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%e derive an expression for the width of unstable mesons whose decays are allowed by the
Okubo-Zweig-Iizuka rule. The starting point is an exact expression. In the lattice version a strong-

coupling and hopping-parameter expansion of it yields the specific nonperturbative factor for
particle-antiparticle creation in a strong field. A more general treatment leads to an expression for
the width involving only one universal constant independent of flavor and state. The relation of our
formulation to earlier phenomenological approaches is discussed.

I. INTRODUCTION

As is well known the description of decays depends
strongly on the type of process involved. We have a good
understanding of radiative and semileptonic weak decays
(where we know the form of the current coupling to the
quarks) as well as of inclusive decays forbidden by the
Okuba-Zweig-Iizuka' (OZI) rule (where we can calculate
the annihilation of the original quark-antiquark pair iilto
gluons perturbatively). The decays allowed by the OZI
rule, on the other hand, which, whenever possible, are the
dominant ones, have resisted a deeper theoretical under-
standing up to now. The problem is to find an adequate
description of the creation of the quark-antiquark pair
within the hadronic color field, and the subsequent
dynamical evolution of the system. Almost all
phenomenological treatments have therefore directly
resorted to simple models. The three essential types are
the following.

(1) Elementary meson emission. Here one forgets about
the quark-antiquark structure of one of the decay mesons
and couples it directly to the quarks. This model has re-
cently been applied successfully to a bulk of baryon de-
cays by Isgur and Koniuk2 and to meson decays by God-
frey and Isgur.

(2) The quark-pair-creation (QPC) model of I.e
Yaouanc et al. assumes that the qq pair is created with
vacuum quantum numbers, i.e., in a Po++ state. This
model successfully describes various polarization proper-
ties as well as subtle details due to nodes in wave func-
tions.

(3) The ansatz of Eichten et al. consists of an effective
interaction operator which determines both the spectrum
as well as decay amplitudes. It is of the form

Hl= —
2 ~ 1X6fp' g X VX —p ppp:,

where

(a color, 3 flavor index). Unfortunately the computation
can only be done numerically thus rendering a simple in-

terpretation of the results impossible. Even if one is in-

terested in spectrum calculations only, the possibility of
pair creation will manifest itself through the phenomenon
of screening.

For an understanding of the decays allowed by the OZI
rule a nonperturbative treatment of the creation of the
quark-antiquark pair is a central point. In a fundamental
paper, Schwinger gave an exact expression for the
creation of e+e pairs in a constant uniform electric field
E. His result for the creation probability per unit time
and volume is

aE "
1to= g exp( norm —/~eE

~
) .

n=i n
(1 2)

clearly shows the nonperturbative character of the
problem which is due to the fact that the process proceeds
via tunneling: The virtual electron and positron created at
the same point have to tunnel a distance -m/

~

eE
~

in
opposite directions in order to regain the minimum energy
2m necessary for the creation of a real pair.

Schwinger's formula has been applied to quark-
antiquark creation in a hadronic decay or in a jet by Cash-
er, Neuberger, and Nussinov. ' They assumed essentially
a homogeneous color-electric flux between the original

QQ pair and applied Eq. (1.2) in the flux tube, setting
io =0 outside. For further work along these lines we refer
to the literature. " It is obvious that essential features are
missing in these treatments. The color field within the
hadron is neither constant nor external, but has to be
described as a quantum field in the hadron. The created
quarks, furthermore, are not free but become bound into
hadron s.

The treatment of all these quantum features is the in-

tention of the present paper. We shall explore directly the
time evolution of the decaying system. We recall that in
ordinary quantum mechanics the persistence amplitude of
an unstable state is simply evaluated by introducing a
complete set of energy eigenstates yielding

(P(0)
~
P(T)) =f e ' to(E)dE, to(E))0

—'~Or —rTr2=e e
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II. GENERAL FORMULATION OF THE PROBLEM

We express the two-point function of a composite had-
ron as a functional integral. Since we are interested in
nonperturbative contributions, we define this integral with
the lattice regularization. In Sec. IV we shall go back to
the continuum. We use Wilson's lattice action'

S=St+Ss,
S, =burnt g y. (1+r")U. ,„y.+„+Hc.

n, p

n n ~ (2.1)

The exponential decay law holds under rather general as-
sumptions on co(E), except for extremely small times (this
point has received some attention in connection with pro-
ton decay) and extremely large times [where the threshold
behavior of ro(E) becomes important but where the system
has practically completely decayed anyhow].

