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Cabibbo-angle-favored D =PP and D = VP decays: A dispersion approach
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%'e have studied D ~PP and D~VP decays in a dispersion approach. %e have explicitly includ-

ed the flavor-annihilation process and investigated the circumstances ~here its contribution could
become large. Data point to a substantial flavor-annihilation term in all these decays. %e also esti-
mate the branching ratios for Do~Rod/, DO~Esp', DO~K0$, and DO~Zoto.

I. INTRODUCTION

Extensive data on two-body Cabibbo-angle-favored de-
cays now exist' for the channels D~PP and D~VP.
The data confirm that D ~K tr is not color suppressed
and that there is evidence of perhaps a larger deIIree of
color suppression in the modes D ~E p and
D —+E '

m . The relevant ratios are'

=0.35+0.07+0.07,

=3.7+ 1.0+0.08;
Rol'=I"(D ~K p )/I'(D ~K p+)

=0.09+0.03+0.02,
R f+P:I (D +K —p+)/I —(D+ +K p+)—

=2.67+0.92+0.64;

=0.30+0.14+0.08,

=5.45+3.61+3.25 .

In arriving at the above numbers we have used

rD+/v ~o 2 5+0 6(s——tat.istica.l only}. The use of'

ra /rD+20.3+a'4+a'i makes very little difference to our

analysis. A model-independent analysis of the D ~Km.
data has shown that (i) complex amplitudes are needed to
fit the data and (ii) nonspectator processes play an impor-
tant role. With the latter point in mind the problem of
D E~ decay was investigated in a vector-pole model
constrained by current algebra. A near fit to the data was
obtained with real amplitudes. After unitarization of the
amplitudes through final-state interactions the authors of
Ref. 6 obtained a fit to the data. In contrast with the
quality of D~Kn data's which necessitates the use of
complex amplitudes, the errors in the D~ VP data are
large enough that a real-amplitude analysis suffices. The
data, as we shall see later, already point to a significant

flavor-annihilation contribution, as do the D ~Km data.
In the present paper we have studied the two-body

Cabibbo-angle-favored D~PP and D~VP decays from a
dispersion viewpoint, including the flavor-annihilation
( 8'-exchange process} which is usually argued to be heli-
city suppressed. We investigate the role of these channels
and the circumstances under which the annihilation chan-
nel could become important. The reader is referred to
earlier investigations, similar in spirit, by Fakirov and
Stech, Milosevic, Tadic, and Trampetic, and Ruckl.

Section II of this paper deals with D~PP do:ays. In
Sec. IIA, dealing with D~Kn decays, it is pointed out
that if the hadronic matrix element of the divergence of
the weak current satisfies a once-subtracted dispersion re-
lation then the flavor-annihilation amplitude could be-
come large. This, then, lifts color suppression of
D —+K n, giving a near fit to the data with real ampli-
tudes. Sections IIB and IIC deal with D ~K q and
D —+K g' decays, respectively. In Sec. II0 we unitarize
D~Km decay amplitudes through final-state interactions
and obtain a fit to the data. The prescription for unitari-
zation used here is the simplest one can think of.

D~VP decays are discussed in Sec. III. In Sec. III A
we study D~Kp decays and argue that a significant
flavor-annihilation contribution is needed. We show that
a naive application of PCAC (partial conservation of
axial-vector current) in the region q =mD leads to a
suppression of the fiavor-annihilation terms by factors of
order mx /mD . PCAC, however, is sure to fail in the
annihilation region (q =mD ) since one would need to ex-
trapolate the amplitude through a region known to be
populated by resonances. We show that PCAC requires a
fine-tuning among the parameters, which include the pa-
rameters entering the decay Q, (1270)~Kp. We argue
that at q =mD this fine-tuning may not occur. If so, the
flavor-annihilation terms could become larger. With one
parameter describing the flavor-annihilation contribution,
we fit D~Kp data. In Sec. III 8 we study D~K'm. de-
cays. We show that these data can also be understood us-
ing an annihilation term of the same size as that needed to
understand D~Ep decays. In Secs. III C and III D we
study D ~K p and Do~K to decays, respectively

D~VP decays have also been studied in the past by
several authors. ' ' In all these studies R fg and Roo
of (1) were found to be strongly suppressed. The analysis
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of the present work is more detailed and, in particular, in-
cludes the flavor-annihilation contribution. We conclude
with a discussion of our results in Sec. IV.

II. D~PP DECAYS

from a 0+ state with flavor content sc, i.e., E„while the
second term gets contribution from a 0+ state with flavor
content sd, i.e., » (Ref. 11).

The final result for the D-+Kfr decay amplitudes, up
to an overall constant is

A(D ~K n+)=[Cif fo'(rn ) C2—fafo(ma )),
The hard-gluon-corrected Hamil tonian for the

Cabibbo-angle-favored charm decay is
A(D K m )= [f»fo'(rn» )+fifo(rnid )),

2

GF
Hrr — co—si8c[ —,'(C++C )(ud)(sc)

2

+ —,
'
(C+ —C )(uc)(sd)),

A(D+~K'~+)=[Cif~fo'(rn~')+Cif»fo'(~»')) .

Note that the M= 1 isospin sum rule

(4) A(D +K —n+)+~2A(D ~K ir )=A(D+~K n'+)

where (ud), etc., represent the left-handed hadronic
current, 8& is the Cabibbo angle, and C+ and C are tak-
en to be

C+ ——0.69, C =2.09, C+ C =1 .

Sandwiching the Hamiltonian (4) between the initial and
the final states and linking up the quark lines in all color-
singlet combinations, one obtains the decay amplitudes in
the factarization approximation (details are provided for
D ~K n+ channel only),

A(D -+K m'+)

=Ciiir+ l(i7d) IO}~K l(sc)
~

D }

+C&(,ir+K ((sd))0)(0)(uc})D }, (6)

where

Ci ———,(2C~+C ), Cp ———,(2C+ —C } .

