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A study of induced second-class currents emerging as a consequence of broken SU(3) flavor sym-

metry in X P decay is presented. Working within the framework of the NIT bag model, all form
factors describing the X ~n weak transition are calculated, including QCD vertex corrections to
order a, . It is found that the weak-electric dipole form factor gq is suppressed by confinement ef-
fects to be approximately —0.1. This is shown to have a negligible effect on the electron asymmetry
a„and hence strengthens the case that recent data for a, in X P decay are consistent with

Cabibbo-model predictions.

I. INTRODUCTION

Recently the Fermilab E715 collaboration has reported
results of a high-statistics experiment measuring electron
asymmetry a, in the P decay of polarized X hyperons
observed in coincidence with a neutron in the final state.
Based on an initial sample of 25000 events, they have
determined

0,,= —0.53+0.14,

corresponding to a ratio of axial-vector to vector form
factors of

(gi/f i ),„v,———0.29+0.07 .

The latter is in excellent agreement with phenomenologi-
cal fits~' to the semileptonic decays of the spin- —,

'
baryon

octet based on the Cabibbo model, which predicts for the
transition X ~n,

(gi If i )C,b ———0.28+0.02 . (3)

To extract a value for g i If, from experimental quanti-
ties, however, data analyses must rely on untested assump-
tions regarding the value of other form factors which ap-
pear in baryon weak-current matrix elements. In particu-
lar, the second-class form factors, fs and g2, whose defi-
nitions we give below, are usually assumed to vanish by
virtue of the generalized 6-parity invariance of SU(3) fla-
vor symmetry. However, unequal quark masses break this
invariance and strong-interaction effects are expected to
generate nonzero values for f3 and g2 to the extent SU(3)
is broken.

Theoretical estimates of induced second-class currents
in flavor-changing transitions were orignally provided for
LES=0 transitions by Halprin, Lee, and Sorba in a study
of neutron P decay. Employing the quark model with un-
equal masses for tt and d quarks, these authors showed
that gluon vertex corrections induce large second-class
currents, of order b,tne/nte, when quarks are treated as
free particles. (Here ttte is the current-quark mass. )
However, they also argued that when confinement effects
are taken into account, this effect is suppressed to order
httte/toe, where toe is the constituent mass of a quark con-

fined inside a baryon. This ratio is very small for M=O
decays (-0.01—0.02) but much larger for M= 1 transi-
tions since m, -co, .

It was this latter possibility that prompted us to evalu-
ate second-class currents for the strangeness-changing de-
cay X «nev„ to determine whether they appreciably
contribute to the electron asymmetry a, and thus affect
the experimental determination of gi/fi. In this work,
we calculate all form factors of the weak decay X +n in-
the framework of the MIT bag model, including gluon
vertex corrections to lowest order in a, . Our results are
close to phenomenological fits based on the Cabibbo
model. In particular, we find the second-class form factor
gi to be relatively small, even for this strangeness-
changing transition, and conclude that its effect in the
phenomenological analysis of X P decay is negligible
compared to other theoretical and experimental uncertain-
ties.

Our discussion begins in Sec. II with a review of the
spin- —,

'
baryon weak-current matrix element, thereby de-

fining six form factors, two of which are second class.
Taking the nonrelativistic limit, linear functions of the
form factors are produced which have a direct correspon-
dence to moments of vector- and axial-vector-current ma-
trix elements in coordinate space. Our approach illus-
trates the necessity of evaluating all form factors simul-
taneously when working in a specific Lorentz frame and,
in particular, reveals commonly neglected contributions to
second-class form factors. Up to this point the formalism
we develop is quite general and independent of the specif-
ic form of quark- and gluon-field operators. In Sec. III
we specialize to the MIT bag model and present numerical
results for the form factors of X P decay. Included in
this section are examples of the explicit construction of
matrix elements, both for "bare" vertex diagrams and for
lowest-order QCD vertex corrections. We also present an
approach to renormalization in the bag model, which
treats the net effects of quark confinement on form fac-
tors perturbatively and by which we shall be able to derive
physically meaningful renormalized form factors. In Sec.
IV the implications of our results are discussed, with par-
ticular attention paid to the extraction of g, /f, from ex-
periment. We relegate to the Appendix expressions for
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bag quark and gluon wave functions and propagators
needed for the evaluation of matrix elements.

II. FORM FACTORS—PRELIMINARIES

The matrix element of the charged weak current be-
tween spin- —,

'
baryon states may be expressed in its most

general form consistent with Lorentz covariance and
time-reversal ( T) invariance as

&By )J2(q) ~B, &

i~m f2 q' qif2 q'= Qy
my; my;

i~m g {q')
}2gi(q')

mfi

q2gs q
}'5 "i ~

mf;
(4)

u 0"q
Xg

4m;

{X;y are two-component Pauli spinors) in Eq. (4), and
reduce the matrix element to two-component form:"

where
~
By),

~
B;), my, and m; are the final and initial

baryon states and masses, respectively. In Eq. (4),
my;= my—+m; while q=p; —py is the four-momentum
transfer, where p; and py are the initial- and final-state
momenta. T invariance requires that all six form factors,
f; and g;, i = 1,2,3, are real. Our metric is g„„=diag(1, —1,—1,—1) and we shall follow the conven-
tions of Bjorken and Drells for Dirac matrices and spi-
nors.

