptotic value of $V for our spherical solution is the
same as it was in the flux-tube problem, so that the vacu-
um energy densities are the same in both cases.

IH. DERIVATION OF THE SPHERICAL SOLUTION

We begin our discussion by writing down the field
equations, in covariant form, following from the effective
Lagrangian (1.1); they are

U= exp[ia(r)x. T] (3.5)

the fields transform as follows: Co, Ei, and 8& are in-
variant,

Pi ~P i cosa —$2 sina,

$2~/i sina+$2 cosa,
(3.6a)

with the same transformation for the pairs Ei and E2,
and Bi and 82, and finally

&q(C)Gq„&„—(C)F„„[—&—„(C)F~y,F~p] =0 (3.1)pv A, +aarar . (3.6b)

and

S' (C)F„„+G„„—=0 .
dF q„

(3.2)

D=H=O, (3.7a)

At large distances from the localized spherical excita-
tion we want the solution to approach the vacuum up to a
gauge transformation. Therefore, asymptotically

Co Co(r——)ii T, (3.3a)

Here me have adopted the same scahng used in I, to elim-
inate explicit coupling constants and masses from the
field equations.

The most general spherically symmetric form for the
independent fields Co, C, E, and 8 is'

&;EJ——&sBJ ——0,
ew aw
Mi Mi

(3.7b)

(3.7c)

Consequently, using Eqs. (3.4} we must have, asymptoti-
cally,

1+$2(r ) p, (r ) „C=- Rx T— xx(tx T)
r

Co(r) =0 (3.8a)

+Ai(r)R(R T), (3.3b)

E=Ei(r)RXT—E2(r)RX(xXT)+E&(r)&(x T),
(3.3c)

pi(r)+i/2(r)=exp i J dr'Ai(r')

Similarly, Eq. (3.7b) implies that asymptotically

aB, aB,
+A)82 —— —A)B)

Br dr

(3.8b)

8=8,(r)RXT—82(r)xX(xXT)+83(r)x(R T) .

(3.3d}

B3 =8 i +PiB& 82+$282 ——0, ——(3 9)

these equations 21 is the unit radius vector and r is the
spherical radial coordinate. The generator of SU(2) color
T is normalized to [T„Ts)=ie~T, . We are interested
in static solutions so that all functions in (3.3} are in-

dependent of time.
From the potentials we can calculate the color-electric

displacnnent

1 ~4'iD= —— +Aip2 iXT
r Br

+— —Aipi xX("*XT)
r Br

together with similar conditions when 8 is replaced by E.
Therefore 8& and Ei are constants asymptotically, which
we call band —e, re—spectively, determined from (3.7c),
and furthermore

81+i82 b('I)1+isI 2}

Ei+iE2 e(pi+i/2) . ——
(3.10)

We are, of course, interested in solutions which are not
simply gauge transformations of the vacuum. Suppose we
look for a solution in the gauge in which A i ——0. In this
gauge, the asymptotic behavior is seen from (3.8) and
(3.10) to be

-(1—sts, —42 )x(x.T)
r

and the color magnetic field

H= xxT — Rx(xxT)Cori „Co42
r r
BCo

R(x.T) .
r

Under the gauge transformation

(3.4a}

(3.4b}

CO~0,

Q i~ cosmos f2~ sing,

Ei —pe cosP, E2~e sinP,

Bi~b cosp, 82~b sinp,

(3.11)

where P is a constant.
The vacuum solution is Co ——C=O, 8= —eI,

8= bT everywhere; —from Eq. (3.3} this corresponds to
(3.11) with P= —n./2. We may gauge transform the vac-
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uum solution, using (3.5) with a(r) =m tanhr, to obtain a
solution with asymptotic behavior

E~e(T—2xx.T),
8-+b(T—2%i.'T)

(3.12)

however it also has A, =n sech r+0. Let us therefore
look for a solution in the A

&

——0 gauge, but with asymp-
totic behavior given by (3.12); this will then not be gauge
equivalent to the vacuum. As we will see below, we can in

fact find such a solution, with P&, Ei, and B& as well as
A i, vanishing everywhere.

