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Mechanism for coherent production of pions from the decay of resonances
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Conditions and signatures for the induced emission of bosons from a microscopic device are dis-

cussed. Detailed formulas for a simple two-level model are derived. In this model the decay of X5
resonances residing in a microscopic volume V is discussed. It is shown that large amphfication fac-
tors for unusual charge bunching of pions are obtained as a result of induced emissions.

I. INTRODUCTION

The induced-emission mechanism of photons in the
laser mechanism is not an intrinsic property of photons
alone. This mechanism is shared by all bosons and we
shall call it the BASER mechanism, ' and in particular we
shall use the name PASER for pions and KASER for
kaons.

The BASER mechanism relies on the preference of bo-
sons to occupy the same quantum state. This Bose-
Einstein nature of pions has in fact been detected in two-
particle correlation experiments in hadron-hadron and
hadron-nucleus23 collisions, and the coherency of these
pions is actually used to probe the volume of interaction
Because of limited statistics, we know very little about
N-particle (N & 2) correlations. These data would be par-
ticularly valuable in places where the BASER mechanism
is operating.

Consider N pions produced in a common spatial
volume V and a common momentum-space volume V .
The number of pion states is given by W= VVyl(2n) .
Therefore ri= W ' is the probability for two pions to oc-
cupy the same quantum state. The probability for all N
pions to occupy the same quantum state is expected to be
enhanced by a factor A =(N —1)!ri'~ ", where (N —1)!
is the well-known factorial of the PASER mechanism.
The importance of the PASER mechanism is therefore
measured by the magnitude of A.

The feasibihty of a macroscopic PASER device will be
discussed elsewhere. s If V is of nuclear dimensions, then
we are dealing with a microscopic PASER. In this arti-
cle, ere mll concentrate on a two-level microscopic
PASER. In a subsequent article, we will discuss another
kind of microscopic PASER which may be responsible for
the Centauro events observed in cosmic-ray experiments.

A microscopic PASER is unlike a macroscopic PASER
or laser in many ways. Because of the nuclear size of the
volume, quantum mecLuucs and the uncertainty principle
are of paramount importance. Moreover, the number of
pions produced is measured in tens, perhaps hundreds, but
not by Avagadro's number. As a consequence, there is
very little directional collimation hmause of the uncertain-
ty principle. The coherence and intensity of the pions are
negligible compared to a macroscopic device because of
the small multiplicity. One might ask what then is the
signature of a microscopic PASER'?

II. LL-RESONANCE DECAY MODEL
V@TH DISCRETE NORMALIZATION

The interaction Hamiltonian for the 5-resonance decay
can be given as

1/2
(2n )'

H=g g &t, t, +tg (13)(~ ) (&2)b(&i), (2.1)
1I I2 l3

where the decays into 6 ~pm. are treated only in this
section. The operators are norma}ized so that they create
one-particle plane-wave states from the vacuum. For ex-
ample,

m (k) i 0) = ik), (k'
i
k) =5i, i, . (22)

A quantum state is labeled not only by its momentum
but also by other quantum numbers such as its electric
charge. Since the latter is not affected by the small size of
the configuration volume, coherence, or bunching, in
charge states would then be an observable signature.

In the rest of this paper we consider a specific model in
which N 5 resonances with negligible Fermi momenta are
confined to a volume V. For the sake of definiteness we
shall take them to be b, s. Each resonance can then decay
via "channel A" into tr P, or "channel B"into' N. The
relative probabilities for these two channels are given by
isospin conservation to be —,

' and —', , respectively. If these
N 5's decay independently, tz of them via channel A and

P of them via channel B, then the probability is governed
by the binomial distribution ( —,

' )a( —', )~N!/a!p. On the
other hand, if the PASER mechanism is at work, then
this charge distribution is expected to be augmented by an
enhancement factor A similar to but more complicated
than the one discussed before. This enhancement factor
depends on N, a, and P, and because of the PASER
mechanism, is expected to favor pion states of same
charges. In other words, unusual charge bunchings
(a-N or P-N) will be greatly enhanced.