The form factors fi and gi are the familiar vector and
axial-vector form factors, f2 and g2 are the weak-
magnetic and electric dipole form factors, while f2 and g2
are the induced-scalar and pseudoscalar form factors. If
SU(3} flavor symmetry were unbroken, G parity, suitably
generalized to SU(2) V-a~in multiplets, would require that
both fs and g2 be zero; these are the so-called second-
class form factors5 which are usually neglected in analyses
of baryon decay. However, since SU(3) is broken, f2 and

g2 are expected to be nonzero and, particularly for 6$= 1

transitions, could be important.
In evaluating the form factors, we first note that the

timelike momentum transfer in semileptonic decays is
typically small compared to the mass of the participating
baryons (hm/my;-12% for X +n). T—hus it is reason-
able to take the nonrelativistic limit of Eq. (4} and to
neglect terms of order (q/rn; ) or (q/my), where q is the
three-moinentum transfer. Implementing this limit in the
Lorentz frame where p;= —

py ——q/2, we make the re-
placements,

(By I J,(q)
~
B,),'

= (By I Ã2{q) I
B & = V2.(q) —~2(q»

where

V (q) =—Xy[~0(q')]Xi,

V'(q)=—X [q'~ (q')+ie'y"qyo"& (q')]X.

&'( q) =X—y[q rrd2y'o(q2)]Xi

&'(q)=Xy[o'Ms(q )+(q'q —,'q—5'J)~j~r(q )]X,

(7a)

(7b)

(7c)

(7d)

[In Eqs. (7) and henceforth, q denotes
~ q ~

.] The coeffi-
cients, P 0, yy y, P ~, Wp, d3fs, and Mr are even-parity
scalar functions of q given by the following linear com-
binations of form factors 2

~o(q') =fi{q'}+™fs(q')+O(q'» (8a)

~~(q') = ' [fi{q')+f2{q'}]+o(q'},
4m&mf

2

~o(q )= [g2(q )—g&(q )]— +O(q )
am 2, g2(q )

482) mf mf;

(8c)

W&(q') =gi(q') — g2(q')+O(q'),

g3(q } gl {q } g2(q
1 2 1 2 hm

4m' mf 2 m);.

+O(q'),

where all dependence of the form factors f, and g; and
coefficients P; and W; on m; and my is suppressed.
Given a model in which the matrix elements V„(q) and
A„(q) may be evaluated, Eqs. (7) determine the coeffi-
cients P"; and M; by suitable projection.

Alternatively, the two-component form (7) of vector
and axial-vector currents may be derived by noting that in
the Lorentz frame we have selected, q' and o' are the only
vectors at our disposal; Eqs. (7) thus exhaust all operators
constructed from q' and o' that can specify Vz and &2.
consistent with the transformation properties of these
currents under spatial rotations and parity. The coeffi-
cients P"; and W; may also be classified according to G
parity, which in the two-component form transforms an
arbitrary matrix element XyM{q)X; according to

XftM(q)Xi -Xytn2MT( q)n2X— (9)
6

Second-class (axial-) vector currents transform odd (even)
under 6 parity. It is easy to verify that P i{q ) and

Wi(q )=— [fi(q )+f2(q )]+ +O(q ),fi(q )

4m;mf mfa

(8b)
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Mo(q } are second-class coefficients, in agramnent with
the identifications (Sb) and (8d), respectively, and like fs
and g2 must vanish in the SU(3)-symmetry limit, hm ~0.

By working in a specific Lorentz frame, we see that it is
not the Lorentz-invariant form factors, f; and g;,
i =1,2,3, but the rotational invariants P;, i =0, V,M, and
Jar;, i =O,S,T, which naturally determine the structure of
the weak current. Thus in models such as the MIT bag in
which a particular frame is implicitly selected, it is
simpler to first compute &; and W;. Equations (8),
evaluated at q =0, then determine six linear relations
which may be inverted to extract the desired form factors.

Besides caleulational simplicity, Eqs. (8) also have im-
portant consequences for the evaluation of second-class
form factors. Since these are already of order hm /my;, it
is necessary to include all contributions of this order from
the first-class form factors. To illustrate this point we
consider g2 in detail. From Eq. (8d), we have

+(2~3)+(1~3)]
I
0}, (14}

Here q„(y) [q„(y)] are static quark [antiquark] wave
functions of energy co„, c is a color index and n denotes
all other quantum numbers (spin, flavor, etc.). The opera-
tors a„' and a„' obey the usual relations,

(13)

all other anticommutators being zero, with similar rela-
tions for the antiquark operators b„' and b„'

For the baryon states we shall use the standard SU(6)
wave functions. ' In evaluating the weak current describ-
ing the X ~n transition, it suffices to take both initial
and final states with spin up:

I 8; ) =
I
X t } and

I Bf) =
I

n t ) . In terms of creation and annihilation
operators, these SU(6) wave functions are

lf 2t 3f lf 2t 3t lt 2f 3tt }= [ 2adfa i adt +a tadiadf +adfadia i18

g2 hm
(gi —gi}—~0

Pffft 4PlI Pt2f
(10)

and

x (&I I:0'(/b'81 —7'sW"(P}:
I
~ &

where E; and Ef are the initial- and final-state baryon en-

ergies, respectively, and g(y) is the canonical quark field
operator,

'(po, y) =g [a„'V„(y)e " +b„' ti„(y)e " ] . (12)

N

u

FIG. 1. X P decay.

showing that g2 depends not only on Wo, but also receives
contributions of order b,m/mf; from gi and gi (or,
equivalently, Ms and MT). Since Mo is second-class and
proportional to b,m, all three terms of the right-hand side
(RHS) of Eq. (10}are of comparable magnitude, and con-
sequently all these terms must be retained in determining

g2. This corrects the practice often found in the literature
of prematurely neglecting fi and g3 in the eualuation of
form factors. Of course, these induced form factors may
be discarded afterwards in the calculation of p-decay tran
sition amplitudes as they appear there suppressed by the
factor, (m, /rnf;) «1.

