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Transverse-momentum behavior of jets from generalized Altarelli-Parisi equations
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%'e present numerical solutions of previously reported integrodifferential equations for the
transverse-momentum behavior of jets predicted by QCD. Results for the nonsinglet fragmentation
functions of quarks are compared with approximate solutions in the hterature obtained from other
equations.

I. INTRODUCTION

One of the interfaces between QCD theory and experi-
ment has been the transverse-momentum spread of jets.
This is a jet property which is susceptible to measurement,
and it is also something which can be predicted in various
ways from the theory.

For instance, starting with the simplest perturbation-
theory calculations, one can study the typical transverse-
momentum distribution of hard gluons emitted from a
quark using a QCD vertex. The e,5 definition of jet size,
popularized by Sterman and Weinberg, has been used to
define jets; this is a method of specifying the transverse
spread of each individual jet and defining the boundary
between two-jet and three-jet events.

Another set of predictions in the literature, with at-
tempts to check them experimentally, is obtained from the
jet calculus of Konishi, Ukawa, and Veneziano (KUV)
and similar methods which sum infinite series of graphs.
In this case, leading-logarithmic perturbation theory is
used to help predict the spread of angle between any two
particles in the jet. Experimentalists have reported verifi-
cations of the predictions, which help test the basic ver-
tices in QCD.

Another thing one can do with the data is to define a jet
axis somehow and measure the distribution of outgoing
particles relative to this axis. This has been done by the
TASSO group6 and others, with results plotted showing
the average transverse momentum of jet particles as a
function of their longitudinal momentum, and (summed
over longitudinal momentum) the distributions of the data
at various Q as a function of pi and xr —2pi/8'.

If one wishes to predict this from the theory, more
needs to be done than in the KUV approach, where the
opening angle between the two particles measured was de-
fined in terms of the mass of the "parent parton" at that
vertex. We need equations for the jet calculus which ex-
plicitly display both the transverse and the longitudinal
momentum of the outgoing partons.

This was first done by Bassetto, Ciafaloni, and Mar-
chesini (BCM), who give an equation for the jet which
generalizes the Altarelli-Parisi equations to take into ac-
count transverse momentum. Unfortunately, because in

the Altarelli-Parisi approach the vertices are added at the
large mass end of the jet, the jet axis keeps turning as
more and more vertices are added. This means that in the
BCM approach, the longitudinal and transverse momenta
tend to be coupled. BCM, by using an ingenious trick,
were able to obtain an approximate formula which should
approach the correct answer as x ~1. However, the com-
plete solution of their equations would be a formidable
task.

In a previous paper, we demonstrated that the same
physical content (i.e., explicit transverse momentum in the
jet-calculus equations) could be obtained in so-called
"backward-moving" Altarelli-Parisi equations, in which
the mass of the partons evolves down (much as it does in
Monte Carlo models). In this paper, we present results of
the numerical solution of the equations and discuss the
limitations of this approach.

Because our equations are simpler than the forward-
moving BCM equations, we do not need to make the
x~1 approximation. 4'e solve the exact equations in
moment space for a number of impact parameters. Inver-
sion of the moments then leads to results in x space. Our
answers agree with those of BCM for x~ 1 as expected;
at lower x (where BCM's formula is not expected to be ac-
curate), our results are more sharply peaked in impact pa-
rameter.

Inversion of the Fourier transform between impact pa-
rameter b and transverse momentum pj presents more
problems. Nevertheless, we believe we can calculate this
well enough to discern qualitative trends.

The outline of the paper proceeds along these lines. In
Sec. II we explain the method we used in impact-
parameter space to obtain values for moments of the
nonsinglet quark propagator (i.e., the fragmentation func-
tion of quarks into the nonsinglet combination of quarks).
These are compared with the explicit formula given by
BCM, using their x~1 approximation. The inversion to
transverse momentum introduces additional uncertainties,
and hence it is discussed separately in Sec. III. Despite
systematic problems due to the inversion, some trends
remain. Relations with similar trends in the data are ex-
plored. Finally, Sec. IV contains a summary and con-
clusions.
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II. THE VIE%' FROM IMPACT-PARAMETER SPACE

X~NS g2 k2. P
(2.1)

After taking moments, and Fourier transforming in trans-
verse momentum, we get

A. Basic equations and methods

In this paper we focus on the equation for the nonsing-
let qi!ark propagator & (pi,x) [see Eq. (2.1) of Ref. 8]
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(2.3)

Our task is thus to solve this equation as a function of
moment n and impact-parameter b, and then to invert
back to longitudinal-momentum x and transverse-
momentum p, .

