
PHYSICAL REVIE% D VOLUME 33, 5KHNBER 5

Mo-M matrix elements in a relativized quark model

1 MARCH 1986

Stephen Godfrey
TRIUMI', 4004, S'esbrook Mal/, Vancouver, British Co1umbia, Canada V6T 233

{Received 16 September 1985)

Matrix elements of the type (Mo
~

d';
~

M ) are evaluated using a relativized quark model for the

E, D, 8, and 8, systems where 6'~ [qy——"(1 yq)—q][qy„(l yz)—q], d'2=[q(1 —yz)q] [q(1
+y5)q], d'3 ——[qy„(l —y5)q][qy"(I+y5)q], and P4 ——[q(1—yq)q][q(1 —yq)q). The pseudosealar-
meson decay constants f~ are first calculated using various approximations to set the scale of the
matrix elements' magnitude and to estimate their accuracy. The matrix elements are then calculat-

ed, again using various approximations, and are presented as ratios with respect to the vacuum sa-
turation value of Pi. %hen relativistic effects are included we find that significant enhancements
are indicated for the 62, P3, and P4 matrix elements which will alter the resulting bounds on new

interactions. As an illustration we find that the right-handed F boson of left-right-symmetric
theories must have a mass of at least 3.8 TeV.

I. INTRODUCTION

At present, one of the preoccupations of particle phys-
ics is looking for effects in confiict with the standard
model. ' There are two approaches to this search: to go to
higher and higher energies looking for new particles and
interactions2 or alternatively, to look for violations of
standard-model physics in low-energy phenomenology. '
Ultimately, the high-energy route will be necessary to
disentangle new effects, but, until the necessary energies
are realized, low-energy phenomenology can give us a
window to new physics or at least put bounds on what is
possible. One of the most sensitive tests for new physics
is in the Ec-E system where new interactions can contri-
bute to the (E ~Heff ~E ) matrix element and hence to
the El-Es mass difference and to CP violation. This
has led to bounds on, for instance, left-right-symmetric
theories of the electroweak interaction, on supersym-
metric theories, and on composite theories. More re-

cently it has been pointed out that there exists the possi-
bility of observing mixtn~ effects and CP-violating effects
in the B -B and B,-B, systems. These bounds should
be improved in the near future with large data samples of
Bc mesons. In addition, bounds on mixing effects in the
D -D system can also put constraints on model build-

ing. ~

The major uncertainty in the low energy rou-te is our
inability to calculate hadronic matrix elements with
reasonable reliability. In calculating the hadronic matrix
elements of this type there are, typically, short-distance
contributions from the box diagrams and long-distance ef-
fects from dispersive contributions of m, rl, p, co, mm, etc.,
intermediate states. ' ' There are uncertainties in both
contributions. For example, in the E -E system, esti-
mates of the dispersive effects range from negligible" to
the order of the El Es mass differen-ce. ' They are also
large in the D -D system. However, in the B and B,
systems these long-distance effects are not nearly as im-
portant. Here we will restrict ourselves to the calculation
of the hadronic matrix elements which correspond to the

short-distance contributions. There have been many ap-
proaches to this problem: constituent-quark models, 's bag
models, '" and chiral perturbation theory' to name a few.
Unfortunately, the reliability of these results is question-
able; bag-model calculations are extremely sensitive to the
parameters of the model' and corrections to the chiral-
perturbation-theory results are evidently large. '

In this paper we will use the constituent-quark model in
the mock-meson approach to calculate the matrix ele-

ments of various operators for the Ec-E, D -D c,

B B,and -B,-B, systems. Our purpose is to present the
results along with the uncertainties so that they are avail-
able to others. Similar calculations have been performed
by Colic, Guberina, Tadic, and Trampetic and by Tram-
petic. 's The present calculation differs from these in two
respects. First, the integrals involved are evaluated nu-
merically rather than using approximations. More impor-
tantly, here we use the wave functions of a relativized
QCD-motivated quark model rather than the harmonic-
oscillator wave functions of Ref. 13. This leads to signifi-
cant effects which will be discussed. We begin in Sec. II
with a brief description of our method. We then present
our results for the pseudoscalar decay constants fz and
for the (Mc

~

d';
~
M c) matrix elements with a discussion

of their respective sensitivity. As an exainple, these re-
sults are used to put a bound on the Wa mass in left-
right-symmetric theories. In the final section we discuss
the shortcomings of our approach and comment on the re-
liability of the results.