The first term in (6) is the usual spectator (and color-
suppressed spectator) term while the second term is the
flavor-annihilation term.

To proceed further we use

(0
~

(uc)
(
Do }=i ~2fDpg,

(n+
(
(ud) ) 0}= i v 2f p", —

fo'(m }=f~(0)(mD —rn» ) .

Similarly,

a, , f+(0)(rnD' —m„')
fo'(m» )=

2 z -f+(0)(mD —in )
1 —m» /mn

S

and

f+(0)(rn»' —m i)
fo(mai) =

1 rnid /rn, —

is identically satisfied.
The naive-spectator-model results are obtained froin

(12) in the limit f~=f», fo'(rn )=fo'(m» ), and the
neglect of terms proportional to fo(rnD ), the flavor-
annihilation channel contribution.

Let us next assume that fo(q ) satisfies an unsubtracted
dispersion relation, which would require f (q ) to decay
faster than 1/q asymptotically, then

F, z f~(0)(mD —rn» )fo*(q'}= (14)
1 q2/rnF—

S

& p; i I; I p. & =if;;t(pk+p;)"f+(q')

+(pk p;y'f (q'))—
where i,j,k are the SU(4) indices and q"=(pr, —p;)".
f+(0)=1 in the SU(4) limit.

In evaluating the matrix elements in (6) one encounters
the hadronic matrix element of the divergence of the vec-
tor current

ql (~i
I

~j"
I
I'k)=&figk[(rnk' rn )f+(q')+q'f (q'})—

&fikfo(q'} . —

The scalar form factor fo(qi) is normalized such that

fo(0) =(ma —rn )f+ (0) (11}

fo(q ) appearing in the first term in (6) gets contribution

=—1.1f+ (0)(m» —rn )

with "m„=1.35 GeV.
The factor (rn» —rn ) in (17) signals helicity suppres-

sion. Clearly fo(rnid ) is helicity suppressed relative to

fo (rn ) or fo (m» ). Hence, if we assume an unsub-
F D

tracted dispersion relation for fo(q2), and further assume
that it is dominated by a single-particle pole, then helicity
suppression is not lifted and the nonspectator processes
are not important.

It is clear from (10) that in an exact SU(4) limit,
f (q ) =0, helicity suppression wiB always operate.
However, SU(4) syinmetry is broken and since fo(q ) is
Ieqmred at g =7?lD, it is quite possible
that f+(rnD ) and f (mD ) are comparable. ' Since
f (q ) appears multiplied by rnD in fo(q ), it is also
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quite possible that mp f (mp ) would dominate over
(m» m—~ )f+(mp ). We have just shown, however,
that as long as fo(q ) satisfies an unsubtracted dispersion
relation helicity suppression is unlikely to be lifted.

Let us assume, next, that f (q ) decays no faster than
1/q asymptotically. fo(q ) then satisfies a subtracted
dispersion relation. Let us assume further, that fo(q )

satisfies a once-subtracted dispersion relation such that

qfo (q~) =f+(0)(mp~ —m»i)+ (18)

me will obtain

z Amp
fo(mp )=

mg) —m ~
(25)

A(D ~K n+)= Cif f+(0)(mp —m» )

A,mp
Czf—p

mD —m~
J

It is now possible to lift the helicity suppression of the
annihilation process. The decay amplitudes are then

1

fo'(m ')=f+(0)(mp' —m„')

unless, of course, A,
' is unusually large. Notice that (19)

has not changed from the unsubtracted value (15).
Similarly,

A(D ~K n )= f»f+(0)(mph —m i)
2

A,1)ip
+fp

mg) —m g

(26)

p

fo (q )=f+(0)(mp —m~ )+ —my)

fo*(m» )=f+(0)(mp —m )

which is also the same as in (16).
However,

(20)

(21)

& (D+ K n+)=[Cif f+(0)(mp —m» )

+C2f»f+ (0)(mph m~—i)] .

Note that in the limit f =f» and
mp —m~ =mp —m» -mp and the neglect of flavor-2 2 2 2 2

annihilation terrors, signaled by the parameter A„ the usual
color suppression occurs,

r(D' Ko~o)/r(Do K ~+)= ,'(C, /C-, )'=

fo(qi) =f+(0)(m» —m )+ (22)

2

fo(mp ) =f+(0)(m» —m )+ 2
K

A, &atp

mD m
(23)

2 2mp mp
m» « f (0)

(24)

then (19) and (21) will remain unaltered; however, for (23)

If we look for solutions with the condition [I, stands for
any A, in (18), (20), or (22)]

However, A, &0 raises both A (D ~K m ) and
A (D ~Kir+). The percentage rise in A (D ~K m ) is
larger since the two terms appear with equal weights. In
contrast, the annihilation term in A (Do~K rr+) is pro-
portional to C2 while the

spectator
term is proportional to

Ci. Since Cz/Ci = ——,, the percentage rise in
A(D ~K n+) is smaller.

In Table I we have compiled the ratios Roo and Ro+
as functions of fp/f and A, /f+(0). Clearly, though one
does not expect to fit both the ratios Roo and Ro+ with
real amplitudes, one comes close to fitting the data. The
important point being that helicity suppression of the
flavor-annihilation process is lifted. In turn, this 1ifts the
color suppression of Do~E on decay.

0.16
0.18

1.2
1.2

0.17
0.19

TABLE I. R00 and Ro+ without final-state interactions.

A. /f+ (0)
(GeV')

0.15
0.17

4.96
5.78

5.36
6.30

S.78
6.84

B. Do~X r/

We assume that g is a pure SU(3) octet, i.e.,

(uu +dd —2ss )=&s,1

6

in SU(4). In factorization approximation

A (Do~K or/) =C,[(K'
I
(sd)

I 0) (r/ I
(uc)D')

+ (K g I
(sd)

I
0)(0

I
(uc)

I
D )] .