This problem has been outlined in Ref. 1 to which we
refer the reader for numerical results. We provide in Sec.
II in more detail some special cases of the formulas used
in Ref. 1. In Ref. 1 discrete normalizations were used.
Since the final-state pions and nucleons are not confined
to the volume V, it is perhaps more satisfactory to use
continuous normalizations for them. This we shall also
do in Sec. EEI.
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The decay rate of Nb, can be calculated by ¹h-order
perturbation theory:

IY=2mg(f H „H1

AE
Eo (2.3)

=8/g kk ip i /M, (2.4)

where y„nz, M are the masses of pion, nucleon and
5;k,k,p are the c.m. momentum and the energies of the
pion and nucleon.

For N= 2, we have the decay rate given by

R =2+5(FI Ep)g(f H— H i
1

=2m.5(E/ —Ep) —,g1 1

0 n+i

To understand the calculation as well as the physical
ideas, it is useful to display the details of the cases for
N=1,2. For N= 1, we have just one b, decay, and the de-
cay width is given by

I =a= g(2n)5[('k +p )' +(k +ni )' M—]
(2ir)
V

5(AF. )R =I,gg~ 5„,
hark i

(2.9)

4g (2zr)'
I-V

3M 1

I R /k)kip,

R, =I T2|g . (2.10)

The combination of the case of ki&kz, Eq. (2.8), and
spontaneous decay gives the total rate for the two 5 reso-
nances to be

where V= ', nR— ,.I T ——2I'. The ri is the suppression fac-
tor due to phase space. If the pion already has momen-
tum ki from the first 6 decay, the PASER mechanism
suggests that the next pion will be favored with a 2! factor
for having the same momentum kz ——ki, but at the same
time kz ——ki is suppressed by zl because it is only one
state among all the momentum states available. The
denominator in ri contains the factor kR which is prom-
inant in the measurement of the correlation of two-pion
states, as was done in various experiments (see, e.g. , Ref.
2). There the rate for the decay of the two b's into states
with ki kz is g——iven by

R =I'z(1+ri} . (2.11)

x I (pipzklkz IH In&

«n I& lqiqz& I'

where q;,p;, k; denote the momenta of the h,p, rr, respec-
tively. There are two intermediate states n because there
are two ways that the two 5 can decay sequentially. The
1/2! comes from the two-pion state normahzation. The
protons and 5 are treated as distinguishable particles. If
we use the narrow-width approximation

N —1

R =Rg g (1+i') . (2.12)

The multiplicative enhancement factor

It is interesting to note that in the spontaneous decay of
the two 6's ki ——kz is one of the possible final states.
Hence for two 5's to decay into states with k&&kz, the
rate is actually R =I"z(1—z}). And the total rate is
I z (1+i})and not I z (1+2')). The generalization to N-b,
decay was done in Ref. 1, and shown to be

1

Eo —E„+iI'/2 5(b,E)
I

A = g (1+ii))

= 1(1+ri)(1+2ri) [1+(N —1)z)] (2.13)

we obtain

R=2I x g ff 5(AE, ) x52' g (2zr)'

cr, k,-
(2.7}

where a is the permutation of just the two pions: (1,2)
and (2,1). For spontaneous decay we have

R, =2I (2.8)

If the two b, 's in the initial states are completely uncorre-
lated, the rate would be E. =I . However the two 5's are
not uncorrelated. h(q&) can decay into p(pi) and ir(ki)
as well as decay into p(pz) and m(kz), so that the decay
rate is 2I and not I . To simplify the expression for R,
we introduce the variable g, such that

can be easily understood by the following physical argu-
ment. For the first b to decay there is no enhancement;
the enhancement factor A= 1 for N= l. For the second
5 resonance it has the option to decay independently with
different momenta or coherently with the same momenta
for the pion as that for the first b. For coherent produc-
tion, there is only one momentum state out of all the pos-
sible final states; hence there is a suppression factor
i) -1/(number of all possible momenta states). Hence the
enhancement factor is (1—i}+2z)). For the ¹hreso-
nance decay, because of the creation operator of the pion,
it would introduce a factor v N to the amplitude or N to
the rate for the coherent production, so the multiplicative
factor becomes [(1—z})+(N)i)]=1+(N —1)ri. The
spontaneous decay rate 8, is XI rather than I because
each 5 can decay into N different pairs of np in the final
state.
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III. 4-RESONANCE DECAY MODEL IN CONTINUM LIMIT