Before we explicitly exhibit this solution, let us use its
asymptotic behavior, (3.12), to discuss the color-electric
fiux associated with it.

In SU(N} Yang-Mills theory the gauge-invariant elec-

tric flux through a loop L is given by the Mandelstam-
't Hooft" magnetic Wilson loop through the equation

r

(2 /X)4 (3.13)

where C= g T~C and the T~ are the SU(N} genera-

tors in the fundamental representation. In (3.13) P is the
usual path-ordering operator. Equation (3.13) determines
the electric flux 4 modulo N in units of the quark charge
e/N where e is the Yang-Mills coupling constant.

In I we obtained the solution for an n = 1 SU(2) electric
flux tube in the gauge where C was along a fixed direction

( Tz ) in color space, so for t 's case the path ordering is ir-
relevant, and we found g i C.dl=2nTi for any loop
enclosing the flux tube. Thus the flux was 4=1 in units
of e/2. For this case, since C was Abelian, the gauge-
invariant flux coincides with the (in general gauge-
variant) ordinary definition of flux 4= f D.dS across a
surface S enclosed by L.

In the spherical case, however, the gauge invariant flux
defined through (3.13) vanishes, since we can choose a
gauge in which C~O asymptotically. The ordinary flux,
crossing any plane passing through the origin with normal
n, however„ is found from

g f D.d S=g g C dl = —(1+ sinP)(2en T)

as can be seen from (3.11), and can therefore take on any
value between 0 and —2, depending on the gauge choice.

The vanishing of the gauge-invariant flux in the spheri-
cal case reflects the fact that, in contrast with the flux
«be, the glueball is not topologically stable and can de-
cay. But this does not mean that there are no singularity
free static solutions; in fact the glueball solution we exhib-
it below is just such a nontopological soliton.

Our solution is obtained in the gauge where P=m/2, so
in this gauge the conventional gauge-dependent flux is
two, in units of e/2. That is, two units of e/2 color fiux
cross any plane through the origin. In this gauge, there-
fore, the solution corresponds to a gluon [of charge
2(e /2) ] above the plane and an antigluon [charge—2(e/2)] below, so that one can visualize the glueball as
a two-gluon bound state.

The field equations (3.1} and (3.2) with the choice
3 i Pi Ei ——B~ ——0——, and——with C~ = —(1+$2)/r, become

V Cp —2(Ci —Ei +Bi )Cp—
4CpCi BBp 2(Bi B2)—

+ + —2C(82 ——0,
p Bp r (3.14a)

2 2V Ci —(C) —Cp Ei Ei +B2—+Bi—i)C)—

(B2—Bi)i
(3.14b)

2(Ei —Eq )
v'E2 —(c,'—cp')E2-

r 2

2ci(Ei —Eq) BCI

Br
1 BW
2 BEi (3.14c)

4(Ei —E2) 4Ci(Ei —E2) 2ci
r 2

2

r (3.14d)

2(Bi—Bi)
V B2—(Ci —Cp )Bp-

r 2

Cp 1 aW+ +CoC& =-
r r 2 BBp

(3.14e)

4(Bi —B2)
V'a, —2C, 'S, — 4Ci (Bi—Bi ) Bcp g p'

+r dr BBi
(3.14f)
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In these expressions we use the notation

I e., a
r2 Br Br

818
Br rz Br

Equations (3.14) comprise a system of six coupled non-
linear second-order differential equations in one variable.

Asymptotically we wish to choose the "potential" Wso
that the derivatives BW/M2, etc., on the right-hand side

of qs. (3.14c)—(3.14fl vanish. That is, asymptotically we

expect to approach the (oriented) vacuum, which is a
minimum of W. The oriented vacuum can have a non-

vanishing value of F„since the excitation for which we
are looking can pick out a preferred direction in color
space, and in real space. The oriented vacuum cannot,
therefore, be the same as the true vacuum, since in the
true vacuum F„„must vanish. Nevertheless, as discussed
in I, the value of any gauge-invariant quantity, such as the
gluon condensate 62, will be the same in the oriented and
in the true vacuum.

