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We describe a new four-quark IS=2 local operator, which we dub the "dipenguin" operator. Its
form is derived and its I0-to-Eo matrix element is estimated. Also, we comment upon bag-model

evaluations of X -to-E matrix elements of ( V —A ) X ( V —A ) operators.

Throughout the development of gauge theories, the
Ko-Ko system has played a fruitful role. The very tiny
Kt, -Ks mass difference bttt~ requires that there be no
M=2 effects until 0(Gy ). The earliest "modern" treat-
ment of the Eo-K o system was that of Gaillard and I.ee
who calculated, in the four-quark model, short-distance
"box" diagrams (Fig. 1) responsible for hS =2 effects and
estimated km Ls by use of the vacuum saturation
method. '

Since then, there have been a number of papers extend-
ing the analysis of b,m~ earned out in Ref. 1. Some of
these stressed the point that long-distance effects could
also in principle contribute toz'3 htnLs,

am„= am~'"+am, 'ss,

and there have been continuing efforts to estimate the
magnitude of b,trtLss (Refs. 4 and 5). Unfortunately the
problem of determining the importance of lang-distance
effects is a severe one, and to this day there is no clear
consensus regarding the relative size of hrnL, s'" and
&mis

In addition, K -K mixing plays a dominant role in the
theory of CP violation. Here the long-distance effects ap-

pear to be unimportant and the short-distance box dia-
gram is the main source of CP-odd mixing.

There was also some effort devoted to incorporating the
presence of the b quark (and by implication the t quark as
well) to computations of K -K mixing. This work,
largely

concertized

with quantifying the Kobayashi-
Maskawa (KM) qunrk-mixing prescription and recomput-
ing QCD renormalization-group correction factors, is lu-
cidly reviewed in Ref. 6. Our purpose in this paper is to
point out the existence of an additional contribution to
htrt~'" which, to our knowledge, has not previously been
considered in the literature. We call this contribution the
"dipenguin" because it is a direct consequence of the
"penguin" contribution in bS = 1 processes.

Recall that the bS=1 penguin is associated with the
presence of mass scales of heavy quarks. In the usual
penguin amplitude, a color gluon emitted from the s~d
penguin vertex propagates and ultimately couples strongly
to a quark line. Somewhat surprisingly the corresponding
four-quark bed=1 operator is local. This is because the

q
2 behavior of the gluon propagator is compensated for

by a q factor from the loop integral. ' Now suppose the
gluon, rather than experiencing a subsequent strong in-

teraction, instead hooks on to a d ~s penguin. This pro-
cess, depicted in Fig. 2(a), gives rise to a dLS=2 local
four-quark operator, the dipenguin. Before displaying the
form of this operator, we wish to stress that long-distance
processes in which a M=1 penguin appears twice also
generally occur. An example is shown in Fig. 2(b). The
reader should not confuse the two processes.

To derive the M=2 dipenguin we consider first the
M = 1 penguin vertex in coordinate space:

"u,c, t

sin8, cos8, 1n dy„(1+y5)

u, c, t XA,"s(g""8 —iFi)")A„", (2)

FIG. I. Short-distance "box" diagrams.

where g is the QCD coupling constant, p is a typical ha-
dronic mass scale, and m is the fermion mass appearing
in the loop integration. The dipenguin results upon
"squaring" Eq. (2) and folding in the gluon propagator.
In an effective four-quark description we obtain
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FIG. 2. "Penguin" diagrams as they contribute to {a}short-

distance, (b) long-distance effects. {a) depicts the "dipenguin"

process.

Observe that each operator has a common ( V —A )

X( V —A) chiral structure, and the same GF eos 8,sin 8,
overall scale. The dipenguin betrays its @CD content
with a factor of the strong fine-structure constant a, as
well as contracted color matrices in 0. The presence of a
mass parameter m, in the box is mimicked by the deriva-
tive terms in 0.