The interaction Hamiltonian describing the decay of b, can be written in the form

~'(p) (~-)'(I ) ~(q) 2 X'(p) ~o(l ) ~(q)
g f q P q P

3 3/2 3/2 3/2 3/2 3/2 3/2(2m') (2m ) (2m ) 3 (2n ) (2m) (2n )

where ( —, )'/ and ( —, )'/ are the isospin Clebsch-Gord;m
coefficients for 5 -+n I' (channel A) and b ~m N
(channel 8), respectively. Spins are ignored throughout
these calculations. The field operators are normalized so
that they create one-particle plane-wave states from the
vacuum. For example

~'(q) ~0&= ~q&,
(3.2)

& q'
~ q & = (2n )'5(q —q') .

The factors (2n) /2 are put in so that the coupling
constant g in (1) is the same as the coupling constant g
defined in Sec. II. Since pion and nucleon states really be-

long to the continuum, it is better to carry out the calcula-
tions using the continuous normalization (3.2) rather than
the discrete normalizations.

The width of b can be calculated easily from (3.1}and
(3.2) to be exactly the same as in the discrete normaliza-
tion:

g2 3 2~ 2+F2 1/2+ 2+~ 2 1/2

wave functions normalized according to Eq. (3.2). Simi-
larly,

4'pi j jil i 1 j&

denotes the final nucleon-pion state wherein the channel
A nucleon and pion momenta are denoted by p; and It;
and the channel 8 nucleon and pion momenta are denoted
by pi and It,', respectively. As discussed before, we shall
regard the 6's and the nucleons to be distinguishable but
of course we must treat the pions of a given charge to be
identical particles in order to have the PASER effect.
Consequently q;~p;++;l and q,'-+p';++l;l are arbi-
trary permutations of a and p objects, respectively.

At each vertex H of (3.4) one of the 6's decays into a
nucleon and a pion. Let it be the ith. Let

(k2+j22)l/2+(p2+i222)l/2

iI iI
(q 2+M2) I/2

l 2 f 2

(k~ 2+p2)l/2+(p~ 2+~ 2) l/2

=Sir g2k2 =Sir g kkik2M,E (3.3)
—(q'+M')'"+ ' —=SE'+ '+

where p, m, M are the masses of pion, nucleon and

5;k,k l,k2 are the c.m. momentum and the energies of the
decay products, and E =k', +k', .

Now we want to consider the decay of N /8's residing
in a volume V. We shall assume the Fermi momentum q
of the dP to be negligible compared to its width I'. We
shall also neglect Pauli blockings of the nucleons and treat
the 5's and the nucleons as distinguishable particles. In
other ~ords, we assume the ith 6 decays only to the ith
nucleon, plus any of the identical pions.

We shall treat this problem by lowest-order perturba-
tion theory, which is the Nth order. Since higher-order
contributions are neglected, unitarity is not automatically
satisfied and must be implemented partly by hand. This
is accompanied by the "narrow width" approximation as
we shall see below.

Of the N 6's, suppose a of them decay into I'm (chan-
nel A), and P=X—a of them decay into Nm (channel
8). The matrix element describing the decay of the first
a 5's via channel A and the last P 5's via chaimel 8 is
given by Nth-order perturbation theory to be

be the (complex) energy difference corresponding to this
decay into channel A and channel 8, respectively. For
the following discussions, it is convenient to define
X;+~——X/ so that Xj denotes the energy difference of a
channel /I decay if 1(j(a, and that of a channel 8 de-
cay if a+ 1 (j(N.