In Sec. II we present a general nonperturbative expres-
sion for the persistence amplitude. In Sec. III this expres-
sion is evaluated in a simple model using the strong-
coupling and hopping-parameter expansion. Though this
model involves drastic simpliftcations, it is very transpar-
ent and shows how Schwinger's nonperturbative factor in
(1.2) naturally arises from a simple lattice expansion. In
Sec. IV we calculate the persistance amplitude for an un-
stable meson. We reduce the general expression to a non-
relativistic quantum-mechanical path integral in the con-
tinuum. This has the advantage of being intimately con-
nected to the simple classical picture of quark trajectories.
The creation of the quark-antiquark pair deserves a spe-
cial treatment. We end up with a formula for the width
which, up to an obvious kinematical modification, is al-
most identical to the QPC model but going beyond this by
explicitly specifying the dependence upon the mass of the
created pair. In Sec. V we summarize our assumptions,
compare with the model of Eichten et al. and given an
outlook on processes which can be attacked within our ap-
proach.

sum of the correlation functions

(2.3)

where P„ is constructed like P„, but at a later time. The
expectation value ( ), denotes the functional integral over
the quark and gauge field (gluon) degrees of freedom with
the measure e, S being the full action (2.1). In Sec. III
we shall take the quarks as static sources, in Sec. IV the
superposition will be made with a nonrelativistic wave
function. As is well known, the fermion integration over
the quark degrees of freedom can be performed, leading
t07'13

(2.4)

G=exp gc+TrU~ (2.5)

We define the connected part of (Tr U~Tr U& ) by

(TrU~TrUz ) = (TrU~TrUz )s,
—(TrU ),(TrUx)s, . (2.6)

If the distance between the loops q and X increases, the
connected part (Tr U~Tr U& ) „goes to zero.

Many lattice calculations have been performed with fer-
mion determinant fixed to 1. This quenched approxima-
tion leads already to satisfactory results for many quanti-
ties. It corresponds to an expansion where all hadrons are

Here X are paths connecting n
&

to n i and n2 to n 2, closed
to a loop by the paths P„, P connecting n

&
with n2 and

ni with nz, respectively (Fig. 1). Ur is the product of
gauge group elements along the path X. 6 is the fermion
determinant, which results from the quark integration.
The measure in (2.4) is given by the pure gauge Lagrang-
ian Sz. The quantity cr does not depend on the gauge
field.

The fermion determinant can be expressed as the ex-

ponential of a sum over all closed loops qr (see, e.g., Refs.
7 and 13)

S2 ——3P g TrU„~U„„U„+„qU„+q„.
l(„ is a quark field at the lattice point n and U„& is the
gauge group element related to the link pointing from the
lattice point n into direction }tt. If A „is the non-Abelian
gauge field, then one has in the continuum limit

U~ p
=exp(/. 4 pdx ) .

A meson ean be constructed as a superposition of
gauge-invariant expressions

I

I

(2.2)

The lattice points n I,n 2 are taken at the same Euchdean
time. The product U& is to be taken along a path con-
necting n

&
and n2. The persistence amplitude is a double

f
I

1

FIG. 1. Quark path g in Eqs. (2.4} and (2.7}. Solid lines:
Quark paths. Dashed lines: Strings.
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stable; therefore, an evaluation of the width has to take
into account the deviation of the fermion determinant
from 1. The first nontrivial contributions are one-loop
terms:

6=1++c~TrU~ .