The currents V„(q) and A„(q) are obtained by
transforming the relevant weak-current matrix element to
momentum space. For example, in the absence of gluon
vertex corrections (Fig. 1), we simply have

2m5(Et Ef Em)(—Bj I gi, (q) I&;&

dp 8
iq~o —iq y

(15)

Here we have suppressed reference to all other quantum
numbers besides color, spin, and flavor, taking quarks in
each baryon to be in their lowest-energy eigenstate.

The use of SU(6) wave functions, Eqs. (14) and (15), as-
sumes that quarks of the initial- and final-state baryons
are in their ground states. Some mass splitting is taken
into account by using quark wave functions in Eq. (12)
which depend upon the appropriate quark masses.
Excited-state amplitudes could be included via configura-
tion mixing' and gluon exchange, although we do not do
so in this paper.

With Eqs. (12)—(15), we have all the tools necessary to
evaluate Eq. (11) for X p decay. Expanding the ex-
ponential factor exp( iq y) o—f Eq. (11) in powers of q y,
it is then straightforward to identify the functions P; and
W; of the weak current (Bf I g (q) I

8;) as per Eqs. (6)
and (7). These can be consistently deflned in terms of
various integrals over quark wave functions, including the
appropriate SU(6) Clebsch-Gordan coefficients. Explicit
examples of this construction will be presented in the next
section.

III. FORM-FACTOR CALCULATIONS

In the previous section, we established a general frame-
work for calculating the weak currents associated with
spin- —,

' ~spin- —,
'

baryon transitions. %e now specialize to
the MIT bag model and expand the quark field operator,
Eq. (12), in terms of bag quark and antiquark wave func-
tions whose explicit forms we give in the Appendix [cf.
Eqs. (A5a) and (A7)]. Tables I and II list the quark and
gluon modes and corresponding energy eigenvalues that
we shall use in the expansion of bag quark and gluon
propagators. We shall ignore the slight differences in bag
radii among the octet baryons used in the fit of Ref. 7 and
adopt the average value, E.=5.0 GeV

Strictly speaking, we must evaluate P; and W; in the
Lorentz frame in which the initial- and final-state baryons



INDUCED SECOND-CLASS FORlN FACTORS IN X P DECAY 1359

TABLE I. Quark hag modes and energy eigenvalues cos,„„(in
MeV) included in the vertex calculation. Standard bag-model
parameters are used, with 8=5 GeV ', m„=5 MeV, m, =280
MeV, and a, =0.55. All eigenvalues correspond to the lowest
mode ( n =0) in each channel (j, 1), with the exception of ( z, O)

which is first-excited (n =1).

quark participating in the decay. Superscripts on the
quark wave functions q(y) denote its fiavor.

Expanding (16) in powers of q', we may easily obtain
explicit expressions for H ' and M,' ' which we now il-
lustrate for the case of Ws ' and Wo '. Inserting quark
wave functions [Eq. (A5)] for the q'-independent portion
of the axial-vector weak current A ', we find

1

2

3
2

1

2

5
2

3
2

g 1

2

7
2

411

643

763

1080

838

1081

1144

1199

y, g'g, Ms '(0)

= —g ( —,
' 5,5,+—', 5,5,)X tr'X

X f r dr N„N, ( W+ W'+j@'o

——,'W" W'J",J', ), (»)
where 8 is the bag radius and jo i

——jo t(x r/8 ) are f-
fiavor-dependent spherical Bessel functions. We have also
used a simplifying notation where

are moving in opposite directions with momentum

~ q ~
/2. This is, however, problematic in the MIT bag

model, which only describes baryons in their rest frame;
no entirely rigorous formalism exits for boosting bags to
the nonzero momentum. We shall circumvent (but do not
solve) this problem by approximating the values of P;(0)
and M;(0) with their values obtained assuming both the
initial- and final-state baryons are at rest.

A. Bare form factors

To zeroth order in tx„X P decay is the process por-
trayed in Fig. 1. Evaluating Eq. (11) with the SU(6) wave
functions given by Eqs. (14) and (15), we obtain

(nt igP'(q) i
& t)

= —g(i5 t5 t+~5 t5 i)

X f„d'X e ""[ejt"'.(y)ri.(1 7'5)—

y. qj"p~~ (y)] (16)

where j=j'= —,', 1=1'=0, and n =n'=0, which results
from taking quarks in the initial- and final-state baryon
wave functions to be in their lowest energy eigenstate.
The sum is over spin states m (m') of the final (initial)

TABLE II. Gluon bag modes and energy eigenvalues vq~R
included in the vertex calculation. For given (T,J) all eigen-
values correspond to the lowest mode {X=0), with the excep-
tion of 1, which is first-excited ( N = 1).

and

Q, S u, s u, g¹„,=¹.' ), x ' =x ',j=—l=o2' j=—,1=0,n =07

W+' ——W+'(j = —,,1 =O, n =0)

—W"- W+jtjo) .

(18)

Note that this second-class coefficient vanishes for equal
quark masses, m„=m, . With the values P,' ' and WI '

in hand, we invert Eqs. (Sa)—(Sf) to determine the bare
form factors, f&'

' and gt' ', i=1,2,3. The numerical re-
sults are presented in Table III.

As alluded to in Sec. II, we see that fi and g& are not
negligible and contribute significantly to the second-class
form factors [cf. Eq. (10)]. Also we observe that gz

' is
small and negative; this contradicts the estimate of Ref. 6
that gz is of order km~/co&, which for M= I transitions
is near unity. This estimate of gz neglected contributions
from gi and g3, and the factor multiplying hm~/co~ was
found to be numerically quite small.