The decay of the N 5's in (3.4) can occur in any time
sequence. Let o&S~ be any permutation of N objects,
then different time sequences can be represented by dif-
ferent cr. The matrix element of the first (reading from

right to left) energy denominator operator b,E in (3.4) is
X~l il, that of the second is X l ll+X l2l, etc. For a given
o, the product of the matrix elements of the energy
denominators in (3.4) is given by

N —1

v--=II, (3.5}

X~(j)
j=l

On the other hand, the matrix element of the ith vertex H
(again reading from right to left) is given by (3.1) and (3.2)
to be

M= pk;p'k' H 0 . . . 8 8 q;q' . 3.41 1 1

AE AF. AE

(2')'/2g(CG)5v(q l l
—p «l —k l l)=&0& (3.6)

Here
~
q;q'&=—

~ qi . . q~;ql .
qj3& denotes the initial

N-particle b, state, made up of products of single-particle

Here (CG) is the Clebsch-Gordan coefficient which is
v'1/3 and v'2/3, respectively, for channels 3 and B.

In Eq. (3.6) we encounter the spread-out momentum-
conservation 5 function 5 i rather than the exact-
momentum-conservation Dirac 5 function 5=5 because
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Since the 6's are confined to a volume V, this overlap in-

tegral would be changed to

5„(q—p —k)=— J e" ~ ~'"d'X,
(23r)

(3.7)

the 6's are assumed to be confined to a volume V. If no
such confinement existed, then the momentum-
conservation 5 function comes from the overlap of the
plane-wave wave functions of the 5, the nucleon, and the
pion:

5(q —p —k)= — fe"'i i' "'xd3X .
(2m)

where the integration is confined to the volume V wherein
the 5,'s reside. This is the origin of the spread-out 5 func-
tion.

As in the case of X;, we have extended the definition of
q;, p&, k; in Eq. (3.6) by q;+ ——q,', etc. The tilde above the
momenta k& [j=cr(i)j reminds us of the fact that the
pions are not distinguishable, that the jth 6 decays into
the jth nucleon plus any pion. In the notation explained
somewhere between Eqs. (3.4) and (3.5} the tilde momenta
are defined by kj ——+~) if 1(j(a, and kj=k~&3 N) if
a+1&j&¹

It is the product of all the (H); that appears in (3.4).
This product is independent of o' but depends on n GS
and m'E-S~. It is

N a P
II (&);=(—, )'~ ( —,

' )~/ g II (27r)'~z5 (q —p; —k;, ) II (21r)'~z5 (q,' —p,' —k', J, ) . (3.8)

Finally, the matrix element in (3.4) is given by

~=X X II&» X V'
e'6S m GSp i =1

Using formula (Al) of Appendix A, and noting that

N
T= gX (J)

——gX,

(3.9)

is independent of cr, we obtain from (3.5}that

r v. =T r v.—=TII
n&SN crCS~ I =1

Substituting (3.8) and (3.10) into (3.9) we obtain

a 2~ 9/2
m =g"(-,')"(-', ))'"T g g II 5„(q,—p, —k, , )

e&S e'GS i =1

(23r)
5v(qj —pj —k '!J))

Xj

(3.10)

(3.11)

The transition rate for the decay of E 5's, a through channel A and p through channel B, is given by the golden rule
to be

N! 1 1 d ki dP! 1 ~ d kj dPj
a!p! V" a!;,(2ir)3 (2!r)' p', , (2!r)' (2!r)'

(3.12)

where

a P
Ef Eo g~& + g—hE'——. (3.13)

are widely separated, viz. , if V~oo, then no induced
transition will take place and R is given by the spontane-
ous decay rate Rs. This is the decay rate of N indepen-
dent 5's,

The combinatorial factor X!/(a!p!) in (3.12) comes about
because M describes only the particular decay mode in
which the first a b, 's decay through channel A and the
last p b, 's decay through channel B. In reahty any a of
the N 8's can decay through channel A and the remain-
ing 5's can decay through channel B, hence the combina-
torial factor ¹!/a!p!.The flux factor V occurs be-
cause the single-particle-state normalization (3.2) for b,
normalizes to V in the volume considered rather than uni-
ty.

So far the calculations have been exact. To proceed
further, we must begin to contemplate approximations.