II. THE HADRONIC MATRIX ELEMENTS

To reduce the sensitivity of our results to the specifics
of the calculation we will give the hadronic matrix ele-

ments as ratios with respect to the vacuum insertion value
of (M

~

d'i
~
M ) matrix elements which are expressed in

terms of the decay constants f~ Since the f~ se.t the scale
of the matrix elements it is important that we obtain reli-
able values for them and understand the uncertainties in

their calculation. We begin this section by reviewing the
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mock-meson approach to hadronic matrix elements. Next

we calculate the decay constants and discuss their reliabil-

ity. Finally we calculate the various hadronic amplitudes.

A. The mock-meson method

The mock-meson approach is a prescription for relating
qvafk-model matrix elements to the corresponding physi-
cal amplitudes. ' ' In what follows we will use the
prescription of Hayne and Isgur. 's In this approach the

mock meson, M, is defined as a state of a free quark and
antiquark with the wave function of the physical meson,

M, and with the mock meson mass, M~, equal to the to-
tal mean energy of the quark and antiquark in M. To cal-
culate the hadronic matrix element, the physical matrix
element M is expressed in terms of Lorentz covariants
with Lorentz scalar coefficients A. In the simple cases
when the mock-meson matrix element A' is the same
form as M we simply take A =A. The mock meson is
defined by

~
M(K)) =(2M')'» f d'p @st(p)X~p& ~

q[mslpK+p, s]q[rns/ltK p, s—]),

where 4M(p), X~, and P+ are momentum, spin, and fla-

vor wave factions r&pmtlvely, / =ms+me, md K is

the mock-meson momentum.

8. The pseudoscalar-meson decay constant: f»

For the decay constants the hadronic matrix element
can be expressed as

(0
~

qy"(1 —y5)q ~
M(K) ) =

zz f»K" .(2~)'" ' (2)

We calculate (0
~
qy"(1 —y5)q ~

M(K) ) using a superposi-
tion of free-quark wave functions by evaluating the ma-
trix element

(0 ( qy"(1 —y5}q ~
q((ms/p)K+ p, s)q((rn&lp)K p,s)—)

using Dirac spinors. This leads to the expression

2~3 d'p

M»
'» (2ir }'»

I'

x@ (p)

1/2
E&+m&

2E

p2x
(Eq+mq )(E~+m~)

(3)

Because it is important to understand the uncertainties
in our calculation of f» we will present nonrelativistic re-
sults, mock-meson results using the harmonic-oscillator
wave functions of Colic et aL, of Haynes and Isgur, and
the wave functions of the relativized model of Ref. 19,
and compare them to previous calculations. These are
presented in Table I. We find that the results are sensitive
to the wave functions which we will discuss in detail
below.

We first note that the nonrelativistic results for the de-

cay constants are roughly proportional to Mz
'~2 with a

small modification due to the mass dependence of P.
That the nonrelativistic results are lacking is reflected in
the predicted value of fz/f =0.94 as compared to the
measured value of —1.25. Turmng to the mock-meson
results and comparing the results using the harmonic-

oscillator wave functions of Refs. 13 and 18 to the results
using the relativized wave function we find considerable
disagreement. The disagreeinent stems from several
sources. First, the harmonic-oscillator wave functions do
not reflect the increase of the wave function at the origin
for heavier mesons due to the Coulomb piece of the
QCD-motivated potential. In addition, wave-function dis-
tortions of the relativistic model caused by the spin-
dependent potentials lead to high-momentum components
in the wave function which is illustrated in Fig. 1 where
we have plotted the kaon momentum-space wave func-
tions for the various models. For heavier mesons, the
spin-dependent distortions are smaller and, in addition,
the contributions of the high-momentum components to

f» are suppressed by a factor of roughly 1/(msm&). We
conclude that the naive harmonic-oscillator wave func-
tions probably do not reflect the internal structure of the
pseudoscalar mesons very well. This is supported by the
rough agreement of our results with those of Krasemann
and of Claudson ' who also use QCD-motivated poten-
tials. The remaining disagreement with the latter results
can be attributed to both the spin-dependent potentials in-
cluded in the Hamiltonian of Ref. 19 and the relativized
approach used in calculating f» We note. that
Krasemann has attempted to take into account SU(6)-
breaking effects in the wave functions by using second-
order perturbation theory The magnit. ude of his correc-
tions are consistent with the size of the effects calculated
here (although the systematics differ). Thus, while our re-
sults disagree with those of Colic et al. we believe the re-
sults of model 5 to be reasonable estimates of the various
f».