From Table III, we may also compute the ratio,

(g '/g', ') = —0.17 . (19)

[cf. Appendix, Eqs. (A4)—(A5)]. Similar steps for the
temporal component of the axial-vector current give Mo.

X,(q tr)X, &o '(0)

= —g ( —,
' 5,5,+ —,

' 5,5,)X (q o )X ~

mm'

R
r dr —N„N, (W+W' joj't3 0

1

2

3

2.744

3.870
4.973
6.117

4.493
5.764

6.988
7.725

This is somewhat smaller than and opposite in sign to the
value obtained by Donoghue and Holstein, ' who find
g2/g~ ——0.27, employing the nonrelativistic quark model;
the discrepancy with our value Eq. (19) is due to contribu-
tions from g3, which are neglected in their computations.
Had we set g3

' to zero in Eq. (Sd) and used our values of
Ws ' —0.237 and Wo ' ———0.0053 in Eqs. (Sd) and (Se) to
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TABLE III. Form factors for X ~n evaluated at q {hm) =(0.258 GeV/c ) . Listed are the
bare form factors, (f ',g '), order-a, ( g, /4m) QCD vertex corrections (f ",g ") and the renormal-
ized form factors calculated using Eqs. (31) and (32).

Bare —1.015

f2

1.637 0.246 0.232

g3

Vertex
correction —0.514 0.269 —0.015 —0.047 —0.491

Renormalized
form factors 1.906 0.270 0.250 —0.087 —1.049

determine g'i ' and gz ', we would have found gz '/g'i '

=0.21. We conclude that the inclusion of gs (or,
equivalently, Mr) is essential for obtaining the correct
sign and magnitude of gz/gi. This point has recently
been emphasized by Kubodera, Kohyama, Oikawa, and
K.lm. "

B. QCD corrections to form factors

The rigorous treatment of gluon exchanges between
quarks confined to a bag is not a straightforward problem.
There are ambiguities associated with the double counting
of gluon degrees of freedom and quark self-energies. The
former is ameliorated somewhat by the fact that, by con-
fining gluons to a bag, gluonic energies are bounded from
below by a minimal zero-point energy. This presumably
minimizes double counting of soft-gluon effects which,
according to traditional bag-model wisdom, are solely re-
sponsible for the formation of the bag. Effects due to soft
gluons are then implicitly incorporated in the quark-bag
wave functions.

The ambiguities introduced by using physical (that is,
renormalized) quark masses may be removed by eliminat-
ing all quark self-energy diagrams. However, the com-
mon practice is to adopt the so-called minimal prescrip-
tion, which instructs us to neglect all quark self-energy
graphs except those self-energy diagrams which, together
with exchange graphs (Fig. 2), will provide for zero radial
color flux at the surface of the bag. This eliminates well-
known infrared divergences introduced by considering ex-
change graphs alone, which in the Coulomb gauge are as-
sociated with the s-wave component of the bag Coulomb
propagator Doo. '

This prescription is often applied as an approximation

in calculating decay diagrams, such as those shown in
Figs. 2—4. In particular, in the Coulomb gauge, it treats
the bubble (Fig. 3) and vertex (Fig. 4) diagrams as self-
energy graphs, keeping only Coulomb gluon (Doo) contri-
butions. This is the approach used, for instance, by Ushio
and Konashi' in their calculation of gi/fi of hyperon
semileptonic decay. These authors find that the contribu-
tions to form factors due to Coulomb gluons in Figs. 2—4
tend to cancel, leaving as the dominant correction to
gi/f i the static transverse gluon-exchange graphs of Fig.
2.

However this treatment, in its neglect of transverse
gluon-bubble graphs and vertex corrections, also removes
the desired QCD corrections to the form factors. The
point is that, for our choice of baryon states [Eqs. (14) and
(15)] in which individual quarks have well-defined ener-
gies, the intermediate quark states of Figs. 2—4 may be
off-mass shell since the 8'boson removes energy from the
decaying baryon. Thus, only on-mass-shell intermediate
quark states should be discarded, which in Figs. 2 and 3
correspond to baryon-wave-function and quark-mass re-
normalization, respectively. (An even more comprehen-
sive treatment would include configuration mixing' for
the initial- and final-state baryons, including amplitudes
for quarks to be in excited states. )

Here me consider only order-a, vertex corrections to
form factors due to time-dependent transverse gluon ex-
change (Fig. 4), thus extending the work of Halprin, Lee,
and Sorbas to M =1 transitions. A more complete calcu-
lation would include contributions from one-gluon-
exchange and off-mass-shell bubble graphs (Figs. 2 and 3,
respectively) as well as from graphs involving Coulomb
gluons.

The order-a, ( =g, /4n) vertex graph of Fig. 4 corrects
the baryon weak current as given by

N
rr

~r LI 0

N r

/
S S S ~ U

N y
/

S ~ U U U

PIG. 2. Exchange diagrams contributing to X p decay. FIG. 3. Bubble diagrams contributing to X P decay.