(27)

1.3
1.3

0.16
0.18

0.16
0.19

5.12
6.21

S.44
6.66

Relating (r/ I
(uc)

I
D'& to (~o

I
(uc)

I
D'& through the

SU(4) rotation (9), one obtains, up to an overall constant,

[f»fo'(m»') —3fpf o(m p') l .
6

It is worth noting that the flavor-annihilation term is
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larger than in D +K— rr by a factor of v 3. This is due
to the fact that g has a ss component while n does not.

However, the flavor-aiitiihilation term may not be signi-
ficant for two reasons. First, one expects that it is harder
to excite a ss pair from the vacuum'3 and second, the a.

does not appear to couple to Krt channel. ' lf the latter
statement is taken seriously then one does not expect the a
structure in fo(q ) appearing in (28). fo(q~) will be essen-
tially structure-free and approximated by its value at

q =0,

and A,/f+(0). In anticipation of the results of Sec. IID
we have allowed A, /f+ (0) to be of order 10 GeV~. We no-
tice from this table that 8(D «K ri)-1—2% signals a
large flavor-annihilation contribution. The reader is re-
minded that 8(D+«K n+) is 2—3%.

C. D' 3.'Pq

We assume rl' to be an SU(3) singlet,

fo(q') =fo(0)=f+(0)(m»' —m„') . (29)
1 (uu+dd+ss) = , (v 3p—o+Pi5),

A(D «K rt) f»f+(0)(mp mv )
6

(30)

Since A(D+«E n+) does not depend on the flavor-
annihilation amplitude either, one can calculate

B(D «K rl)IB(D+«K n+)=0.7X10 (31)

where we have used so+/1 op=2.5 and f»If~=1.2. In

the naive spectator model one expects the ratio of (31) to
be 2.2X10 . The difference is due to f~+f» and the in-
clusion of the pseudoscalar masses.

On the other hand, if the flavor-annihilation term in
(28) is not suppressed, and» couples to K g through
SU(3), then the ratio in (31) could be larger by as much as
2 orders of magnitude. A measurement of 8(D «Kri)
will be quite a sensitive test of nonspectator contribution
to Do«E ori. In Table II we have tabulated
8(D «Kort)IB(D+«Eon+) as a function of folf

Notice that, because of the closeness of the K mass to
the rl mass, the mass suppression is rather strong.

This argument will apply regardless of whether ss pair
is excited or not so long as the» does not couple to K rl.
If the arguments made here apply then flavor annihilation
will not contribute significantly to Do«K rt and one will

obtain

in SU(4). We obtain, in a fashion analogous to the
analysis of the last section,

~(Do-Ko~)=C, [(K'~(sd) ~0&(q ~(u c) [D'&

+(K rl'((sd) )0&(0((uc) [D &]

f»f+(0)(mo —m„) .C2 2 2

3
(32)

A(D «K rl')= ff»f+(0)(mz —mz )
3

The flavor-annihilation term vanishes due to the vanish-

ing of the SU(4) structure function fJk, as one would ex-

pect from the appearance of dd and ss with equal weights
in the ri'. However, the same reasons which allow us to
argue away the flavor-annihilation terms in Do +Kort-
conspire to resurrect the flavor-annihilation term in
D «K ri'. For example, if a ss pair could not be excited
from the vacuum with the same probability as the dd pair
then the cancellation of the fiavor-annihilation term
would not be complete.

In the approximation that the ss pair is not excited
from the vacuum and the» does not couple to the closed
charmel Kori', such that fo(q )=fo(0), one obtains

+fof+(0)(m„—m» )] . (33)

TABLE II. 8(DP«SPY}IB(D+«ZPm+} as a function of
fv/f and A, /f+(0}. Larger values of A, /f+(0} are used in an-

ticipation of the results of Sec. II D.

This leads to (with f» —fo)—
8(D «K ri')IB(D+«K n+)=0.93X 10 . (34)

A, /f+(0}
(GeV~)

6
8

10
12

8

10
12

8(DP-Z P~}

8(D+ Z'~+ }

0.10
0.20
0.33
0.51

0.15
0.30
0.51
0.76

0.22
0.43
0.71
1.06

On the other hand, if flavor annihilation is absent in
A(Do«Kori'), that is, the amplitude is given by (32),
then one obtains (using fo —f» )

B(Do«Kori')/B(D+«Eon+)=0. 58x10 2. (35)

Thus this ratio is not a very sensitive test of the pres-
ence of an annihilation term, unless it can be measured
very accurately.

D. Final-state interactions

Rescattering in the final state endows the weak decay
amphtudes with phases. A number of authors' have
studied the problem of final-state interactions in D«Kn.
decays.

Let us introduce the decay amplitudes 2 i and Ai for
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decays into I= —,
'

and —, states and their phases 5i and 5i
as

1
(die —i/2A ie ),iS~ iSI

ture. The unitarized form of (39) is then

A i (s)(sp —m„)(0) 2

A i(s)e
(s m—„+iyk)

Ai(s)e ' =A'i '(s),

(41}

(42)

~(Do Ko~o)= (~2Aie '+Hie '),

A(D+~K n+)=v 3Aie

where y is the reduced width of the v and k, the three-
momentum in the mK center of mass. We have chosen the
subtraction point to be the rrK threshold, sp ——{mx+m ),
and

is;
A;(s)e '(s) =A;(sp)exp

(s —sp) 5;(s')ds'

7T S —SO S —5 +f6'

(37)

If the scattering in the final state is elastic then the
phase of the weak decay amplitude is the scattering phase
shift in the relevant two-body channel. The effect is to
generate a complex amplitude (i = 1,3}

D (s)= (s m„—+i y k) .