Because the right-hand side depends only on impact-
parameter values zb smaller than those on the left-hand
side, we set up a grid in impact-parameter space. The
right-hand-side contributions 9'(zb) are then expressed in
terms of the values &(b; ) on a grid, using a polynomial
interpolation. We then solve simultaneously for the
values 9(b;) using Runge-Kutta integration for the dif-
ferential equations (in practice the standard package
RKF45 was used). See the Appendix for some detailed
comments on the solutions.

At this point, the choice of grid points b; must be
made. Choice of these depends to a great extent on the
method one plans to use to invert the Fourier transform
into transverse-momentum space. For reasons discussed
below, we have used mainly the Gauss-Laguerre integra-
tion points in b

8. Results and comparison miih others

%'e have had some difficulties in solving for b larger
than 20 GeV . (We use A=0.2 GeV, Qo ——0.062 GeV
to set the scale. ) In particular, although the equations for
the individual moments (2.2} can be solved at large b, we

have been unable to obtain results accurate enough to al-
low reliable inversion of the moments to obtain values of
&(b,x), using the Legendre-inversion method. Detailed
comparison of various methods of moment inversion is
provided in Ref. 10. As discussed there, the Legendre
method is the most reliable technique for moment inver-
sion; however, it is extremely sensitive to errors in the in-

put moments. Our differential equation solutions produce
large moments which are good to one part in 10, but the
smallest moments have errors of about 1 part in 10.
Since the results of the moment inversion must still be
processed to invert from impact-parameter to transverse-
momentum space, we desire the high accuracy which the
Legendre technique can provide. Hence we limit our-
selves here to the description of results in the (relatively)
low b2 region.

A measure of the accuracy of the method is obtained by
determining whether the values got using 6 Gauss points
in b agree with those using 7 Gauss points in b On the.
whole, they do, showing that the method is reliable unless
the values of the function being computed are too small.
However, we have had difficulty going to 9 Gauss
points —the errors in the solution of our integrodifferen-
tial equation are apparently large enough to cause prob-
lems with the I.egendre-inversion technique.

For purposes of comparison, we use the formula

(Q, p&, Q) =D (Q,x) f Jo(bpi ) exp — f, a(k2} f [1—Jo(q)] (2.4)
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inversion of the Fourier transform suggested by nuclear
physicists' accustomed to using data for the transverse-
momentum distribution in electron scattering to yield
charge-density profiles for nuclei. In this technique, the
data is expanded in a series of Laguerre polynomials: -4

(b)
x =0.48

(c)
x= 0.98

X —1f(b2) y e —{a/2)b g L P b2
a=0

8 N (3.1)

(a P)ll 2 Py
2

a"+' " 2a(P —a)

Hence the transform of the series will yield a formula
which can be evaluated at any pz desired.

In order to facilitate this expansion in Laguerre polyno-
mials, we choose our evaluation points b; to be exactly the
Gauss-Laguerre points for N-point integration. Then the
coefficients in the series are

e {2 aib /—2f (—b2)db2
0

(3.3)

These have the remarkable property that their Fourier
transform is exactly known 2

J (Zy)& {a/2)x L P & 2

0 0 n

-5'
IO 20

p~(Gev )

{

10 20
p,~(Gev~)

IO 20
p~(Gev~)

FIG. 3. Plots of Eq. (3.4} at go=1000 GeV2. Solid curve is
from BCM Eq. {C5};dashed curve shows cur result.

(The location of the dips changes if a different number of
Laguerre polynomials is used in the initial expansion. )

A method of overcoming this is to average the results
over some region in pz. This can be done very easily us-
ing the convolution theorem, since

fi(b)f2(b)

is the Fourier transform of

f fi(P'-P)f2(P )d P'.

Hence, if we multiply our results in b space by the Gauss-
ian

e
—(A/2)b2

[here we have picked P=2 in Eq. (3.2) in order to use the
Gauss points, and the weights to (i) include the usual ex-
ponential factor].

We have one feature which is different from the nuclear
physicists we know the value at b=0 as well as the
value at the other Gauss points. In fact, we know this
value best of all bi+ause this is the usual QCD result ob-
tained from the Altarelli-Parisi equations- —the integral
over all transverse momentum. In order to incorporate
this into our scheme, we ftt the parameter a in order to
make our series approximate this value as closely as possi-
ble. The A„are functions of a, as shown in (3.3). Choos-
ing a value for a then defines all constants in Eq. (3.1).