In this approximation the persistence amplitude (2.3)
takes the form

~„.=ycx (TrUx&s, +pc, &TrU, TrUx&,.„' .
x

(2.7)

The first term on the right-hand side (RHS) is a sum over
all paths of the original quarks. In the nonrelativistic lim-
it it can be identified with a Feynman path integral. We
recall that in the strong-coupling limit the integration
over the gluon field can be performed explicitly yielding
the area law and thus the 1inearly rising potential.

Equation (2.4) or (2.7) could be evaluated on a lattice by
Monte Carlo methods and, in principle, the width of a
meson could be extracted from such a numerical analysis.
But, in practice, that would be extremely difficult: The
Monte Carlo calculations have to be done in Euclidean
space-time, whereas the extraction of the width has to be
done from an expression in Minkowski space-time. The
necessity for doing this is clearly seen from the general
form (1.3) which refers to Minkowski time. If we intro-
duce Euclidean time by continuing T to —iT; the Fourier
transform becomes a Laplace transform which, in general,
depends essentially on the mean energy Eo only. It is
only the oscillation of the exponential in (1.3) which
makes the integral sensitive to the width. Thus for a sim-
ple and model-independent determination of I one has to
continue (2.4) or (2.7} to Minkowski space. To our
knowledge there is only one paper where the authors tried
to attack the problem by Monte Carlo calculations. ' The
approach is quite different there and proceeds by extract-
ing the pnm coupling constant from a quark six-point
function. Only preliminary results have been obtained
there.

In this paper we investigate the second term of the RHS
of Eq. (2.7) which determines the decay width. This is
done in the next section in the framework of a double
strong-coupling and hopping-parameter expansion on the
lattice. This treatment will serve as a guideline for a more
realistic procedure applied in Sec. IV, where we derive a
general expression for the decay amplitude of inesons into
mesons.

(R„T), (R2, T), (R2,0). Equation (2.4) becomes in this
static approxixnation

~(R,T)=c,(TrU, G&,, t(G&,, (3.1)

////
(b)

We shall make a double series expansion with respect to
P- ilg (strong-coupling expansion) and the parameter v
(hopping-parameter expansion) ' keeping only the lead-

ing terms of the double series. As mentioned in the previ-
ous section, the hopping-parameter expansion of the
determinant 6 involves a sum over closed loops where
each loop has a numerical factor (which is of no interest
here) as well as a factor (2a.P with n the circumference
measured in lattice units. In our approximation there are
only two types of contributions to be considered.

(a) No internal fermion loop, i.e., only the expectation
value of the external Wilson loop g, . This is, of course,
nothing else than the usual expression which has to be
evaluated for obtaining the static potential in the frame-
work of the pure gauge theory [Fig. 2(a)] [i.e., the first
term of Eq. (2.7)).

(b) One rectangular fermion loop lying in the plane of
the Wilson loop X, completely within the latter, with op-
posite orientation. This corresponds to the creation and
subsequent annihilation of a light-quark pair [Fig. 2(b)]
[second term of (2.7)].

In the strong-coupling expansion the leading term in P
is obtained by considering only those plaquettes in the ex-
pansion of exp( —S) which form the minimal surface
bounded by the loop (or loops). These minimal surfaces
are shaded in Figs. 2(a) and 2(b). If their area in lattice
units a is denoted by A, the leading contribution to the
expectation value is P". It is easily seen that all other
types of geometrical configurations [some of them are
shown in Fig. 2(c)] can be neglected in our approximation
because, for any of them, one can find a graph of type (a)
or (b) which has a lower order in P or ~.

Let us denote the lattice spacing by a, and the number
of links of the internal fermion-loop rectangle in spatial
(temporal) direction by n, (n, ), and set r=an„ t=an,

III. A SIMPLE MODEL //g /
/g

//g !/

/

In this section we stay on the lattice. The decaying
state P consists of a pair of static (i.e., infinitely heavy}
quarks at positions R~ and Rz, connected in a gauge-
invariant way by the product of gauge group matrices U
along the connecting straight line. The decay is possible
through the production of light quarks. The persistence
amplitude A„will depend on the spatial separation
R=R~ —R2 and the Euclidean temporal separation T.
The path g, is thus a rectangle with the corners (Ri,0),

FIG. 2. (a} %'ilson loop without internal loop. (b} Wilson
loop with one rectangular internal loop in the interior. (c) Some
examples of loops of higher order in P or sc which were neglect-
ed.
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A(R, T)=P'T" (1+Tt),
have to annihilate again, since we ask for the persistence"
amplitude of the original state. The amplitude becomes

R/a T/a
Tt =8 g g (R/a. n—,+ 1)(T /a n—, + 1)

(3.2)

and

A(R T)-8(2x) " '(2x) ' for T +—

PR/A (2 )2

(3.4)

1.e.