Boo and Rp+ are then calculated by using

1+2r +2V 2r cos5
2+r2 2W2r c—os5

2 2+2
Rp+ =—1+—

2
— cos5

9 r~ r

(43)

(44)

(45)

through the solution of the Muskhelishvili-Omnes integral
equation. '

so is a normalization point and, in our case,
we eventually set s =mD .

If one parametrizes the partial-wave scattering ampli-
tude in the N/D form, ' then the Muskhelishvili-Omnes
function, the exponential in (37), is proportional to
D '(s). A real decay amplitude A '(s) may then be uni-
tarized by final-state interactions through

A, (s)e ' =A; (s)
's (s) ~p) Di(so)

D; s
(38)

,
' Cd'„fo'(s, m„')——

CzfDf o(»m—.')]
(39)

s '(s)= [Cif fp'(s, m )+C2fttfp*(s, mtt )],
3

We choose sp, the normalization point, to be the nK
threshold sp (rntt+——m ), such that the phase vanishes
at this point, as it indeed should, and A;(so}=A '(sp).

We begin by switching off the final-state interactions
and evaluate A '(s} using (12) and (36) with 5;=0. We
obtain (eventually we set s =rnD )

A{i '(s)= —( —,')'rz[) Cif fo'(s„m )

A. D -+Ep

Using the Hamiltonian (4) in the factorization approxi-
mation one can write the decay amplitude for Dp-+K p+

TABLE III, R~ and Rp+ without final-state interactions.
Parameters used: m„=1.35 GeV, y= 1.4 geV {5~——144').

A, /f+ {0)
(GeV2) Rp+

where 5=5i —5i ——5i (in our case) and r =A&/A &.

The results are summarized in Table III. We choose
rather a broad a, y=1.4 GeV, to generate 5i ——144' at
s =mD2. m„was chosen to be" 1.35 GeV. We get a fit
to the data with A, /f+ (0) in the vicinity of 10 GeV, well
within the limits of (24}.

A word about the effect of final-state interaction of
D ~K or) and D ~Kpri' is in order. Since these decays
involve only one isospin amplitude and thus only one
overall phase, their rates are unaffected by final-state in-
teractions. Further, since D~K n+ also depends on a
single isospin amplitude, the ratios B(D -+K pil )/
B(D+~K n+) and B(D ~K ri')/B(D+~K n+) as
also B(D ~K ri)/B(D -+K ri') are insensitive to the
details of final-state interactions.

III. D —+VP DECAYS

where

fo'(s, rn ~ ) =f+ (0)(s —mt' ),
fp'(s, mx )=f (0)(s —m 2),

As
fo(s,m„)=

(40)

We make a simplifying assumption for Ds{s). We as-
sume that there is very little rescattering in the non-
resonant I=—' channel. Thus 5s(s)=0 and Ds(s)=1.
I= —,', 0+ chanel, on the other hand, resonates. ' The
simplest way to unitarize A i '(s) would be by the prescrip-
tion (38) where Di (s) is chosen to have a resonance struc-

1.4

7
8
9

10

7
8
9

10

0.18
0.19
0.20
0.21

0.19
0.21
0.22
0.23

0.21
0.23
0.24
0.25

3.38
3.85
4.34
4.86

4.04
4.65
5.30
6.00

4.75
5.53
6.36
7.25
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mode as

A(D ~K p+)

=C, &p+
(
(ud)

) &
&K-

(
(sc) [

D')

+ C, &p+K-
~
(sd) ~0&&0~ (.—.) [D'&,

where Ci and Cz are defined in (7).
We next use the following ingredients:

(0
~

Vt'
~

Vj ) =5ijg yeq, (47)

=2@2(e k)
PPl g

fzfagvjj,
PIED

—Ptf g

where we have introduced the V;~PJ.Pk coupling con-
stant via the vertex

gijk =ifijke (pj pk }gvi'j

If we use gvji /47r=3 from P~7r7r decay width,
f& —fD ——0.12 GeV and f& /4n—=2.0 from p~e+e de
cay width, we obtain the following ratio of the flavor-
annihilation (51) to the spectator term (48) in
A(D ~K p+).

where Vt' is the vector current and Vj a member of the
vector SU(4) 15-piet. i and j are SU(4) indices. gv is re-
lated to fz, the leptonic decay constant of the p meson, by
gy mq I——fz with f& /47r=2. 0. The matrix element of a
vector current between two pseudoscalar states is given by
(9). Using (9) and (47) the first term in (46), the spectator
term, is reduced to

(p+
~
(ud) ~0)(K [(sc}~D )

=2~26 kgvf+ (mz ) . (48)

k is the kaon four-momentum. f+(q ) gets contribution
from a vector particle with flavor content sc, F', and
may be written in a single-particle-saturated form as

[f (0)=1 in SU(4) limit]

f+ (q )=1/(1 —q Im, ~) . (49)

f (q ) in (9) does not contribute to the process due to the
gauge condition e q=O.

The fiavor-annihilation form in (46} is needed at
q =mD . An extrapolation of the matrix element
through PCAC will almost certainly fail since the energy
region 1—2 GeV is populated by resonances. First, we
demonstrate the consequences of using a naive PCAC ex-
trapolation to q =ma .