C. The hadronic matrix elements (M
~

8';
~
R )

With what we believe to be reasonably reliable values
for the f» we turn to the evaluation of the hadronic ma-
trix elements of the operators:

&i=[q'r, (1—r» ]q[ qr" 1 (—y5}q']

&i=[q '(1 r5)q'][q'(—1+r 5 }q'1
(4)

4'i = [q'r„(1 rs)q'][q'r—"(1+r5 }q'],
&4= [q '(1 —r 5)q'][q '(1 —r 5)q']
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TABLE I. Results for the pseudoscalar decay constant fr (all results are given in MeV).

Experiment

133
166

Potential
model 1'

139
176
150
210
125
175

425

Potential
model 2b

280
198
259
327
153
198

447

Bag
modelb

161
198
171
195
148
170

255

Nonrelativistic'd

130
122
91

101
58
68

87

Model 3'd

126
135
122
142
84

102

139

Mock-meson results
Model 4'

123
149
151
190
106
140

216

130
169
234
391
191
236

421

'H. Krasemann, Phys. Lett. 968, 397 (1980).
bM. Claudson, Harvard University Report No. 81-546, 1981 (unpublished).
'Harmonic-oscillator wave functions with ~=0.0027 GeV', m~ =mq ——0.33 GeV, m, =0.55 GeV, m, =1.628 GeV, mb ——4.977 GeV.
The I.=0 ground-state harmonic-oscillator wave function is

@(p)= 1
e ~ ~ + with P=

(~~p)3n
2m~m

K
mq+m~

'Harmonic-oscillator wave functions of Ref. 13 with ~=0.0106 GeV', m„=mq ——0.33 GeV, m, =0.55 GeV, m„mb as above.
Extended model parameters of Ref. 18 with ~=0.037 GeV', m„=mq ——0.22; m, =0.43, m„mb as above.

gUsing wave functions of Ref. 19 with m„=mq ——0.22 GeV, m, =0.419 GeV, m, mb as above. The values for f~ in this column were
normalized to give the correct f by multiplying all results by an overall constant.

where i and j are color indices which are summed over.
We denote the matrix elements of these operators by

~,= —&M'(W, ~M'&.

In the mock-meson approach the amplitudes are given by

d3 3 I

(2~)'M; = (2M) J—,~z,~, C~(p)C'~(p )A;, '

(2n) i (2n) i

where

2

I =4 1+
(Ee+me )(E~+m~)

I2

x i+
(Eq + rne )(E~ +m~)

E~+m, E~+~~
x 2' 2E~

A( ——4I

Az ——3I++ —,
' I

A3 ———3I —2I+,
5A4=- 2I+

(7a)

(7b)

(7c)

(7d)

Eq +rnidX 2'
E&+m&

2E~

and E =(p +m )'~, E'=(p' +rn )'
One first notes that in the constituent-quark model the

M; will always factorize so that Mt is proportional to the
vacuum saturation value

~i= 3 &M'I er, (1 r5)e I0&&01 er—"(1 7'~)e IM—'& (9)

8
N

C9

4,

0
0.0

I

0.5 1.0 1.5 2.0
p (GeV)

FIG. 1. The momentum-space wave function for the E
meson. The wave function of Ref. 13 is given by the solid line,

of Ref. 18 by the dashed line, and of Ref. 19 by the dash-dot

line.

giving a value of unity for the B parameter. This is a
consequence of restricting ourselves to the valence-quark
sector and the fact that the crossed terms can be Fierz
transformed into the direct term.

The values of the E, D, B, and B, amplitudes for
the nonrelativistic results and for the mock-meson results
using the parameters of Refs. 13 and 18 and the relativ-
ized wave functions of Ref. 19 are given in Table II. To
obtain numerical values for these matrix elements one
should multiply the entries by the vacuum saturation
value &M

~
qy"(1 —y5) ~

0& = fz m~ . One can see-
that there are enhancements for the d'z, 8'3, and 8'4 ma-
trix elements in all models with the relativized model giv-

ing the most extreme results. That the M& values are al-
ways the smallest is a consequence of its integrand being
entirely I while the other amplitudes contain at least
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TABLE II. The hadronic matrix elements of the 6; defined in the text. They are given as ratios of
M;/Mi where M~ —— f~—M~ .VI VI 2 2

M, /M,
M,'/M', -
M /M,
Mg/M )

Mi/M
M,'/M', -
M', /M,

'