33 INDUCED SECOND-CLASS FORM FACTORS IN X P DECAY 1361

2tr5(Ez —E„—Ittm)(nt ~Pi"(q) ~X t)

=fd'x d'y d'z e""g (n t ~:g'„(z)ig,y &;, [tSg(zy)] yi(1 —y&)[iSF(y,x)]l'g, yak, ,', -g,' (x) [iD,b (z,x)]
~
& t),

CC C

where ff are f-fiavored, c-colored quark-field operators (12) and the propagators D,s and S)c are given in the Appendix
[cf. Eqs. (A9), (A10), (A21), and (A22)]. The color matrices lI; are the familiar Gell-Mann SU(3) matrices. The extrac-
tion of P l" and W,'" proceeds as in the QCD-uncorrected case; the only complications encountered here are additional
factors due to (1}energy denominators of quark and gluon propagators, (2) quark wave function overlaps at the quark-
quark-gluon vertices, and (3) a color trace, providing an overall factor of TrQ, 'A, ')/3= —", . For example, the vertex

correction to &0, namely, Wo", is given by

+t(a q)~t~o 3 gs p p p p ( 3

'hatt'42t+

3 'hatt'4&t)[2 JN( JN ~jtltttt+ntjln )(vjlv ~j&l&n&+j'I'n')]
(1) &6 2 1 2 (T) (T) u g (T) s

JMTN jim j'I'n' mm'
Nl )i@2

XJ„(jtlim tnt j lmn; JMTN)q K (jlmnj'I'm'n')

XJ, (j 'I'm'n', j 212m tnt, JMTN), (21a)

where the matrices Jf are quark-quark overlaps with the
gluon wave functions GqgN [Eq. (A17)],

Jy(jlmnj 'I'm'n'; JMTN)

=—f d x q j~(~„(x)y GgMItl(x)qj l ~ „(x) (21b)

contributions from all combinations of all intermediate
quark/antiquark and gluon modes listed in Tables I and
II, providing an effective energy cutoff of A=1 GeV.
This proved sufficient to attain convergence to within
10' of f" and g ", i=2,3, which are not expected to
diverge with A.

S X S

N

/

/f/ 0

~s

C

FIG. 4. Vertex graph contributing to X P decay.

K/j (jlmn,j 'I'm'n')

i d—x xqlfl „(x}yoysqj l „(x), (21c)

with external quark legs evaluated in the lowest-energy
eigenmode (j t

——jq ———,', ll ——12
——0, and n t n2 ——0}. J——f is

related to Jf via

Jf(jlmnj 'I'm'n', JMTN)

=J/(j 'I'm'n';jlmn; JMTN) . (22)

Equations (21) specify contributions to &0" when the in-
termediate quarks are in positive-energy bag eigenstates.
Similar expressions may be found for contributions from
quark-antiquark, antiquttrk-quark, and antiquark-
antiquark intei—.xiediate states.

Table III summarizes our results of vertex corrections
to form factors, f" and g ", i=1,2,3. These include

C. Renormalixation

To obtain physically meaningful results, the form fac-
tors must also be renormalized. As in quantum electro-
dynamics, 'vertex corrections introduce ultraviolet diver-
gences which must be eliminated to produce a finite,
well-defined theory. Here, to order a„we expect contri-
butions to f t and gi which depend logarithmically on the
high-energy cutoff, 6 as has been demonstrated for the bag
quark self-energy. ' We did not observe this weak diver-

gence in our numerical calculations, although this may be
due to possible nondivergent dependences on A (e.g.,
power-law dependences: A l', p&0).

However, prescriptions of renormalization elucidated
for perturbative quantum chromodynamics (PQCD) are
not directly applicable to the MIT bag model, which dis-
tinguishes implicit soft gluons responsible for producing
confinement from hard gluons explicitly incorporated in
the model. While this separation provides for the
phenomenological success of the MIT bag model in
describing a number of hadronic properties (mass spectra,
magnetic moments, axial couplings, etc.}, it does lead to
ambiguities in extracting physical results from loop dia-
grams involving hard gluons. Confinement of quarks in a
bag produces distortions of quark wave functions and
quark/gluon propagators, leading to corrections (even for
the bare vertex} to form factors which are implicitly of or-
der a, . A consistent renormalization of strong-interaction
effects should take these implicit dependences on a, into
account.

Our approach shall be to mimic PQCD by assuming
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that all strong-interaction-induced contributions to the
form factors may be treated perturbatively. These in-

duced contributions to the bare from factors, naively of
zeroth order in a„are given by the deviations of f," ' and

g
' from their free-quark values. In the limit, strong in-

teractions are turned off (or, in our calculation, as the bag
radius is sent to infinity), f ' and g ', i=2,3, which are
absent in the bare weak vertex, all vanish and f'i

' and g'i '

assume their SU(6) values: for X ~n, these are given by
—1 and —,', respectively. Indicating implicit strong-
interaction corrections by hf(' ' and hg ', we have

f( = —I+~f( gi =7+he((0) (0) (0) ~ (0)

(0) (0) (0) (0)fi =~fr, g2 =~g2
(0) (0) (0) (0)fi =~fi gi =4ri

TABLE IV. Form factors f) and g( for X ~n at the
SU(3)-symmetric renormalization point: m, =m„=5 MeV,
m =m„=939 MeV.

Bare —1.0 0.218

Vertex
correction —0.001

renormalized form factors, f, and g;, i =1,2,3, as well as
the values off) and gi at the SU(3)-symmetric renormali-
zation point,

(28a)

Hence, to lowest order in a„hf( ' and hg ' are of the
same order as f;"' and g("'.