P e
—i4l

(3.3)

with A, the string tension. The mearung of x becomes
clear if we assume p"/a ~(2a) and take the limit of ex-
tremely large T. In this case the term with r=R and
t = T dominates the sum in Tt and g &~1. Physically, this
means a pair creation of quarks at time zero, the quarks
becoming directly attached to the sources. At time T they

The term proportional to Tt is the one due to the loops of
the fermion determinant [type (b)]; the factors in
parentheses count the number of rectangles with sides
r=an„and t=an, fitting into the Wilson loop X, with
sides R, T; the powers of 2s and P are obvious from the
hopping-parameter and strong-coupling expansion,
respectively. The physical meaning of P and a is easily
extracted from (3.2). From the first term on the RHS we
identify, as usual,

AT/a2 XJtT-=8

On the other hand, we know that for very large T the
time dependence of the system is determined by the
ground state of mass 2m, where 2m is the mass of the
created quark pair. Thus, from

(2&)2T/a e 2th—T

we obtain

2@=8 (3.5)

A(R, T)=e (1+Ti)

with

The inequality in (3.4) now reads 2m &AR which is the
condition that there is enough energy available in the
string for the decay to become possible. The mass param-
eter in (3.5) has to be identified with the constituent mass
here; to be more specific, it is the lowest eigenvalue of the
system consisting of a quark bound to the external source.

We can perform the summation over n, in (3.2) and ob-
tain, using relations (3.3) and (3.5),

R/a
Ti=8 g (R/a+1 n, )e— ~a%

[ea~(T/ +i) (T/a+1)ea~+ T/a]
eau)2

(3.6)

and w =A,r 2m. For very l—arge values of T the term exp(wT) dominates and we regain the result used earlier that for
very large times the time dependence of the persistence amplitude is determined by the threshold 2m. Equation (3.6) is
an analytic interpolation function for the dependence on the Euclidean time T which can be continued to Minkowski
time T by mapping T~i T. For a small enough we can expand e' and replace the summation over n„by an integration
over r/a This yiel.ds

R

W
(3.'7)

where T is now Minkowski time. The energy Eo and the width I in equation (1.3) are most easily extracted by perform-
ing the time derivative of the logarithm of A(R, T). As in ordinary time-dependent perturbation theory in Minkowski
space we can treat g in the lowest order:

—lnA(R, iI ) = i AR+ —(R r)e 'i— dr = iEO —I /2 . —
dt ' ~4 O W

(3.8)

For large T one has

. e' —1 . coswT —1
l

W W

sinwT ~—n.5(w ) (3.9)

I = e(A,R —2m )(LR —2m)e
16n.
a41' (3.10)

which, as it should, yields energy conservation. Inserting
it into Eq. (3.8) results in Eo=AE and

%'e have thus ootmned the essential nonperturbative fac-
tor exp( —4m /)I, ) which is also present in Schwinger's
formula. The electrostatic force eE has now been re-
placed by the force A, of the string. The appearance of 4
instead of m is clearly a lattice artifact. The threshold
condition A,R ~2m has come out automatically. The
overall factor in front of I depends on the lattice spacing
a. Since in the strong-coupling limit there is no unambi-
guous way to fix a, we have to leave this factor free. It is
independent of the mass m.
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IV. A GENERAL EXPRESSION FOR DECAYS
ALLOWED BY THE OZI RULE