If the asymptotic solution has a nonzero value of F&
then we have spontaneous symmetry breaking. In the
cylindrical case described in I, we found such a solution,
with a nonvanishing asymptotic value of B, and this solu-
tion had a lower-energy density than the trivial perturba-
tive vacuum, in which all fields vanish. We therefore look
for a similar situation here.

As we have indicated, we search for a solution with
asymptotic behavior (3.12). A nonzero asymptotic E is,
as (3.12) indicates, allowed by the field equations. Howev-
er, again as in the cylindrical case, a nonzero E inhibits
the existence of exponentially fallin~ fields at infinity, as
can be seen from the sign of the E terms in (3.14a) and
(3.14b). Furthermore, on physical grounds we want the
oriented vacuum here to be like that in the fiux tube,
which, we recall, was purely magnetic. Therefore we shall
limit ourselves to solutions with E~O, and our oriented
vacuum is characterized by B~b(T—2& T) as r~ ao,
as is evident from (3.12).

The rest of the solution now proceeds in a way similar
to I. We first determine the leading long-distance correc-
tions to the asymptotic form by writing

Ca(r) =co(r),

Co AND CI FOR x=-2.6l50 z=0.5058 w=4.6295
0.5 I I I I I I I I

0,0

-l5—

-2.0—
(a)

-25 I I I I I I I I I

0.0 0.5 I.O I.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
x

0.7
Ep &ND E~ FOR x =-2.6I50 z=0.5058 w=4.6295

0.6

0.5

0.2

O. I

00 I I I I I I—

0.0 0.5 I.O I.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
x

B~ AND Bp FOR x=-2.6I50 z=0.5058 w=4.6295
I I I I I I 1 1 I

and 2e2 —ei and 2b2 —bq are proportional to k2(ar). The
number a is determined by an eigenvalue equation in
terms of the parameters appearing in the "potential" W.
For appropriate ranges of those parameters, there are six
solutions for a of this equation with positive real part,
and therefore there are six independent exponentially fal-
ling solutions for the functions ca(r),ci(r), etc.

As r~0, the field equations also admit six independent
nonsingular solutions, for which Ca and Ci vanish linear-
ly with r while the other four functions approach con-
stants.

2
C, (r)= +c,(r), ——

r

I.O-

0.5—
X

X
X

X~X X X X X X X X X X X

E2(r)=e2(r),

E3(r)=e3(r),

&i(r) =b+bi(r),
&'(r) = b+bi(r), —

(3.15) 0.0

-I 0 I I I

0.0 0.5 I.O !,5 2.0 2.5 5.0 3.5 4.0 4.5 5.0
and linearizing the field equations in co,ci, etc. These
linear equations are solvable analytically, and we find that
ca and ci are proportional to the spherical Bessel function
k, (ar), e2+e& and b2+bi are proportional to ko(ar),

FIG. I. (a) Plots of Cp{r) and Cl(r) vs r. The dots are CI
and the crosses are Cp. {b) Plots of E2(r) (dots) and E3(r)
{crosses) vs r. (c) Plots of 82(r) (dots) and 83(r } (crosses} vs r.
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The solution is now obtained numerically by integrating
the finite solution at infinity, with six parameters, inward
and the finite solution at the origin, also with six parame-
ters, outward, and then matching all twelve parameters at
some intermediate point.

In Figs. 1(a)—1(c) we plot the six functions Co(r), etc.,
as functions of the radius r which, as in I, is measure in
units of the mass scale M& fM ——in terms of the parame-
ters in the original effective Lagrangian. The figures are
drawn for a typical choice of the parameters in W.