0 P-
O

x =O. I8

(a)

B. Results and comparison with others

Our results in transverse momentum are immediately
given by

N —1 2

f(Ji )= —p, na n a —2 PxI.„a a " a(2 —a)

p~ (Gev ~)

p =5.5

Sample values are shown in Fig. 3. As expected, we agree
with the SCM results at large x, and our p& distributions
are somewhat broader at smal1 x.

One disturbing aspect of the results in Fig. 3 is the large
oscillations. Actually, as can be seen from Fig. 4 where
the same results are shown on a linear scale, these oscilla-
tions are not nearly as dramatic as they appear on the log-
arithmic graph. Nevertheless, they make it difficult to
compare our results with BCM; and we suspect that these
oscillations are not real, but artifacts of the method used.

(}NS

-O. I I &-
0

FIG. 4. (a) Figure 3{a)plotted on a linear scale, shoving that
the results of the Fourier transform in fact do not oscillate
much on an absolute basis; (b) BCM results on linear scale,
shing x and p& dependence.
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we achieve an average of the p~ results over neighboring

values, which should smear out some of these dips. '

We display in Fig. 5 the results of multiplying by

e and e ' which have the effect of
averaging over nearby pj within 0.3 and 0.45 GeV,
respectively, of the "observed" value. Note that the re-
sults at large x are not very much affected by the averag-

mg.
We now wish to compare with data. Ideally we would

like to use data containing only the nonsinglet-quark-
fragmentation function. There are a number of experi-
mental distributions which select this particular case,
which picks out the "incident" quark from the spray (as
opposed to quarks produced in pairs by the QCD branch-

ing).
For instance, at typical center-of-mass energies for

e+e collisions, the jet masses are not large enough to al-
low creation of charm-anticharm pairs. Hence all the
charmed particles that are seen come from the quarks
which originated the jet." Data exist for the x and p,
distribution of these charmed particles; however, to date it
has been presented only as a function of either x (Ref. 16}
or pz (Ref. 17). We have been unable to find a presenta-
tion which shows the x dependence of the pt slope.

Other similar cases involve the difference between m+

and tr distributions in charged-current neutrino and an-

tineutrino scattering off protons. Reactions in which a
W strikes the proton create jets of d quarks or 9 quarks.
These will produce leading tr particles; all the mr+

mesons and all the other m mesons will come from radi-
ation off the quark. Hence the difference between n and
m+ distributions tells us about the leading quark and
hence the nonsinglet distribution. Exactly the same
reasoning applies to the W+. Data are available on these

pion distributions again the presentation does not allow
us to see the x variation of the transverse-momentum
slope.

Finally, the fragmentation functions of the u quark
into both signs of charged pions have also been deter-
mined, '9 and the difference of these is another measure of
the fragmentation into the nonsinglet combination of
quarks. Again the best quantity for comparison with our
calculations, the x dependence of the pt slope of the
difference between the m+ and tr fragmentation func-
tions, is not shown. In Ref. 20, however, the same colla-
boration (EMC) does examine some aspects of the x and

0.5-

al +CL

V)
R

Q -2
O

Ov xa.08

(b)

pz correlations. In particular, Fig. 2 of Ref. 20 shows
that at large x (z in their notation) the average value of pt
is lower for lower values of Q2. This is similar to the p~
flattening observed in our Fig. 7 for large Q at large x.

Although various aspects of these distributions have
been measured, the data do not seem to have been present-
ed in exactly the form we would like for easy comparison
with our results. In particular, data showing the p&
behavior for various x bins, or vice versa, are not given in
the literature. No doubt this is because statistics are limit-
ed in many cases, and hence not adequate for double bin-
ning. We look forward to having such detailed informa-
tion available in the future.

Experimental information on the interrelation of trans-
verse and longitudinal momentum does exist for more
general distributions. In order to see whether our results
are even qualitatively reasonable, we will compare them
with these (always remembering that other terms may
enter}.

Because we do not wish to obscure the basic QCD re-
sults we have calculated, we do not multiply by
phenomenological fragmentation functions into pions,
kaons, protons, etc. This means that our comparison with
data must be qualitative. However, since the hadromza-
tion functions are expected to introduce only small addi-
tional pt (of the order of 200 MeV), it is sensible to com-
pare with data those trends which can be observed at the
GeV level in p~.

In Fig. 6 we show how the slope in p& changes with x.

x =O. I8 x = 0.48 x = 0.98

x
Oa

(A
ir

o

IO 20
p~ (Gev~)

I 1

10 20
p2(GeV~)
L

l I

IO 20
p2(G~V2)
L

FIG. 5. Consequences of smoothing at Q~=1000 GeV',
showing the results of multiplying the impact-parameter results

—0 05b /2 2
by 1, e . ' and e 0."b . BCM results are solid curve; our
results are dashed curve. %e believe this smoothing preserves
the essential physics results while removing artifact dips from
our approximate Fourier inversion method.