If I is the true total width of the ho, and if the N 5's

(3.14)

because the total width is NI and, from combinatorial
considerations, the distributions among channels A and B
must be binomial. Formally, one may say that (3.14) is
the result of unitarity. Now if no approximation is made
in (3.11) and (3.12) we will not recover (3.14) when
V~ ce.

As discussed before, this is because the present calcula-
tion is carried out using the lowest-order perturbation for-
mula where unitarity is not respected. To make physical
sense ~e must restore unitarity by hand. It turns out that



C. S. LAN AND S. Y. LO 33

this can be achieved by the "narrow-width" approxima-
tion described below.

To motivate that, first note that a factor
~
X;

~

for
every i occurs in (3.12). Since X;=&&; +i 1 /2,

(3.15)

where 5r(&&;) is a spread-out 5 function with width 1

and normalized to unity. (Note: 5v and 5r are not the
same spread-out 5 functions. )

Now when V~ ao and all the b, 's decay independently,
energy must be conserved in each decay. Comparing
(3.11), (3.12) and (3.15) clearly this conservation is ob-
tained only when we make the narrow-width approxima-
tion and use 5r(&&; ), 5(&E~ ) interchangeably:

5i (&E;)=5(&E;)=5p()-') &;) . (3.16)

That this approximation is necessary is because (3.11) and
(3.12) are computed to the lawest perturbative order.
Thus the coupling constant g must be assumed to be small
and the width I' must be assumed narrow. In such a case
(3.16) is eminently reasonable. In reality, width I is not

small but we will then simply regard (3.16) as a way of
implementing unitarity and other physical requirements
(e.g., energy conservation) by hand.

We still have to show that approximation (3.16}enables
us to obtain (3.14} from (3.11) and (3.12) when V~ao.
To do that, note that as V~ oo, the 5's, and the corre-
sponding nucleons and pions, are very far apart so that
the pions may be regarded as distinguishable. In other
words, the different pions cannot interfere so that we only
have to retain the diagonal terms when we square the
sums over irGS and m'GS)i in (3.11).

Now note from (13) that

a P
Ef E()———g ATE(+ g EEJ'

a P
=Re QX+ gX;

i =1 j=1

and nate that the corresponding imaginary part of these
sums of X( and XJ is NI /2. Thus in the spirit of (3.16)
we may replace the overall energy conservation 5 function
in (3.12) as follows:

'2 '2 '2
2 Nl xr NI

~

T
~

2&5(Ef —Ep)=2&
2

5(Ef—Ep)=2m
2

5)vr(Ef —E() )=2m.
Xl (0)

'2
2 =XI (3.17)

With these approximations, we can carry out the p; and p,' integrations in (3.12). We get

(3.18}

wher
(2n) 5v(0)/V 1; from (3.3) the remaining factors inside
each set of large parentheses integrate to 1 if (3.16) is
used. Hence 8 =As as demanded by physical considera-
tions.

Now we return to a finite volume V when interference
and the PASER effect may take place. We shall assume
that the volume V is sufficiently large to allow the Fermi
momenta q; of the b, to be small compared to I (i.e., after
we suitably convert the momentum scale into energy
scale). This allows all the pions to occupy the same
momentum-space region to enable the PASER mecha-
nism to work effectively. When the volume is large, not
only energy but also momentum are very well conserved.

d p(5v(q( —p( —k„)(()),5v(q; —p; —k 2(,))
l

(3.19)

2m
5r(EE;)5v(k, (;)—k,(;)) . (3.20)

With bE; given from now on to be

hE;=(k; +p )' (k +m )' M— —(3.21)

In this way Eq. (3.12) yields the result

R =Rs g (2ir) g f 5r()-')&;) hm d k; ff (2n) g J 5r(~&i ) lim dikj
2' . 5v(0), ~, , 2n, . 5v(0)
I ' v~~ V .