By using (8) and the PCAC relation

~g 6—i7 2f P6—i7 (50)

we obtain

(p+K
i
(sd)

i 0) (0 [ (uc)
i
D )

r

In the flavor-annihilation term in (46) one needs to con-
tract (54) with q" and evaluate it at q =mDi. PCAC
made the detailed knowledge of Ki(q ) in (54) unnecessary
since the divergence of the axial-vector current was re-
placed by the pseudoscalar field (in this case, K meson).
On the other hand one can evaluate K;(q ) in the approxi-
mation that they are determined by 0 (K meson) and 1+
[Qi(1270)) mesons. Note that Qi(1270) has about a 50%
branching ratio" into Ep channel while Qz(1400) appears
to decay almost entirely" into E'm channel. We assume
after Das, Mathur, and Okubo' that Kz(q ) and K3(q )

satisfy unsubtracted dispersion relations but Ki(q ) satis-
fies a once-subtracted dispersion relation. The subtraction
point is chosen to be the soft-kaon limit where the matrix
element of (54) is determined entirely by Ki(q ); the
kinematic factors before Kz(q ) and K3(q ) ensure that
they do not contribute in the soft limit. Evaluating
K, (q ) much in the fashion of Ref. 18 we obtain

gy v 2gggs q —mp
Ki(q )=

fK mg —mp q —mg

z 1 gw D6
—mg

2frcgvw

—Ply
3 q

~~gA GD
Gs+ (m, '—m~')

mg (q —mg )

Here g„ is defined analogously to gv in (47) by

(55)

Note that Cz/Ci ————, has helped to pull this ratio
down. Thus a naive extrapolation of the flavor-
annihilation amplitude to q =ma using PCAC leads to
a highly suppressed flavor-annihilation amplitude. If this
were indeed true then D~Kp decays would occur by the
spectator rocesses only and, as we shall confirm later,
D ~K p would be more strongly suppressed than it is
observed to be.

It is now known' (see Sec. II also) that in order to lift
the color suppression of D ~E07ro mode one needs to
enhance the flavor-annihilation amplitude. The same is
true of D -+K p amplitude (as we shall see later) also.
In the following we carry out a careful analysis of the
flavor-annihilation term and study the conspiracy among
the various parameters that is required to give the naive
PCAC result.

Let us study (K (k)
~

A '
~ p (p)). The flavor-

annihilation matrix element (p+K
~ A&

' (0) is ob-
tained by the substitution, pI'~ —p&.

In general, '

(P;(k)
~

Aj"
~

Vk(p)) =f;,k[6i'Ki(q )+6 k(p+k}i'Ki(q )

flavor-annihilation

spectator

C2 mac fxfogvpi2

Cl ~D fV

=0.01. (53)

(0
i

At'
i Ai ) =5iigg e (56)

Gz and GD are the S- and D-wave decay parameters in-
troduced in the Q, ~K p+ decay amplitude,

A(Qi~K p+)=Gse'g'. e'i"+GDe'g'pe'~'q, (57)
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E
=2fsc 2 2gvie.—mg

(58}

Using K;(q ) from (55) one finds that PCAC demands a
conspiracy among the parameters introduced in (55) such
that

where eP' and e&i' are the polarization vectors of Qi and

p mesons and q and p their respective momenta. PCAC
now requires

—Ki(q2)+(m~2 —mx2)K2(q )+q'Ki(q )

m

the decay rate I'(Qi ~Ep) is insensitive to the size of GD
which could become rather large. It is conceivable that
the fine-tuning required by (60) does not occur and that
the left-hand side of (58) is comparable to the individual
terms. In this scenario the flavor-annihilation amplitude
could be considerably enhanced over its naive PCAC
value.

Using (8) and (54} we can write the flavor-annihilation
term in (46) in the form

I
(sd)

I
o& (o

I
(uc) ID'& =v 2(& k}fD«mD') (64)

where
gv

2fxgn~-
fx

v 2g~
2

mg,

2
m&

mg —mp
K(mD2)=Ki(mD )—(mp —mx )E2(mD )

—mD Ei(mD ) . (65)

P(m —mx } =0 . (59)

The analogous relation for A+i ~p+n0 discussed in Ref.
18 is (note that our f and gvz are related to F and

Gva of Ref. 18 through v 2f =P and i/2gv, a=Gva
and our Gs is opposite in sign to their Gs due to the
metric used in Ref. 18)

In our calculations we use K(mD ) as a fry parameter.
Finally combining (48) and (64) we get

A(D ~K p+)=(e k)~2[2Cigvf~ (mp2)

+C2fDK(mD )] . (66)

gv
2f~g~

Jg mg

2
mp

S 2 2mz —m P

Next we evaluate A (D ~K p ), which in the factoriza-
tion approximation is written as

A(D K p}

2
(m& —m ) =0 . (60) =C2[(K [ (sd)

i 0) (p i
(uc) [

D0)

If Gs and GD are related by

Gs-— (61)

(This is equivalent to 5=0 in Ref. 18.) Then PCAC re-
quires

2
gv mp

2f 2 2' 2
(62}

If, in addition, we use f&
——g~ for the correct normahza-

tion of the pion form factor, we recover the
Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin' (KSRF)
relation

2
2fP=2 2

(63)

which is approximately correct. Note also that from what
we know of the A i width" the calculation of Ref. 18 was
not particularly successful.

Returning to our problem, note that the individual
terms on the left-hand side of (58) are of order 2fxg~z
while the right-hand side is of order 2fxgvppmx /mD .
Since mx /mD =0 07, a fine-tuning . among the parame-
ters of (60) is required to give us the naive PCAC result at
q =mD . In addition, in the case of Qi-+Ep, the final-
state three-momentum is only 45 MeV, the mass of Qi
being very close to the Ep threshold. As a consequence

+(K p /(sd) /0)(0/(uc) /D0)] . (67)

To reduce the first term, the spectator term, in (67) we use

(K
~
(sd)

~
0) = i ~2 fxPg . — (68)

Further, the D meson being the lightest 0 particle with
flavor content Uc, we write

~g 9+i 10 f m 2P9+i 10 (69)

The VPP vertex p -+D0D 0 is written using (52). One fi-
nally obtains

(K i
(sd)

i 0)(p [(uc)
i
D )