M4/M i

M,'/M,
'

M /M,
M,'/M,

'

M)/M)
/M VI

M', /M,
'

M.'/M, '"

Nonrelativistic
value

8/3
7/3

—10/3
—5/3

8/3
7/3

—10/3
—5/3

8/3
7/3

—10/3
—5/3

8/3
7/3

—10/3
—5/3

Model 3'

XO-X 0

8/3
4.0

—4.5
—3.1

DO ~0
8/3

2.9
—3.7
-22

g0 g0
8/3

2.5
—3.5
—1.8

go yo
8/3

2.5
—3.4
—1.8

Mock-meson results
Model 4"

8/3
6.7

—6.2
—5.3

8/3

—4.1

—2.6

8/3
2.7

—3.6
—1.9

8/3
2.6

—3.5
—1.9

Model 5'

8/3
30

—22
—24

8/3
6.9

—6.4
—5.5

8/3
3.5

—4.1

—2.6

8/3
3.4

—4.0
—2.5

'Harmonic-oscillator wave functions of Ref. 13. See footnotes e and d to Table I.
bExtended-model parameters of Ref. 18. See footnotes f and d to Table I.
'%ave functions of Ref. 19. See footnote g to Table I.

16
&K IO. IK

I

6
cD IO ID P

I

some I contribution. The relativized model gives the+
most extreme result which, again, reflects the high-
momentum components of those wave functions com-
pared to the harmonic-oscillator wave functions. The rel-
ativistic corrections decrease as the meson masses in-
crease, as in the case of the fz, because of the smaller
spin-dependent effects in the heavy mesons and because
the relativistic corrections go roughly as 1/(mqm&). To
demonstrate these effects we plot in Fig. 2 the matrix ele-

ments (as ratios with respect to Mi ) versus p the oscilla-VI

0tor parameter. We see that matrix elements for the 8
and 8, systems are relatively insensitive to p while the E
matrix elements are very sensitive to the relativistic
corrections. Thus, we find that there are large differences
between the results using the naive and the relativized-
model wave functions.

III. AN APPLICATION: CONSTRAINTS
ON THE 8'g MASS

~ ~ ~ ~ ~
~ ~ ~ ~ ~~~~~~~ ~

~ ~ ~ ~ ~
~ Ilheg 2 + ~ e ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ 0 ~ ~ ~ ~ ~ \ ~ ~ ~ ~ ~ ~ ~ + + ~ ~ o ~ ~ ~ ~ ~

~ ~ ~
~ eggg+ ~

-6 i I

O.P 0.3 0.4 0.5
p(6ev)

-16 I I I

0.2 0.3 0.4 0.5 0.6
P{Gev)

4,
,

,
&B IOIIB +

2—
&8 161 I S &

s

2—
X 0—
X

~ ~ ~ 0 0\0 ~ ~ ~ ~ 4 ~ %I%% ~ ~ 1 ~ ~ ~ ~ 4 4 ~ ~ ~ ~ ~ i-2— ~ ~ ~ ~ ~ ~ 0 ~ ~
~es ~ ~ ~ ~ ~ ~ ~ ~ e ~ ~ ~ ~ ~ e ~ ~ ~ e ~ ~ ~ ~ ~ ~ e ~ ~ oct ~ e ~ ~ a-2 ="'"'""*

~ ~ ~ ~ ~ ~ ~~ ~ ~'I +%~ ~-4 i i

0,4 0,5

a%a ~ ~ ~ ~ ~~ 0 ~ ~ ~ ~ ac+ ~~ ~ aaSI-4 '

0.2 0.3 0.4 0.5 0.6
p(6ev) p{6ev}

VI 0 0 0FIG. 2. The matrix elements, M;/M &, for the E, D, 8,
and 8, systems as a function of P, the oscillator parameter,
with m =0.22 GeV, m, =0.43 GeV, m, =1.628 GeV, and

77 GeV, M i /M 1 is given by the solid line, M2 /M
&

by the dashed line, M3/Mi by the dot-dash hne, and Mq/Ml
by the dotted line.