) I v~~ V

e Rs is given by Eq. (3.14). Now from (3.7) We will then be justified to approximate the integral

1 ', (2ir)4g'
R =Rs g g —,g fd k; 5r(&&;)5v(k, (;)—k„,(;))

wIE'$ e2&$ ' i =1

s') FSa s'2 ESi) 1 —)

=R g g d k 5r(~R )5v(k —ke )) g g fd kj 5r(&+' )5v(kj —ke(j))
(2n) g , (2n) g

VI ~vs j=i
(3.22)
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Again if we restrict ir and rr to the identical permutations, we will get R =Rs as in (3.18). Induced transitions corre-
spond to those terms for which m and/or n' differ from the identity.

To analyze these tnms systematically, we shall express the permutations m and n' in their cycle forms.
Because of the factor 55 (k; —+;])5i(kj —~[J]), all the momenta whose indices appear in the same cycle are equal.

These momentum-conservation 5 functions then allow us to carry out momentum integrations for all but one of the mo-
menta inside a cycle. For example, if a=5, the permutation n=(124)(35) describes the physical process in which
ki ——k2 ——g and k3 ——kq. The momentum integrations, carried out in the spirit of narrow-width and large volume ap-
proximations, are

5

fd k5 ((rE))5 (kr; —kr))= f)( k [5r(55') )] 5r(0) f)('k [5 (5R )] 5„(0)
i=1

=I:5r(0)I'+'

=[5r(0)] +' fd k[5r(f) E[)5[(0)fd kp5r(& j=3)5] (0)

V I"

(2m)~ gi
(3.23)

in which Eqs. (3.3), (3.7), and (3.16) have been used.
It is clear from this example that a cycle of length I

would contribute a factor

Similarly,

(3.30)

l5r(0)1' '
(2n ) g2

to integrations of the type (3.23). Thus if m has vi cycles
of length I (/=1, 2, 3, . . . ), then

a (2~)4g2

VI
5r(«}5v« —k~ )}

' v((l —1)
( 27K) g

VP I (3.24)

IVl ——a . (3.25)

We defme the amplification factor by

(3.26)

and if we let

(2ir} g 5r(0)
7 (3.27)

we can express (3.22) as

A= QE„rj'
I &(I

(3.28)

Note that since m E-S~, the non-negative integer vl is sub-
ject to the constraint

It turns out that these sums can be carried out exactly.
This is shown in Appendix B. Using Eq. (B2), we obtain
the final result for the amplification factor 3 =R/Rs to

r a-I P-1
rf = g (1+irl) g (1+jg)

i=1 j=1
(3.31)

For approximate expressions of this result in different
ranges of rl, see Ref. 1.

The physical meaning of (3.28) and (3.31) is very sim-
ple. K„and E~ give the combinatorial factors corre-
sponding to particular pion moments alignments. Con-
sider, for example, channel A pions. If none of the pions
are aligned, then vi ——a and all other v; =0. From (3.29)
E„=l and there are no PASER enhancements. On the
other hand, if all the pions are aligned, then v = 1 and all
other v;=0. From (3.24) E„=(a—1)!, which gives the
well-known factorial enhancement factor of a PASER.

The factor of rl in (3.27} and (3.28) must then describe
the probability for two pions of the same charge to be
aligned. Let us derive this directly.

Since the pions originate from the volume V, the num-
ber of quantum states W for pions of a given charge is
given by the phase-space volume divided by (2ir) . This is

W = 4nkf(kk =,4. irk
(2m ) (2m )

(3.32)

where the sums in (3.28) are taken over all configurations
{vi I of m GS and all configurations I vi ) of n'ES&. The
first must obey the constraint (3.25) and the second must
obey a similar constraint.

The factor E„ is the number of permutations m&S
with identical cycle structures jvi j. It is hE= —I

2
(3.33)

where k is the momentum of the pion in the rest frame of
the 5, and the momentum spread hk is a reflection of the
finite width I' of the h. Now if we put

(3.29) (3.34)

and therefore g is the probability for two pions to occupy
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the same quantum state. To show (3.34) note that i) is
given by (3.15) and (3.27) to be

(2m) g 2 32m g
p2 p' ~ p'p2

Using (3.3) to replace g, we get

X II
cr(N)=1 i =1

1 ~ +g(N)

l. L

X.(w
i =1 i cr(N)=1

4m )

VI'k idk ldE
(3.35)

(A4)
if (3.33) is used.