We shall now extend the treatment of the general for-
mulas of Sec. II to cover the realistic case of meson de-

cays, working from now on in continuum Minkowski
space. The central idea is simple: Concerning the original
quark and antiquark paths X in Eq. (2.7), instead of re-
stricting them to the straight lines of the static sources,
we have now to sum over all paths connecting (R~,O)

with (R', T) (a =1,2). Our approximation will be to con-
sider only those paths which correspond to a nonrelativis-
tic motion. The expression (2.7) then goes over into the
usual nonrelativistic path-integral representation for a
Green's function. Since path integrals are dominated by
the classical trajectories and very high values of the mo-
menta lead to large oscillations in the weight factor e'~,

the assumption of dominance of nonrelativistic trajec-
tories appears justified as well as, say, in spectrum calcu-
lations, which, as is well known, are very successful even
for hadrons consisting of light quarks. '

As for the loops from the determinant describing the
creation and subsequent annihilation of a quark-antiquark
pair we shall still restrict ourselves to one loop; for the
timelike parts we also restrict ourselves to nonrelativistic
trajectories. The creation and annihilation of the quark
pair needs a separate treatment. For the moment we only
will assume that these processes take place rather instan-
taneously. Physically this means that the created quarks
have to tunnel very fast to an appropriate distance in or-
der to get back the energy which had to be borrowed for
the creation. Later we will be more specific on this point.

The decaying meson will, as usual in spectrum and de-

cay calculations, be represented by its quark-antiquark
component:

~
8(Ke r)) =f 11(Ri,1)OQ(R2, T)

~
0)

Xy(R)e d R d X. (4.1}

Here P, f are the quark operators, 0 describes spin and
flavor, and p(R) is the spatial wave function. Quark and
antiquark have position variables R~, R2 and momenta

Q, ,Qz, respectively. The state has been made gauge in-
variant by the insertion of the path-ordered exponential

Pexp ig A& x&

A "(T)=exp[ —t'(M+ Ep )T], (4.5)

where M =Mi+M2 is the sum of the rest masses and Ep
the binding energy. This result can be also derived along
the lines presented in the following, which would, howev-
er, be unnecessarily complicated here.

We next come to the contributions containing the
creation and subsequent annihilation of a quark-antiquark
pair [type (b) contributions]. Coordinates and momenta
of "internal quarks" will be denoted by small letters ri, r2,
qi, qq, their mass by m. The creation takes place at time
t;, the annihilation at time tf, the lifetime of the pair is
thus t=tf —t;. In accordance with our nonrelativistic
kinematics we consider only loops for which 0&t; &tf
& T. As a first step the integration over the gluon fields
is performed formally. The time evolution is now
described as follows (Fig. 3). For tiines 0&7 & t; the sys-
tem consists of the original quark Qi and antiquark Q2
only. The contribution to the Green's function in

have to use eigenstates of the c.m. momentum Ke.
In the persistence amplitude

( ~(KatO)
~
+(Kg T) )

the integration over the variable X+X' is trivial due to
translational invariance and gives the 5 function
5' '(Ke —Kii) of conservation of c.m. momentum. From
now on we shall therefore drop the (X+X') integration,
take X'= —X, and go to the rest system Kz ——Kz ——0.
The persistence amplitude to be evaluated thus becomes

A( T)=f (0
~
tp(R2, 0}OQ(Ri,0)p(Ri, T)OQ(Ri, T)

~
0)

Xy'(R)(p(R'}dsR diR'di(2X) . (4.4)

We shall consider again two types of contributions to
(4.4). The first is the one without internal quark loops,
i.e., the first term of Eq. (2.7};it corresponds to the contri-
butions of type (a) in the preceding section. It simply
gives the exponential time dependence

along the string between quark and antiquark. Here and
in the following this will be abbreviated by the horizontal
bracket connecting the field operators. We have intro-
duced relative and c.m. coordinates

R, (&)

9, (r)

(y)

() R()
p (x)

R=Ri —R2, X=(MiRi+M2Ri)/M,

M=M)+My

and the respective momenta

Q=(MiQi —MiQp)/M, Ke ——Qi+Q2 .