To measure the importance of the dipenguin effect, we
must compute its E -to-E matrix element. An exact
calculation is beyond present-day capabilities. There do,
of course, exist a variety of model-dependent approaches
to employ. Unfortunately the ( V—A) X ( V —2) structure
makes such estimates suspect because helicity suppression
induces large cancellations. This is a point which has
perhaps not been appreciated to the extent that it deserves,
so we consider it in more detail in the Appendix. For
completeness, we also compute there the dipenguin ele-
ment in the bag model.

At any rate, we can use vacuum saturation to provide
an order-of-magnitude estimate for &K IO IK &. The
matrix element of 01 is straightforward to analyze. Upon
integrating by parts and employing quark equations of
motion we obtain

2

LQ 1 —— I cos28, sin28,
288m

01 ——m, d(l —ys)AAsd(1 —y5)Ags

—2m, meed(1+ y5)k~sd(1 —y5)A, „s

+my d(1+ys)A, „sd(l+y5)iqs . (5)

N2

ln
2

+CP-odd piece 0,
p

(3a)
Upon neglecting m~ relative to m, and employing vacu-
um saturation we then find

where 0=01—Oz is the four-quark operator:

Ol =dy"(1+ys)A, "$8„8+y"(1+ys)A, "s,

Oz =dyl'(1+ys)A, "$C![dye(1+ys)A,"s] .

(3b)

G 2

cos 8~sin 8qmq dy (1+yl)$
8

It is instructive to contrast the form of the dipenguin with
that of the "box" operator:

32 I~2m 4

2pFg g

where F»-1.25F and F =0.0935 Gev. The matrix ele-

ment of 02 is more troublesome to handle, and indeed we
have no totally convincing method for computing it, even
in vacuum saturation. Direct evaluation, neglecting m~,
yields

2 2 2

&K IO, IK &„„=—p
— —

p ~ 64 ~ K ~Jc ~s +X,vac 9 2m

x dye(1+ y5)s where

x=2&K'I d', y (1+y,u, ,",a"-J
I 0}&o I (a„dk)y„(1+y,Qkl., I

K'&

+2&K'
I ~kdi'y"(I+ys)~its 1 I

0& &0 I dky~(1+y5)~kl~'s, I K'& .

To estimate X, let us assume that each derivative of a
quark field in Eq. (8) can be interpreted as the average
momentum of that quark, in which case

32 ~x'~sr'
&=4S. u~ 9 2m'
~

9 F» m»(m» —mg )
2 2
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if the kaon energy-momentum is the sum of the s-quark
and d-quark contributions. Altogether then we obtain

(K i
0 iK }„~='9'F» m»(4m, x m—» ) . (10)

The key quantity is of course the relative size of box and
dipenguin matrix elements. In vacuum saturation, we ob-
tain
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APPENDIX

Several papers have addressed the issue of estimating in
the bag model the K -to-K matrix element of the chiral
operator

0=—:d;y(1+y5)s;d&y&(1+y5)sj. .

Our evaluatian yields

4' N,(K i 0iK )= J r drI(r),

(Al)

(A2)

(Koine, ~i'iKo&„~ as, m, ' 4m, '—m»'

(Ko
i
I box iKO) S4tr p2

ln2
' « 1 (11)

far m, 1.S GeV, m, =IM 0.3 GeV, and a,=l.
We conclude that the presence of a AS=1 penguin

necessarily implies the existence af a distinct short-
distance hS =2 effect. However this dipenguin contribu-
tion is much smaller than the standard short-distance box
contribution. There are basically two reasons for this: a
smaller coefficient and a smaller mass scale (m» vs m, ).

We have ignored @CD radiative correction renormal-
ization-group-summed factors in aur discussion. The di-
penguin effect is sa small as to make any impact on the
phenomenology of 8$=2 processes highly unlikely. A
renormalization-group analysis of such IS=2 operators
would thus be mainly of academic interest.

0
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FIG. 3. Bag-inodel evaluation of Z -to-Ko matrix element of
local four-quark box operator.