In Fig. 2 we plot the energy density (times r ) as a
function of radius. It, of course, falls off exponentially as
it should. The mass of the spherical excitation —the glue-
ball mass —is the integral of this energy density:

H FOR x=-2.6l50 Z=0.5058 +=4.6295

0.0 0.5 l.0 l.5 2.0 2.5 5.0 3.5 4.0 4.5 5.0

Mg„,~ii ——E„~~—— 4~r dr@ (r ),2
Q

where the Hamiltonian density A is

(3.16)
FIG. 2. The energy density as a function of radius. What is

plotted is r~~r).

BCi Ci
A (r)=

Br r

r

BCO 1 2C)
+— +C) +

2 Br 2 r

'2

+C()C) +Co 82 —3CO E2

'2

Bp 2

'2 r

BEg
2 2+(Ep —E3)' —+

Bp p 2

2 ' '2
2C) BBp 1 BBi

+C) (Ei +Ei )+ +-
r dr ) 2 dr

+(Bz—B3) —+2 2

p 2

2C)
+C( (Bi +Bi )+ W E;—

~l
(3.17)

As we mentioned in Sec. II, we have on physical
grounds constrained the parameters in W so that the
value of vacuum energy density e„„is the same in both
the spherical and cylindrical cases. We must, of course,
also constrain them so that both cases have eigenvalues
with positive real parts for a, in order that there are non-
singular asymptotic solutions. %ithin these constraints
there still remains considerable freedom in the choice of
parameters. In Table I we list for a number of choices of
the numbers characterizing W the values of the mass
scales M and Mf as well as the glueball mass. In all cases
we have chosen the parameters so that the string tension x.

takes on its "experimental" lattice value of 0.2 GeV „and
the vacuum energy density is given by e„„=—0.09&c,
also as indicated by lattice calculations. ' The values z, x,
and w are the parameters of the cylindrical problem given

in I for each case.
We can clearly not make a precise glueball mass predic-

tion; there is still too much freedom in W. Nevertheless it
is encouraging that there is so little sensitivity in Ms~„,b,s
to large variations in x, z, and w, and that a reasonable
range of values is obtained. Perhaps further applications
of our effective Lagrangian will eventually permit the pa-
rameters to be pinned down enough to make specific nu-
merical predictions possible.

IV. PHYSICAL PROPERTIES AND INTERPRETATIPN
OF THE SOLUTION

The spherical solution we have obtained is one in which
all physical quantities are exponentially localized around

TABLE I. Consistent values of glueball masses and the magnetic condensate G~ for several of our
solutions have a string tension a of 0.2 GeV and a vacuum energy density e„„=—0.096m . The param-
eters x, z, and m are defined in I.

Solution

b

d
e

0.0107
0.0213
0.25
0.5058
0.0170
0.053
2.224

—0.155
—0.310
—1.5
—2.61
—1.833
—1.87
—1.67

0.0854
0.1707
1.125
4.63
0.094
0.328

34.5

M
(MeV)

128
141
153
114
29
50

221

Mf
(MeV)

621
400
404
480
107
187

2124

Mglueball

(GeV)

2.44
4.60
4.35
2.00
2.03
2.07
1.15

Gp
(GeV )

0.0212
0.0308
0.0176
0.0048
0.0004
0.0012
0.0095
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0.0

-0.2—

-0.4—

C~~C„i[C—q, M),],
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L,((~L,((+J„B„50,
current:where J„is the conserved curr

(4.1)

(4.2)
-0.6—

-0.8—

I I I

2 1.4 1.6 1.810 l.0.2 0.4 0.6 0.80.0

8 J„=o.
netica

' '
o eration on (1.1) yields the magne

'
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charge

0.0

- O. I

EI FIELD LIN ES IN THE X-Z PLANE

1Q~= dxV B+ H

the electric charge is

(4.4)
-0.2

-0.3

-0.4

1
QE ——f1xV E+ D (4.5)

-0.5

{b),
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I I II I I
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li fi
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dp
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