(4.2}

(4.3) R,

Quantities with a prime refer to the time T. Since we are
interested in the genuine decay but not in the trivial
quantum-mechanical spreading of a localized state we

FIG. 3. Notations for the quark trajectories. The definitions
of the relative coordinates and the notations for momenta are
given in Eqs. (4.2), (4.3), and (4.7).
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r =r) —r2, pi ——ri —Ri, p2
——r2 —R2 (4.6)

between the four quarks involved at time t;, as well as
upon the spins which we suppress for the moment. It is
convenient to split off from F a factor i in order to make
it a T-matrix element.

In the time interval t; & r&tf the system contains two
pairs of quarks and antiquarks which may be viewed as a
virtual-meson pair, i.e., the would-be decay products. In

(4.4) is a path integral involving the integrations
D[R)(r)]D[R2(r)]. Introduction of the relative and c.m.
coordinates R(~) and X(r), defined analogously as in
(4.2), factorizes the functional integral into the product of
two ordinary Green's functions: The bound-state Green*s
function G& referring to D [R(~}]and the reduced mass

)M =(Mi+M2)/MiM2,

and the free Green's function GM of the c.m. motion.
At time t; the pair q, q2 is created. For the moment we

only assume that the creation can be described by a func-
tion F which may depend upon the three distances

analogy with the previous model we assume that we have
to consider only the interaction between Qiqi and be-
tween Q2q2, i.e., within the virtual mesons, while there is
no longer a sizable interaction between the two virtual
mesons. %e introduce the new coordinates

p~ =r~ —R~

as in (4.6) and

X =(mr +M RN)/(M~+ m ), a= 1,2 . (4.7)

The integrals over the four paths D[X (~)], D[p (r)]
then factorize into four Green's functions, two of them
describing the free motion of the centers of masses and
two the internal motion in the would-be decay mesons.
The further time development is clear. The function F re-
sponsible for the annihilation at time tf fulfills Ff Fi'——
from time-reversal invariance, while in the interval

tf & r & T the situation is analogous to that in the first in-
terval. We thus arrive at the following form for the con-
tributions of type (b):

Z(&)(T) e iMTe 2imt—Go—(X(i) X t )Gv(R(&) R t ) F( (i) (i) (i))

X GM)+m(Xl X)"—, t)GM +m(X2 —X2', t)G~ (p~ )pI ', t)G~ (p2 I p2, t)

X iF'(r'f', p'if', p'2f')GM( X X'f', T— tf—)G„"(R',—R'f', T tf)—
y(p'(R)q)(R')d R d R'd (2X)dt dt;d(i)d(f) . (4.8)

The rest masses M (which is present in the whole time T)
and 2m (present only for the interval t =tf t; ) are exhib-—
ited explicitly. To obtain all loops of type (b) we have to
jntegrate over the four positions of the quarks at time t;
and tf [symbolically written as d(i}d(f)] and over t and

t,. ((}& t, & T t, 0 & t & T}. The—interpretation of the rest
of the integrand should be clear from the preceding dis-
cussion.

To evaluate (4.8) we introduce the eigenfunction expan-
sions for the Green's functions, i.e.,

with

and

j=i,f;a=1,2

drops out from the integrand; therefore, the t; integration
just gives a factor ( T t) Ins—tead. of the eight integration
variables R J', r~~' with j =i,f: a=1,2, we now introduce
the new variables

Go (X t) (2~)—3 f eiK xe (iK /2M)id3~—

for the free functions and

(4.9) z = -,
' (x"'+x'f'), y = -,

' (x(f' —x',"+x',f' —x,"') .

(4.1 1)

G„(p',p, t ) =g i'„(p)f„'(p')e (4.10)

for the bound-state functions. The following steps are ele-
mentary and will therefore only be sketched.