The remainder of the renormalization procedure
proceeds in the usual manner. %'e introduce two con-
stants Zv and Zz which, respectively, renormalize the
vector and axial-vector currents, viz. ,

(24a)

~g =om =m m =m

The latter are listed in Table IV.
Applying now Eqs. (24)—(26), we find

—1=Zv( —1+i()f ', '+f ',"+ . ),
—,'+AC& ——Zz(-,'+dC I '+g'i"+ ),

(281)

(29a)

Aq'" ——ZgAq ——Zg(Aq '+A„"'+ ), (241)

where, here and below, the ellipsis denote order-a, contri-
butions. A condition on V„"' determining Zv is obtained
from the Cabibbo hypothesis which states that, in the
limit of perfect SU(3) symmetry, V„"" is a member of an
octet of conserved vector currents which includes the iso-
vector portion of the electramagnetic current. This relates
the electric charge of the proton (+ 1) to the normaliza-
tion of V& (X ~n) at zero momentum transfer, giving

where hf ( ', etc., are defined analogously to Eq. (23).
Equations (29} then determine Zv and Zz to first order in

a, and strong-interaction effects:

Zv =I+~f 'i"+f 'i"+
Z„=1+3ac„—3' ',"—3g ',"+

(30a)

(301)

Inserting into Eqs. (24), we see that to first order in a,
and confinement effects, the farm factars f; and g;,
i=2,3 are unrenormahzed:

V„""(X ~n)
~ g () ffcn f(0)+f(1)+ (31a)

= —u(n)y„u(X ) . (25)

At the saine renormalization point, q& vanishes and so
Q ' "must be pure axial-vector, resulting in the condition,

A'„'"(X n) ~q ()

ren (0) (1) . . . ~

=gI' +gt + '''
s (31b)

1+(gf(0) gf (0))+(f(1) f ( )+ (32a)

Qnly fi and gi experience nontrivial rescalings, as given
by

f) =Zvfi

= Cz(X ~n)u(n}y„ysu(X ), (26)

where C„(X ~n ) is a numerical constant depending on
the values of m, (=m„) and mz (=m„) in the SU(3)-

symmetry limit. If we realize this limit as m, =m„=5
MeV and m&

——m„=939 MeV, then the Cabibbo theory

together with SU(6) symmetry relates C„(X n) to the ex-
perimentally measured axial-vector form factor
Cz(n ~p) of neutron P decay:i

Cg(X —+n ) = —,
'

Cg (n ~p) =0.251+0.001 .

Here again we shall isolate the strong-interaction correc-
tions to Cz as ACE ——Cz ——,

' .
Having secured two conditions on the renormalized

currents, it is now a straightforward matter to use Eqs.
(24) to determine Zv and Z„, and hence the renormalized
form factors. For this we need our results for the un-

=-,'+«. +(W((0) -W((0))+(g()"-g((")+

(321)

Numerical results for f," and g;"' are presented in Table
III.

IV. DISCUSSION

In Table III all listed form factors have been calculated
at q =(b m ) . Cabibbo-theory-predicted form-factor

2values, however, are usually presented at q& equal to
zm'o. To factor out q& dependence one usually adopts a
dipole formulai which is a function of both q„and a
mass parameter that must be fit to experiment for each
form factor separately. Using our calculated values offi,
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fz, and gi (here and henceforth, renormalized form fac-
tors are understood) we can extract their values at q„=0
by dividing out the dipole correction factor, viz. ,

fi(0)=fi(4m ) 1 —2
4m
M„

I

f2(0)=f2(4m ) 1 —2
hm

M„

N1
gi(0)=gi(4m) 1 —2

= 1.64,

=0.23,

(33)

where we used M„=0.98 GeV and M, =1.25 GeV as
found in Ref. 3. These values for fi, f2, and gi differ by
approximately 20%%uo from their Cabibbo-theory-predicted
values:

fi(0} I c b= —1.0,
f2(0} I c.b= —

W,
—2(u. =2 03

gi(0} I cab {F—D)=0.28,

where ({tz and p„are the anomalous magnetic moments of
the proton and neutron, respectively, and D {Bis the
SU(3) (anti) symmetric axial-vector coupling.

The reasonable agreement found between (33) and (34)
provides confidence in our calculation of the other less
well-known form factors fi, g2, and g&. Examining
Table III we see that the second-class form factor fi is
comparable in magnitude to g&.

' However, as mentioned
before, a suppression factor of (m, /mfi) makes fi ir-
relevant for the process X ~new„although it may be
significant in transition amplitudes involving final-state
muons since the amplitude suppression factor (m„/mf; }
is {200)z times larger than in X ~nev, . In contrast to
f3, gz is relatively small, approximately —0.1, and thus
does not support the estimate of Ref. 6 that
g2(4S'= 1)=—1.0.

A value for gz of this magnitude will not have a signifi-
cant effect on the electron asymmetry a, of semileptonic
decay, which measures the correlation of the spin of the
decaying baryon with the momentum of the final-state
electron. The dependence of the electron symmetry a, on

fi, f2, and g2 to first order in 4m/m~;, is given by'

a.=(fi'+3gi') ' 2gi(f i
—gi }—— [(fi+gi)(f i+f2+gi+g2) —«igz]

3 PlfI

r

+(fi'+3gi') ' 4 gig2 +o4m 4m
78fI.

(35)

We see that g2, already of order 4m, appears in this ex-
pression suppressed by an additional kinematical factor of
4m/mf&. Roughly speaking, this gives a contribution to
a, of (4m/m/, ) (g2 ~

=0.01, which is negligible com-
pared to current experimental error, 4a, =+0.14.