B=(K
i
0 iK )l(K i

0 iK )„„ (AS)

and in particular predicts 8—= —0.4. The point we wish
to emphasize in this appendix is that bag-model evalua-
tions of ( V—A }X(V—A) operators such as the one in
Eq. (A3) are likely to be rather sensitive functions of the
input parameters due to helicity suppression. As such, the
resulting value must be viewed as suspect. To demon-
strate this point we have plotted in Fig. 3 the bag-model
value for 8 as a function of mdR and m, R. Observe the
line af zeros which separates the parameter space into re-
gions of 8 & 0 and 8 &0. Far the usual choice mdR ~0,
m, R ~0.9, one obtains 8 &0, yet for a reasonable SU(3)-
invariant choice msR =m, R ~0.7, one finds 8 & 0.

This phenomenon is not limited to the operator of Eq.
(A 1 }. Consider the local, chiral quantity

02 ——.d;yi'(1+ys)A &siCI[dj y&(1+ys)A qsj]: (A6)

where

I(r )=fu'f. '+g~'g. ' 4faf.gag. —fa'g.—' ga'f. ' . —

(A3}

CP-
d0

gl

0

In Eqs. (A2) and (A3), the subscripts d and s refer to the
d-quark and s-quark kinematics, respectively, the N fac-
tors are bag normalization factors, and f,g are the usual
spherical Bessel functions:

f=Jo(p«R»

g = [(co—mR )l(co+mR )]'~j i (pr IR )

(A4} 8 &0

for the ground-mode wave number p =-2.0428, and
m =p +m E. . %'e agree with the corresponding result
in Ref. 10 but differ by a minus sign with Ref. 11.

Historically the qu mtity in Eq. (A2) has been the focus
of much attention because it provides an estimate of the"8parameter, "
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FIG. 4. Bag-model evaluation of Z -to-Eo matrix element of
local four-quark dipenguin operator 02.
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which appears as part of the dipenguin operator. In the
bag model, we obtain

16' X, f (A7)

where J(r) is a complicated and lengthy function which
we do not reproduce here. However defining a quantity
8' as

8'=(K
i 02 iK )/(K

i
0

i
K )„„,

we plot 8' as a function of its input parameters in Fig. 4.
Observe a pattern of behavior similar to that in Fig. 3, a
line of zeros separating regions where 8' & 0 and 8' & 0.

Although this reinforces our point regarding the diffi-
culty of estimating such quantities, for the sake of com-
pleteness we have computed the ratio of dipenguin to box
contributions in the bag model. We find

a, ln (m, /p) (Ko~ g ~Ko)

m, '(K'i O
i
K'&

(K'~ 1."[K')
(Ko)I.~" ~KO&

This small ratio is consistent with our vacuum saturation
estimate. The two factors in Eq. (A9) equal 0.09 and 0.67,
respectively.

'M. K. Gaillard and B.%. Lee, Phys. Rev. D 10, 897 (1974).
L. Wolfenstein, Nucl. Phys. $160, 501 (1979).

3C. Hill, Phys. Lett. 97$, 275 (1980}.
~J. F. Donoghue, E. Golowich, and B. R. Holstein, Phys. Lett.

135$, 481 (1984).
5I. I. Bigi and A. I. Sanda, Phys. Lett. 148$, 205 (1984); M. R.

Pennington, ibid. 1538, 439 (1985); P. Cea and C. Nardulli,
ibid. 152$, 251 (1985).

6L. L. Chau, Phys. Rep. 95, 1 (1983).
7A related diagram occurring in the Higgs model of CP viola-

tion has been considered by Y. DuPont and T. N. Pham,
Phys. Rev. D 28, 2169 (1983).

SM. A. Shifman, A. I. Vainshtein, and V. J. Zakharov, Nucl.
Phys. $120, 315 (1977); Pis'ma Zh. Eksp. Teor. Fiz. 22, 123
(1975) [JETP Lett. 22, 55 (1975)].

9M, Wise and E. Witten, Phys. Rev. D 20, 1216 (1979).
~ P. Colic et al. , Report No. MP1-PAE/P, 1982 (unpublished);

I. I. Bigi and A. Sanda, Phys. Rev. D 29, 1393 (1984).
"R.Schrock and S. Treiman, Phys. Rev. D 19, 2148 (1979); B.

McWilliams and O. Shankar, ibid. 22, 2853 (1980).