As an application of these matrix elements we consider
the constraint that the KL —Es mass difference puts on
the mass of the charged right-handed gauge field occur-
ring in a left-right-symmetric (LRS) extension of the stan-
dard model. These models have the attraction that above
a sufficiently high-energy scale, parity is restored and the
electroweak interaction would be based on the gauge
group SU(2)L, XSU(2)a XU(1)a L, (Ref. 23). Although
these theories are not necessary for phenomenological
reasons and are therefore purely speculative, it is interest-

ing to consider what constraints we can put on the associ-
ated mass scales. This question has been addressed previ-
ous y; I1 in what follows we reconsider the analysis o

r25
th K -K mass difference of Beall, Bander, and Soni

hi-using more
'

g more recent information for the Kobayas i-
27 kMaskawa (KM) matrix elements and the top-quar

28mass.
0 ~ 0The effective

~
bS

~

=2 Hamiltonian for J -K mix-

ing in the LRS theory, to leading order in the 8'-boson,
t-quark and c-quark masses, and neglecting terms pro-u

~ Q ~ ~ 25portional to p, with p=(M~ /Mit„), is given by
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Hr'r ——— I [riim, A, ,+ri, mr Ar+2riim, A, Arln, (mr /m, )]8'tL
4

+ 8P[ri, m, 'X, '(1+inri, )+ri, r'Xr'(1+1 rir) +2', m, mrs, l, ring r]d'Lg }, (10)

mc ms =—2 07 X 1.0- "MLt (1 —54PML, tt /Mi, t. ) (12)

with ML,L Mi/2m ——g and Mi, rt M2/2m ——g Relatin. g
this to the experimental value of b,m g ——3.52 X 10 ' GeV
we obtain the limit that Mn„& 3.8 TeV although in the

most extreme case of model 5 this limit becomes 7.9 TeV.
Clearly, one should be extremely cautious when using ha-
dronic matrix elements to obtain bounds on new physics
and should take such bounds as only an indication of the
order of magnitude.

IV. DISCUSSION AND CONCLUSIONS

In calculating hadronic amplitudes using the mock-
meson approach there are several sources of error; the
first is that we have used the amplitudes of free quarks
weighted by the momentum distributions of the meson
wave functions neglecting off-mass-shell effects. In prin-

ciple these effects could be included by using a mean-field

approach to calculate both the hadron wave functions and
the amplitudes. Unfortunately the second source of er-

ror would remain —that we have restricted ourselves to
the valence-qrrark sector of the @CD Fock space. The
constituent-quark model is an effective model with de-

grees of freedom above some momentum scale integrated
out leaving the constituent quarks. How important multi-
quark components of the Fock space are to the ainplitudes

1 1 2 2with WL,t, = —,d„&L,tt = —,&2, rk, r =m., r /Mw,
rn, =1.628 GeV, m, =40 GeV, m& -81 GeV, rit, rent,

and re aie the @CD coefficients which we take from Gil-
man and Wise29 and A,,=Ve, V,', and A,r=VerVr'. are the
Kobayashi-Maskawa matrix elements the values of which
we take from Chau and Keung. In the above, the as-

sumption has been made that the mixing angles in the
right-handed sector are equal to those in the left-handed
sector. We have also made the assumption that the
flavor-chan~ing Higgs boson is very massive and does not
contribute.

With His thus defined the Ez —Es mass difference is
given by the real part of the E -E matrix element:

mL, —ms=2 Re&E'IHw" IE'& .

Substituting in the values for the various parameters we
obtain

is not clear. That they will alter the results is indicated by
the effects of gluon corrections to the short-distance
behavior of the free-quark diagrams.

In addition to the short-distance box-diagram contribu-
tions there are also the dispersive long-distance contribu-
tions mentioned previously, arising from intermediate
states of sr, ter, rj, etc., which can propagate over larger
distances. These dispersive contributions are related to
the multiquark components of the Fock space. In light of
the above uncertainties one should view results involving
the E -E and D -D systems with skepticism. For-
tunately, for the 8 -IT and 8, -8, systems, one can use
the box-diagram contributions with a greater degree of
confidence.

To conclude, given the importance of having an accu-
rate estimate of the Mo-M amplitudes we have used the
relativized quark model to calculate hadronic matrix ele-
ments for various operators which arise in effective Ham-
iltonians of new interactions. We find indications that in
the relativized approach there are significant enhance-
ments of the results compared to naive calculations. If
one takes this mock-meson approach seriously then these
enhancements exist. Although the quantitative results
may be altered by a more rigorous treatment the qualita-
tive results of the model will remain. These would lead to
significant enhancements of new effects which would put
tighter constraints on new physics than is currently ex-
pected and could have important consequences in evaluat-
ing the prospects for new interactions. As indicated by
the example of the Wa mass, because of the uncertainties
in the matrix elements, one should take results which use
hadronic matrix elements as order-of-magnitude estimates
at best.
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