To be more quantitative, we shall evaluate Eq. (35} for
the X +n tran-sition using renormalized form factors
given in Table III, leaving gi(0)lf i (0) as a free parameter
to fit experiment. The calculated values of a, vs

gi(0)/f i(0) are shown in Fig. 5 for the X ~n transition.
The curves in Fig. 5 also display the dependence of a, on
g2{4m)/fi(0), where g2(4m)/fi(0)=0. 11 is our calcu-
lated value from Table III and Eq (33) w.hile
gz(4m)/fi(0}=0. 0 is the usual assumed value used in
data analysis and phenomenological fits2'i to the Cabibbo
model. From the plot, we find for g2(4m )/f i(0)=0.11
an extracted value of gi (0)/f i (0}= —0.29+0.08, while for
gz(4m )/f i(0)=00 we find that g i (0)/f i (0) is
—0.30+0.08. The latter differs slightly from the experi-
mentally extracted value (2) of Ref. 1 which uses the Ca-
bibbo value (34) for f2. These values are to be compared
with the Cabibbo value gi(0)/fi(0)= —0.28+0.02, and
our calculated value, gi(0)/fi(0)~, ———0.29 as deter-
mined from (33). The message is now clear: Including g2
in the calculation of a, produces a negligible shift in

gi lfi (from —0.30 to —0.29), remaining in accord with

"0.4

CABBIBO
r f r I

= O.O
t((O) gr

-0.5—
= 0.11

t, (0)

-0.6 rr
9~

= 0.&5
f

1
(0)

-P.T
-0.35

I l i I

-0.30
i I i I i l i

-0.20-0.25

9, (0) /f, (0)
-0.15

FIG. 5. Electron asymmetry a, vs the axial-vector-to-vector
form-factor ratio g~/f~ for several values of the weak-electric
dipole form factor g2{4rrr )/f, (0): {1)gz/f i(0)=0 (solid line),
(2) our calculated value, gz/fi(0)=0. 11 (dashed line), and {3)
gqlf i(0}=0.95 (dotted line), obtained via the Goldberger-
Treiman estimate of g3 [Eq. (36)]. Horizontal lines indicate the
Fermilab E715 measurement (Ref. 1) of a, with error bars [Eq.
(1)], the vertical lines a recent fit (Ref. 2) with error bars of
gi/fi for baryon semileptonic decays based on the Cabibbo
model [Eq. (3}].
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the Cabibbo prediction and well within the experimental
error bars. Therefore, the effects on g, /fi due to the
second-class form-factor g2 are too small for early detec-
tion in electron asymmetry measurements.

Recalling the important dependence of g2 on g& (cf.
Sec. II) it is useful to compare our value of g2 with that
obtained by an independent estimate of gs. The form fac-
tor g3 can be related to gi using PCAC (partial conserva-
tion of axial-vector current) and the Goldberger-Treiman
(GT) relation suitably modified for )IS=1 transitions. 'q

This identity relies on the assumptions that the dominant
contribution to X ~n decay is mediated by the exchange
of a E meson and that PCAC remains a good approxi-
mation for hS=1 transitions. Following the usual GT
procedure we arrive at the estimate,

(Mx+M„) gi(q )gi(q')=— (36)
M» —(Mx —M„)

Using our value of gi from Table III and Eq. (36), we
find g& takes the value of —6.4, which is significantly
larger than our calculated value for gi of —1.0. This
leads via Eq. (10) to a new value of g2(hm )/f i(0) of 0.95.
Recalculating a, (see Fig. S) using this value of gz results
in an extracted value for gi(0)/fi(0) of —0.21+0.06,
which is apperciably different from the Cabibbo-theory-
predicted value ( —0.28), as well as our calculated value
(—0.29). We offer this as possible evidence of the unsui-
tability of using PCAC (by way of the GT relation) in the
estimation of gq for M =1 transitions.
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=g Ya, ("r)X,, (lli ,' si —) jm;I —,
'

) .
l3s3

(A2)

Here Yn (9} are the familiar spherical harmonics while
3
wo component Pauh spinors. Clearly I =I+

are the only allowed values of orbital momentum and in
the following we use the notation l=j+-,' whenever
I =j+ ,' Fr—om. (A2) we see that pjl and /II are of op-
posite parity and are related by a pseudoscalar operator,

(e)= yIT (—V) (A3)

Employing an expansion in spin harmonics, positive en-
ergy (ro&0) eigenfunctions of Eqs. (Al) are easily ob-
tained. Let co(x}=(x /R~+mq )'r . Then the energy
eigenvalues ro&1„co(x/I„——), n =0,1,2, . . . , are determined
by the roots x&l„of the transcendental equation,

a)(x) —mq
' 1/2

ji(x) =(I—I )
co(x)+mq

ji(x) . (A4)

The corresponding eigenfunctions are

q/i „(r)=NJI(xjl„)

i~+(jin)ji x,I.—p;i~(&)

(I l)W (jln)—ji xji„—PT (r)

which ensures that the radial quark current vanishes at
the bag surface. As is familiar, the Hamiltonian operator
defined by (Ala} commutes with the total angular
momentum operator, J=L+rr/2, where L= —ir X V,
and so states of definite energy are also characterized by
the quantum numbers (I, m ). Wliile orbital angular
momentum L is not conserved, it still proves useful to ex-
pand the upper and lower components of q(r) in terms of
the spin- —,

' spherical harmonics P&i~(f), eigenstates of J,
I. , and J&, given by

(r}= (9 [j;I—,
' )

APPENDIX: MIT-SAG-MODEL %'AVE FUNCTIONS
AND PROPAGATORS

In this appendix, we review formulas for NIT-bag-
model7'6 quark and gluon wave functions and propaga-
tors which are needed for the evaluation of the weak
currents Vi(q) and Ai(q) in Sec. III. In particular, we
present expressions for excited spin j~ —,

'
quark-bag wave

functions which have not, to our knowledge, appeared
previously in the literature. In the following, we use the
notation x =(t,r) for the components of the position
four-vector x.

Confine quarks of inass mq to move freely inside a
spherical cavity of radius R. Then inside the bag, quark
eigenfunctions of energy co satisfy the free Dirac equation,

where
' 1/2

QPJlJg
+ )PE

qW+(jln)—=

R ji(x)
Nji (x)=

co(x)[co(x ) rnq]—
(j+—,

'
)

X 2'(x) co(x)—(I—I)
E.