The integrations over R and R' project out one term,
res ectivel, from the series for G&(R"',R, t; ) and
G„(R',R' ', T tf), namely, tha—t containing the wave
function (p. This introduces a factor

+(R (i))++(R (f) )e
'Eo( T

The X integration gives (2n. ) 5( '(K+K'); the variable t;

This has the advantage that one can perform two more in-
tegrations over variables appearing in the exponential
only: The z integration gives n 5' '(K); the y integration
gives

(2~) 5' '(ki+k2}

(k are the conjugate momenta of X ). Thus from now
on we set k~ ———kq ——k. The integrals involving r' ', p~ ',(f) [f)

pz+ have become the complex conjugate of those involving
r", p~', p2". %e can combine them into an absolute
square, dropping the indices i and f from now on. As an
intermediate result we then arrive at



HANS GUNTER DOSCH AND DIETER GROMES 33

A' '(r)= —(2w) e ' g f (T ))—fy(r p—, +p~)g'„, (p, hg, (p2)F(rp, p, ,l

M)
Xexp i—k r- p~+ pz d rd pidpzm+M, m+M,

I

k2 k2
Xexp —i 2m —Eo+E„+E, + + t dkdt.

2(M, +m) 2 M2+m

(4.12)
-i(,M+Eo)T .

The factor e is also present in the term A"' in (4.5). The t integration can now be performed. As in Sec. III
we next calculate (d/dT)lnA (T},choose T large, which again introduces the energy-conservation 5 function, and deter-
mine the width I from comparison with (1.3). This leads to

2 k2
I =(2n) z g f5 Eo—2m E„—E„——

2M, +m 2M, +m
n&, n2

q r —i+p2 n& p1 n2 2+r p1 p2

X exp —ik r—
2

pi+ pz d rd pid p2~+m,
(4.13)

We have next to specify the creation function F. One can
give taro alternative arguments, both leading to the same
result. For the first we go back to the hopping-parameter
expansion on the lattice, transformed into Minkowski
space. For a spatial straight line of length r =an there is
a factor proportional to

'n
1+iy r/r „1+iy r/r

We made use of the fact that the first factor is a projector
and used (3.5). The lattice spacing a has dropped out
which gives some confidence in the formula. We there-
fore will use

F(r p„pz)=F(r)=Ce '(1+iy r/r)/2, (4.14)

where C is a universal constant of dimension (mass} . We
can also derive Eq. (4.14} (and generalize it to arbitrary
curves) in a different way where we can stay in the contin-
uum. Let us go to Euclidean space for simplicity and
consider the equation for the quark propagator S(x,y;A )
in a given external gauge field A. It satisfies the equation

S(a,r, A")= e(tr ~)
I+y(o) 1-y(o )

2 2
+8(v —o)

Xe ~ '~P(r, o)5 (xi —yi) .

Here
x

P(r, o)=P exp ig A "(z)dz„

=Pexp ig f A(s)ds

(4.17)

is the string operator along the curve. Again we have
found the spin factor and the exponential suppression as
in (4.14).

We next introduce (4.14) into (4.13},go to momentum
space, and take F between spinors u(qz) and v(qi), nor-
malized to uu = uu= l.—The momenta in (p, P„,, g„'
are Q, pi, pz, respectively, and q, = —qz

——q= k —Q. The
p~ integration gives

(2m) 5 (Q+pi —Mik/(Mi+m)),

the p2 integration

(2n) 5 (Q—p2 —M2k/(M2+rn)) .
I y„[B(,) igAi'(x—)]+m )S(x,y;A") =5 (x —y) . (4.15)

In the lowest order of q/m one has

u2( —q)(1+y.q/m )U, (q) =2Xitr qXi/m (4.18)

with X'= —io2X. The r integration therefore involves

f (1+iy.r/r)e 'e'~'d r = 8am (1+y.q/m) .
(m +q )

(4.19)

Putting all this together we arrive at our final formula for
the decay width:

Consider a curve z"(s) with the tangent vector ti'(s)
=dz"(s}/ds, normalized to t =1. . Let xl'=z"(tr),
y&=z"(r) be points on this curve. We then look for an

approximated propagator S obtained from (4.15) by only
keeping the covariant derivative in the direction of the
curve (the special case that the curve is a straight line
R=const of a particle at rest has been used as a starting
point of a 1/m2 expansion by Eichten and Feinberg' .
With 8 =t "8„,etc., we obtain the equation