=2(&.k)fDfDg v~~
m~ 2

ma —mg2 2
(70)

2(~ k)C2 2fKfDgvPP 2 2 fDK(mD
ma —7?kg

(71)

By the same techniques one can also obtain D+~E p+
decay amplitude as

L

The flavor-annihilation term in (67) is —1/v 2 times the
flavor-annihilation term in D ~K p+, by an SU(4) rota-
tion. Finally one obtains

A(D K p)
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A (D+ K'p+)

=(e k)2@2 Cigvf+ (mp )

Nlg)
+ Czfzfog vpp

ma —m~
(72)

The spectator-model result is obtained by ignoring the
flavor-annihilation term E(mo ) in (66) and (71). One
then gets

by using (8}and PCAC for the (sc) axial-vector current (F
meson is the lightest 0 particle with flavor content sc)

~A 13+i 14 if Pl 3+ i 14—Pl+ (76)

together with the SU(4) VPP vertex defined in (52) for
K'-D-F vertex. We obtain [note that mF does not appear
in this expression since mF /(mF —m~ ) = 1)

&~+
I
(ud}

I
0&&K'

I
(sc)

I
D'& =2~~~'k}f-f«~~

A(DO~Kopo)/A(D' K-p+)=

where

(73) The flavor-annihilation term in (75) can be handled the
same way as in D —+Kp decays. We use (8}and (54) to ob-
tain

k=fscfogv~~l[gvf+ (mI'}) . (74)

If we use g~~r /4m=3, g'v mz /——fz, f& /4@2, and''
m~, =2.1 GeV, we get /=0. 87.

In Table IV we have listed RixI' and Ro+~ as functions
of the parameter K(moi) for two different values of
fo/f g. From (71) it is clear that

~
E(mo )

~

=2fzgvp&-1. 6 GeV implies an annihilation term as
large as the spectator term in A (DO~K Op ). From Table
I we see that a fit to Kp data can be obtained with
E(mo )= —2.0 to —9.0 GeV. A larger value of fo/f»
requires a sinaller value of K(mo ) since fo scales
K(mo ) in A (D ~K p+) and A (D ~K p ).

&~+K' l(sd} Io&&ol(uc) ID'&=i/2(e k}foK(mo'»

(78)

where K(mo ) is defined analogously to (65),

K(mo )=Ki(mo~) —(m, —m )Ki(mo )

—mo Ki(mo )
2 2

2 2
gv ~2g~Gs «™x'

Ki(q )= +f (rn~, —m, ) (q —m&, )

B. D~E~m

In the factorization approximation, as in (4), the decay
amplitude for D ~K' n+ is given by

A(D ~K m'+)

=C, &~+ [(ud) ~0&&K' ~(sc) ~D'&

+C,&&+K'- ](sd) ]0&&OI(uc) ID'& .

2 1 goaa
Ki(q )=

v 2 (q' —mg, i)

z 2fzgvrz
2 2 2 2 2

q —mz m~ (q —mg )

Gs+ (m, —m )

(80)

TABLE IV. Rott' and Ro+~ as functions of E(rno2) and

fz /fx

fo/fx
1.0

EC{mD )

(GeV)

—2.0
—3.0

40
—5.0
—6.0
—7.0
—8.0
—9.0

0.036
0.051
0.066
0.081
0.095
0.110
0.122
0.135

pe
1.80
2.08
2.39
2.71
3.06
3.42
3.81
4.22

The first term in (75), the spectator term, is manipulated In (8()) we are using Qi(1400) which appears to have a
large branching ratio" ( —100/o) into the K'n channel
instead of Qi(1270) which appears not to decay into this

channel. Gs and Go are the decay parameters for
Q o~K' n.+, defined analogously to (57) for
Q i ~K p+. There are a few other subtle differences be-

tween K;(mo2) of (55) and E;(mo ) of (80). Notice, for
example, the appearance of f in Ki(mo ) instead of fz,
the masses rn~ and m, instead of rn& and m~, and

2 EC

(mz, —m ) instead of (rn~ —mx ). We expect that

K(rnoi}, due to symmetry breaking, will be different from

K(mo ). We shall treat K(mo ) as a parameter, but, as
will be shown later, a fit to D~K'm data requires

K(mo ) in the same range as E(rno ).
Putting (77) and (78) in (75) we get

1.2 —2.0
—3.0
—4.0
—5.0
—6.0
—7.0

0.049
0.067
0.086
0.103
0.120
0.135

2.04
2.41
2.82
3.27
3.74
4.24

A(D ~K' n+)=V 2(e k)[2Cif f~gvrr

+CifoK(mo }) . (81)

The amplitude for D ~E '
m decay, in the factoriza-

tion approximation, is
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A(D ~K' m )

=C,[(K"
~

(sd }
~
0) (~'

[ (uc}
~

D')

+(K '
m

i
(sd)

i
0)(0 i (uc)

i
D )] . (82)

The second term, the flavor-annihilation term, is simply
—1/v 2 of the flavor-annihilation tnm in
A(D ~K' n+), Eq. (81). We exploit (8) and

the same range as K(mD ) in Table IV. Note that since

fD scales the annihilation term K(mD2) in
A (Do~K* m+) and A (D ~K' m ), a larger value of
fv/fD necessitates a larger value of K(mD ). We see
from Table V that a fit to D +K—'m data can be obtained
with the parameters in the same range as for D~Kp
data.

( X 'o
~

(sd)
( 0) =v 2gve„ (83)

to recast the spectator term in (S2}. The decay amplitude,
then, is given by

A(D' K "~')=(e k)C2[2gvf'+ (m, .') —fD«mn')] .