(ASa)

(A5b)

(ASc)

(iy V+y co mq)q(r)=0, r—&R,
subject to the boundary condition,

(1+ir.y)q(r) ~, „=0,

(Ala) is the normalization factor. For j=—,', Eqs. (AS) repro-
duce the lowest-mode eigenfunctions of Ref. 7.

Negative-energy eigenfunctions may be derived in a
similar fashion, or by simply applying charge conjugation
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to the positive-energy eigenfunctions given above. For
this, we observe that if q(r) solves Eqs. (Al), then
iysq'(r) does so also with co~ —co. As this operation
also flips J,, we define, up to an irrelevant phase, the
charge-conjugate negative-energy eigenstates via

V.G(r) =0, (A12)

(V +v )G(r)=0, (A13)

everywhere in the bag and satisfy the Helmholtz wave
equation,

cy2q I

Explicitly, our particular choice of phase produces

i W (j ln )j7 x&~„—p T„(f)

with bag boundary conditions,

'P G(r) ~, a ——0,

Vx [VxG(r}]~, „=0.

(A14a)

(A14b)

quinn «)=&)i(xl«)
(l —l)$'+(jln)jl xl« —(N}JI~(9)

The bag quark propagator SF(x,x') satisfying

(i y"(3„mv )—S~(x,x') =5 (x —x'),

(1+tP y)Sz(x,x')
i „a——0,

(Aga)

(Agb)

SF(x,x')= e c~' ' 'SF(r, r', c0)
2s'

(A9)

and expanding the kernel SF(r,r', ro) in energy eigenstates
(A5a) and (A7). Imposing Feynman boundary conditions,
the result is

is constructed in the usual way by Fourier transforming to
frequency space,

The solution of Eqs. (A13) and (A14) is characterized by
quantum numbers (J,M) of J and Js, where J=L+S as
in the quark case except that S is now the spin operator
for spin-1 representations. Invariance under orbital rota-
tions generated by L is spoiled by the boundary conditions
(A14). Thus an expansion of G(r) in vector spherical har-
Glomcs,

YJIJ(c(9)=(9~JM;Ll}

(A15)
I 3S3

e+ =+2-'"(R+i9), co=2,
will mix coefficients of different L, which for given J as-
sumes the values J, J+1. The relevant linear combina-
tions satisfying Eqs. (A13) and (A14} and transversality
(A12) are of two types, transverse-electric (TE) and -mag-
netic (TM), with energies viz' ( T=TE, TM, %=0,1,2, . . .}
determined by the conditions

q&«,„(r)q~i „(r') q&I (r)qji „(r')
SF(1',r;co) = . +

inn co ~i«+' + fl~

d
[xh(x)] I, p~E~n=O (A16a)

JJ(x}I pnan =0 ~ (A16b)

Strictly speaking, (A9) defines Sr(r, r';co) only for
Imcep0. However, analytic continuation to Imc0~0 is
possible by virtue of Schwarz reflection,

S~(r,r', co') =y SF(r', r;c0)y (Al 1)

which is a consequence of Eqs. (Al) extended to complex
co. But the expression (A10) for SF(r,r';co) satisfies (Al 1)
as it stands, and thus is valid for all (complex) co.

In passing, we note that our expression for SF(x,x'} is
equivalent, with suitable modifications for a nonzero
quark mass mv, to that derived by Hansson and Jaffe. '6

By employing a multiple-reflection expansion, these au-
thors are able to isolate the free-quark contribution to
SF(x,x') and thereby demonstrate that the ultraviolet
divergences of the bag model are identical to the free (un-

confined) theory, and thus can be similarly eliminated by
renormalization. To achieve this, however, it is necessary
to include contributions from higher-spin modes j ~ —,.
This justifies the inclusion ofj =—', , —', , and —', modes in

the calculations of this paper, despite the fact that such
modes violate the quadratic boundary condition found in
earlier versions of the MIT bag model.

Next we construct gluon wave functions and propaga-
tors. Working in the Coulomb gauge, the gluon energy
eigenmodes G(r) are transverse,

The corresponding eigenfunctions are

GgsciI((r) =AJ '(vg~ 'R )J'g(vga'r)Yggsc(r), (A17a)

{TM) {TM)

(r) =
(TM) V x[jJ(vj~ r)YJJsc(f)],~ (TM)

l Vg~

(A17b)

where the normalization constants Aq are chosen to
secure unit normalization, i.e.,

J d'r
I Gascon(r) I

(A18)

Using the eigenvalue conditions (A16), these are found to
be

[A' '(x)] =—'R '
( ) 1—

X
(A19a)

[AJ '(x)) = ,'R jq+, (x) . — (A19b)

For the evaluation of vertex corrections to the form fac-
tors we will specifically require the transverse gluon prop-
agator, Dcj(x,x') which in a dyadic notation solves the
equations,
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(A2()a) solves Eqs. (A20}, where( 8—, +V )D(x,x')=5 (x —x'),
V D(x,x') =0, (A20b) Gjsriv(r)GgsrN(r )

D(r, r', v) =
T =YE,TM JMN v (vJN } +&e

(A22)
with boundary conditions at r=R analogous to Eqs.
(A14} and the usual Feynman boundary conditions on the
temporal development of energy eigenmodes. From Eq.
(A13), it is straightforward to show that

D(x,x')= f e '~' ''D(r, r', v)
—iv(t —t )

2F
(A21)

As a final point, we mention that in the Coulomb gauge
the gluon propagator D&„also has a nonzero component
D~ which is the instantaneous Coulomb propagator. We
shall not have occasion in this paper to utilize this object,
whose explicit form in the bag has been given by Lee.2'
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