[y(&i~i tgA)+m]S(—o,'r;A")=5(o ~)5'(x, y, ) (4.16)—
which has the solution
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k kI =16(2m) iCi g f5 Eo —2m E—„, F—.„,—2 Mi+m 2 M2+m"l*"2

X2cr(k —Q)X)
X f y(Q)y„', (i) k —Q)it „',(Q —i) k). ..d'g

[m +(k—Q) ]
(4.20)

with i1 =MJ/(MJ+m). As mentioned, this result con-
tains only one free parameter, the universal constant C.

V. DISCUSSION AND CONCLUSION

The main features of our final formula (4.20) can be
easily understood. The 5 function is due to energy conser-
vation. In applications one would prefer the relativistic
version

g(M (M 2+ k 2) 1 I2 (M 2+ k 2)1/2)

Usually only a few low-lying states labeled by n„n2 can
contribute kinematically and the respective terms in the
sum are the corresponding partial widths. Our spin struc-
ture is identical to that of the QPC model stating that the
created pair has vacuum quantum numbers and is thus in
a Po++ state. This is due to the creation function F
which does not allow the exchange of quantum numbers
between the created pair and the original quarks. Our
kinematics is somewhat different from that in Ref. 4,
which would become identical to ours in the limit m /M i,
m/M2~0. The meaning of the momenta appearing in

is simply understood: Because Q is the momen-

tum of the original quark (mass Mi), q that of the created
antiquark (mass m), k that of the decay meson
(k=Q+q), these are just the correct relative momenta

pi 2 in the decay mesons. [The authors of Ref. 4 also
found this obvious modification of their formula (private
cominunication). ] The factor

in (4.20) goes beyond the formulation in Ref. 4. It gives
an additional momentum dependence which is of dynami-
cal origin, together with the explicit dependence on the
constituent-quark mass m. The mass dependence is, how-
ever, less dramatic as it might look because the decay
momentum k is usually rather large (several hundred
MeV). For a test of the dependence on the mass of the
created quarks the I = 1 resonances A2(1320), p'(1600),
g(1690), which decay both into nonstrange and strange
mesons, are especially suited. This test will be presented
elsewhere.

For the understanding of decays allowed by the OZI
rule it would be important to clarify the assumptions

which lead to the QPC model on one side or to the model
of Ref. 5 on the other. In our approach we took into ac-
count the interaction within the decay mesons but did not
consider any interaction between them. This picture
would be exact in the strong-coupling approximation'
and has been extended here to arbitrary potentials. It
seems to us the appropriate approximation, since the
forces inside a hadron are much stronger than the in-
terhadronic forces.

While our assumptions which led to the Po QPC
model were motivated from the strong-coupling expan-
sion, the approach of Ref. 5 can be motivated from per-
turbation theory. Indeed from one-gluon exchange one
would obtain Eq. (1.1) with V(r) = a, /r in th—e nonrela-
tivistic limit. The creation function E would be the per-
turbative one with a gluon exchanged between an original
quark and the created pair. It would no longer lead to
I'q++ quantum numbers only. In this model the exten-

sion from perturbation theory consists in admitting a
more general potential than the Coulomb one. This modi-
fication is exactly true for all graphs which simply modify
the gluon propagator. Such an approach, however, would
imply a pure vector potential. This is in contrast with
convincing arguments that the long-range part of the po-
tential is scalar. 's' For these reasons we believe that our
picture is relevant for decays. Nevertheless, it would be
very interesting to pursue our approach within the ansatz
of Eichten et al. Unfortunately, this cannot be done in a
simple way because one then has interactions between all
pairs of quarks thus preventing the factorization of the
problem.

The approach presented here can be extended to a
variety of processes where nonperturbative effects are sup-
posed to play an important role. We think especially of
baryon decays, jets, sequential pair production' and an-
nihilation (like pp). In all these cases an investigation of
the influence of the flavor dependence and kinematics ap-
pears especially promising in our approach.
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