The fact that (3.28) and (3.31) admit a simple physical
explanation further substantiates the correctness of the
approximations adopted here to deal with lowest-order
perturbation theory.
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APPENDIX A

X II
crGS&i =1

cr(j)

N

=IIX (A 1)

Let cr be member of the permutation group SN of N ob-
jects. We shall show in this appendix the following
mathematical formula used in the text:

which is the same as the right-hand side of (A4). Formu-
la (Al) is therefore true for any ¹

APPENDIX 8

VI =CX .
I~1

(Bl)

Now the total number of perturbations in S with the
aforementioned cycle structure is

Z'„=a! II (1"(v,!) .
I=1

The purpose of this appendix is to show that

CK —1

r1*= II (1+i'),g z„q'= g
"( II (1 'v&!)

Let ir be a permutation of a objects. When expressed in
cycle form, suppose ir has v( cycles of length 1

(1 = 1,2, 3, . . . ). Since n E'S, the following constraint on
v& must be obeyed:

Proof. (Al) is trivially true for %= 1.
Assume it to be true for 1((}'—1. The left-hand side of

(Al) can be written as

~ ZII,
cr(N)=1 cr' i =1 ~ g cr(j)

j=1

N N —1

= —, rrII,
cr(N)=1 cr' i =1 ~ ~cr(j)

(A2)

N N
T —g X~(') =

r "Ii',
cr' i=i y ~

thus (A2} is equal to

is independent of o, and where o' denotes any permuta-
tion of the N —1 numbers o(1),o(2), . . . , o(N —1), al-
ways with o(N) kept fixed. By the induction hypothesis,

with

X= g v((1 —1),
I=I

where the sum on the left-hand side of (82) is carried out
over all configurations I v( ) subject to the constraint (B1).

Proof. Equation (82) is trivially true for a= 1, where
the only cycle is (1). Thus vi ——1 and v( ——0 for 1 & 1, and
both sides of (82) are equal to l.

Now we prove (B2) for a general positive integer a by
induction. First, note that there are two and only two
ways of obtaining a permutation of a objects from a per-
mutation of a —1 objects expressed in the cycle form. Ei-
ther we start with a permutation of a —1 objects and add
to it an additional 1 cycle (a) consisting solely of the ath
object, or, we could insert the ath object into an 1 cycle (1
arbitrary} o n'ES~ i to make this an (1+ 1) cycle and
thus to convert n' into an element of S . If we should do
it by this latter way, we can create different members of
S~ by inserting this ath object behind any of the existing
objects in the 1 cycle. In other words, for a given
n ES~ i, we can thus create a —1 members of S~.

For example, if a=3, then ir'E'S~ i is given in cycle
form by (1)(2) or (12). The first method creates (1)(2)(3)
and (12)(3) from these two S2 elements, and the second
method creates (13}(2),(1)(23), (132), (123) from the same
S2 elements. In this way we obtain all 3!=6 members of
S3.
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Now let us turn to Eq. (82). Since E„represents the
number of distinct perm utations with definite cycle
lengths, we can write (82) as

In other words, if we associate a factor il' ' with every I
cycle in ~ and if we sum over all m GS, the result is the
left-hand side of (82).

To prove (82) by induction, let us assume it to be true
for a —1,

rix = ff (1+iri)=F~

(83)

where vi is the number of 1 cycles in n' .Now obtain all
irGS from n'GS i by the two ways mentioned above.
If n. is obtained by the first method then the additional
cycle (a) gives rise to an additional factor iso= 1. The
contribution of this first way to (82), by (83), is therefore
F~ i. If n GS~ is obtained from m'ES~, in (83) by the
second method by insertin~ the ath object into an I cycle
of n', then the factor i) in (83) becomes ri'. In other
words, there is an additional factor of ri wherever the in-
sertion takes place. But as noted before, there are a —1

possible insertions for every n'GS i. Thus the contri-
bution of the second method to (82), by (83), is
F~ iri(a —1). The total result of (82) is therefore

a-1
F~ i[1+(a—1)r)]= P (1+iri),

which is equal to the right-hand side of (82).
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