Finally,

A (D+ K"~+)
= Ci (mr+

j (ud)
(
0) (E '

(
(sc}

~

D )

+C2(E' [(sd})0)(n+ )(uc) [D+)

=2v 2«k)[Cif f~gnv+Cigvf+ (m». ')]

In the absence of flavor-annihilation terms in (81) and (84)
one obtains

A(D ~K' n ) 1
1/g,

A(D ~K' n+) v 2

where

E=f frgv~~/fgvf+ (m„.') l . (87)

Note that g of (74) and g of (87) would be equal in SU(4)
limit. In Ref. 20 they are treated as equal.

x~~
In Table V we have compiled Zoo "and Ao+ as func-

tions of K(mn } which we have varied in approximately

TABLE V. Roo and Jto+ as functions of k(m~ ) and
fF/fv

A(D ~K $)=v 2(e k)C2fpK(mp ) . (89)

K(mn ) in (89) is not exactly the same as in (64) and (65)
due to SU(4) breaking. For example, m~ replaces m& in
the expressions in (55). For the present we ignore these
differences and allow K(mD ) to vary in the same range
as in D-+Kp problem.

We can compute B(D ~K P}/B(D+~K p+), a ra-
tio that is not effected by the details of final-state interac-
tions since both decays involve only one isospin ampli-
tude. In Table VI we have compiled this ratio for
fD f» ——0.12 GeV——and r +/~n, =2.5. Since
B(D+~E p+)=(14.1+4.1+2.7)%, our model calcula-
tion shows that B(Do~K o((}) of the order of 1% is quite
likely. Note that a branching ratio for D ~E P of order
1% has been estimated in the past.

This decay proceeds only via the flavor-annihilation
term [in absence of Okubo-Zweig-Iizuka-rule violation).
The decay amplitude is given by

A(D ~K P)=Ci(K P i (sd)
i
0)(0i(uc) iD ), (88)

P (=ss) in SU(4) is

1
—,Po —v'2/3 Ps+ Pis .1

2v'3

By a SU(4} rotation this amplitude can be related to the
flavor-annihilation term in A(D ~K p+} in (46). One
finds, through the evaluation of the SU(4) structure func-
tion f~~k, that the annihilation terms in A (Do~K op) and
A (D +K p+)—have the same size and sign as one might
naively expect by drawing the exchange diagram. One,
then, gets

1.0

(mg)~3

(Ge~3

—2.0
—3.0
—4.0
—5.0
—6.0
—7.0

—2.0
—3.0
—4.0
—5.0
—6.0
—7.0
—8.0
—9.0

—10.0

gK e
00

0.163
0.192
0.217
0.239
0.257
0.274

0.124
0.150
0.174
0.195
0.214
0.230
0.245
0.259
0.271

5.42
6.92
8.60

10.47
12.51
14.75

3.95
4.90
5.94
7.09
8.33
9.68

11.13
12.68
14.33

D. D'~Z'a

This decay, like D ~K p, proceeds via the color-
suppressed spectator process as well as the flavor-
annihilation process. The decay amplitude is given by

A(D +K co)—
=C2[(K

i
(sd)

i 0) (co
i
(uc)

i
D )

+ (E a)
[
(sd)

i
0)(0

i
(uc)

i
D ) ] . (90)

In SU(4), co [=(uu+dd)/v 2] is 1/~2Po+1/~3Ps
+1/v 6Pi5. An evaluation of the SU(4) structure func-
tion shows that the spectator term in (90) has the same
sign as the spectator term in A (D ~K p };however, the
flavor-annihilation terms have the opposite signs. This is
intuitively expected since the uu content of p and co is the
same but the dd content has the opposite sign. One ob-
tains
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—2.0
—3.0
—4.0
—5.0
—6.0
—7.0
—S.O
—9.0

a {Do-EOy)

8{D+«Z p+)

0.0075
0.017
0.030
0.047
0.067
0.092
0.120
0.152

8(D —+E a))

8{D+-EOp+)

8.94' 10-4
0.010
0.030
0.061
0.101
0.153
0.214
0.286

A(D «E co)

=(e k)C2 2fxfDgvap

2
PBg) 2i+fnK(mD )

77la —mg

(91)

Since ui and p are almost degenerate in mass, K(mD ) in
(91) is almost the same as in D +K p pr—oblem. For
K (mD )= —1.6 GeV this rate is very strongly suppressed.
In Table VI we have tabulated 8 (D «K r0)/
8(D+«K p+) for fn=fx ——0.12 GeV. We note that
for —10(K(mD )(—3.0 GeV, 8(D «K ~) &B(D
«K P). Recalling that 8(D+«K p+)=(14.1+4.1

+2.7)% we find that 8(D «E co)=3—4% can be ob-
tained with a value of K(mn ) in the range required to fit
D«Kg and D«K*n data. For the same values of
K(niD ), 8(D «K P) = 1—2% can be secured.

IV. CONCLUSIONS

In Sec. II we studied the Cabibbo-angle-favored D «PP
decay. The D~Em decay amplitudes were written down
in terms of the matrix elements of the hadronic weak
currents in a factorization approximation. Single-
particle-dominated dispersion relations were postulated
for these hadronic matrix elements. The naive-spectator-
model results are recovered from this analysis in the hmits

f =fx and fo'(rn )=fo'(mx ) and the neglect of the
flavor-annihilation term proportional to fo(mD ) in (12).

We showed that if fbi(q ), which appears in the flavor-
annihilation channel only, satisfies an unsubtracted
dispersion relation then color suppression of D «K n is
not lifted. On the other hand, if fbi(q ) satisfies a once-
subtracted dispersion relation then it is possible to find a
value of the new parameter, A,, introduced in (22) within
the range required by (24), such that color suppression of
D ~E m is lifted. Another way to see this result is that
in the flavor-annihilation channel f+(q ), introduced in
(10), appears multiplied by a mass-suppression factor of
(mx rn ) while f (q ) —appears with a large factor of
mD . Thus if f (mn ) =f+(mD ) then obviously

fo(mD ) will be large and the helicity suppression of the
flavor-annihilation process will be lifted. This, in turn,
lifts the color suppression of Do«K n .

Experimentally, f (q ) is not accessible in D«Klv

TABLE VI. 8 (D «E P)/8 (D+«E p+) in column 2 and

B{D«Eoco)/8(D+«Z p+) in column 3 as functions of
E{rnD ) W. e use fD fz——=0.12 GeV.

K(mg) }

TABLE VII. Roo and Ro+ as functions of C)/C2. Final-
state interactions included. f~/f =1.2 The a parameters are
as in Tab1e III.

C) /C2
A, /f+{0)

(GeV~)

7
8

9
10

0.19
0.21
0.22
0.23

Ro+

4.04
4.65
5.30
6.00

0.20
0.22
0.24

4.30
5.17
6.13

—3 0.21
0.24

4.9
6.4

0.5
0.6
0.7

0.23
0.23
0.24

5.60
5.96
6.34

due to the small charged-lepton mass. However, theoreti-
cal model calculations '" favor f (mD ) comparable to
f+(mD ) .Thus the conjecture that mD f (rnn ) might
dominate (mx —m )f+(mD ) is very likely to be true.

%'e have also studied D E g and D E g' decays.
Theoretically these are, surprisingly, not very clean chan-
nels. For example, in D «K rl a straightforward SU(4)
rotation applied to a~Em amplitudes generates a large
annihilation term. This is due to the additional ss content
of q Ho. wever, SU(3) breaking makes the excitation of a
ss pair from the vacuum less likely" than, say, a dd pair.
This alone would reduce the annihilation term by a factor
of 3. Further, since the x does not a~pear' to couple to
the Koi) channel, one expects fo(q ) not to have any
structure. If so, then fo(q )=fo(0)=(mx —m„)f+(0),
which is vanishingly small due to the closeness of E-
meson and i)-meson masses. This uncertainty in handling
the annihilation term can give rise to an uncertainty of 2
orders of magnitude in the rate for (Do«Kohl). The ra-
tio 8(D «K rI)/8(D+«K m+) will test the presence
of an annihilation term in A (Do«K orl) since
A (D+«Eon+) does not have an annihilation contribu-
tion. We have shown that with A./f+(0) in the region of
10 GeV one can generate 8 (D «K i))-1—2%%uo. If ex-
periments would measure the branching ratio at this level,
it would be an indication of a large flavor-annihilation
contribution to Dc«K orl.

Similar uncertainties apply to the flavor-annihilation
term in A(D «K rl'). However, in this channel one
would be surprised if 8(Do«K

crt')/8(D+«Euler+)

turned out very different from = 10
Finally we unitarized D «Kn decay amplitudes

through final-state interactions and showed that it is pos-
sible to fit the data with the assumption of a broad ~
meson on 0+, I = —,

' channel. The method of unitariza-
tion used here is the simplest one we can use (certainly not
the last word on final-state interactions) and shows that
once a mechanism for lifting color suppression is found, it
is possible to fit D «Km data with final state interactions.
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TABLE VIII. Itat' aud It f+~ as functions of C~/Cz and

K(mo'). fo Ifz 1——used.

—2.0
—4.0
—6.0
—8.0

—10.0

0.036
0.066
0.095
0.122
0.146

1.80
2.39
3.06
3.81
4.65

—2.0
—4.0
—6.0
—8.0

0.052
0.091
0.126
0.157

2.10
2.94
3.93
5.05

—3 —2.0
—4.0
—6.0

0.082
0.133
0.175

2.74
4.14
5.84

C C) /C2 —1=2
C+ C) /C2+ 1

The approach employed in this paper to D~Em decays
is complementary to that used in Ref. 6 but couched in
different, and hopefully more familiar, language. The ap-
proach of Ref. 6 was largely algebraic where current alge-
bra was used to constrain the decay amplitudes. The ap-
proach adopted in this paper is analytic in nature where
dispersion relations are invoked for the hadronic matrix
elements. The particles are always kept on mass shell.

Finally, we could treat C&/Cz as a parameter. The
values of C+ and C used in this paper imply
C~ /C2- —5. If C /C+ is allowed to rise ("sextet domi-
nance") then Ct /C2 moves toward —1. The precise rela-

tionship between C /C+ and C~/C2 is

In Table VII we have listed Boo and 8o+, computed with
final-state interactions (the tt parameters as in Table III)
and fDlf =1.2, as functions of C~/C2. It is evident
that the effect of lowering the magnitude of C, /Cz
(equivalent to raising the ratio C /C+ ) is to simulate the
flavor-annihilation term, since less and less of it is needed
(k decreases) to fit the data.

In Sec. III D~Ep and D —+E m decays were analyzed
with particular attention paid to the flavor-annihilation
terms. As in the D~Ktr decay we find that substantial
flavor-annihilation contribution is indicated in D~VP
decays. Better statistics in future data will be of help in
the theoretical analysis. The quality of D~VP data at
present does not warrant the use of complex amplitudes
and the inclusion of final-state interactions.

We have also demonstrated that the size of the
annihilation term required to fit D~Kp and D~K'tt
data is consistent with B(D ~K P) =1—2%%uo and
B(D ~Kto)=3 4%. —

Finally, as in the case of D~Ktt decays, we could al-
low the ratio C /C+ to vary also. In Table VIII we
show the effect of varying C&/Cz on 8 fg and Ro+~. As
C&/Cz rises from —5 toward —1 data require less and
less of the annihilation term, i.e., K(rnD ) decreases in
magnitude. In this sense raising C /C+ simulates the
annihilation process. D~K tr data show the same quali-
tative dependence on C~ lC2.
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