I I I l

2 5 4 5 6

p (Gev )

FIG. 6. Slope in p~2 as a function of x at Q~=1000 GeV2,

using a smoothing function e( —0.1b /2) in impact-parameter
space: (a) BCM results; (b) our results.
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FIG. 7. Behavior of 2p»N(p&, x) at various x values as a
function of Q . Note that the distributions become broader as
Q' rises. Because the Altarelli-Parisi equations damp large x as

Q increases, the crossover point tends io move to larger p~ as x
increases. Both contributions have been multiplied by the
smoothing function e( —G. lb2/2) in impact-parameter space
prior to the inversion.

the nonsinglet ones, we cannot at this point tell whether
the discrepancy is due simply to the other contributions,
or whether nonperturbative effects need to be invoked. It
is clear that the nonsinglet distribution is rather special,
since it involves only the incident quark in the jet and has
less singular behavior at x =0 than the other contribu-
tions. These other pieces, thus„ tend to be large at small x
and to affect the overall size of the results. Assuming
that they also have the feature that small x is peaked
more sharply in transverse momentum (shown for the
nonsinglet case in Fig. 7), they will contribute to an
overall enhancement of the cross section at small pi, in
the direction of agreement with the data.

IV. SUMMARY AND CONCLUSIONS

x =O. I8 X = 0.48

-10 GeV

x =0.98

C4 +
Ck

CO

CL 3'-
O

O
(a)

(0
I I I I

0. 1 0.2 0.3 OA 0.5
XT

(

O. l

(b)
10

1 1

0.2 0 3 0.4 0.5
XT

(c)
~.104

O. l 0.2 0.3 04 0.5
XT

FIG. 8. Same as Fig. 7 except that the parameter used is the
"scaled" variable xT ——2pj /8'. Because of the wide range of p&
used, substantial smoothing factors were necessary in some

cases. The results plotted use e"~ ~' with A =0.7 at Q =100
GeVi, A =0.4 at Qi = 1000 GeVi, A =8 at Q~ = 10000 GeV~.

On the whole, distributions become broader as x increases
until x gets to about 0.7, after which the slope seems rath-
er constant with x. The increase in (pi) at small x
agrees with the data presented in Fig. 34 of Ref. 6; howev-
er we do not obviously have the decrease in (pi ) at very
large x shown in the data. Our "flattening off" of (pi )
at large x is more like the data presented in Fig. 26 of
Ref. 7.

In Fig. 7 we show the transverse-momentum behavior
at various x values for two different values of Qi. Notice
that the distributions become broader as Q increases, as
expected (see Fig. 31 of Ref. 6), and that the "crossover"
point appears at larger and larger transverse momentum
as x increases.

Similar results are presented in Fig. 8, using the "scal-
ing" variable xT ——2pi/W. This is to be compared with
Fig. 42 of Ref. 6, which is integrated over all x. The data
and the predictions show the same hierarchy: low Qi is
lowest at small xr, but largest at large xr. Note that we
have used rather large "smoothing" coefficients here,
especially for Q =10 GeV (where a very large range of
pi is needed to explore this region of xT); our results are
therefore more qualitative than quantitative.

Both Figs. 7 and 8 are rather flatter in transverse
momentum than the corresponding distributions in the
data. This is due to underpopulation of the region at
small pi. Our results are somewhat similar to those
presented in Fig. 14 of the KUV paper (Ref. 3). Since the
data include results of the other & functions as well as

By solving explicitly the backward-moving Altarelli-
Parisi equations suggested in an earlier paper, we have
tested their usefulness as a means for studying the
transverse-momentum properties of jets. Results agree
with previous solutions by BCM of the forward-moving
equations containing transverse momentum, in the region
near x = 1, where the previous solution was expected to be
valid. At smaller x values, our results are broader in pi
than BCM's approximate formula.

We obtain an increase of (pi ) with x at small x simi-
lar to that seen in jet data. The Q variation of behavior
in pi and xT (=2pi/Q) is also similar to that in the
data. More detailed comparison with experimental results
would require computation of & functions other than the
nonsinglet; and the inclusion of phenomenological frag-
mentation functions; however, it is expected that these ad-
ditions would improve the agreement.

The programs which perform these computations can
be run in a finite time on the CYBER 175; time to in-

tegrate the equations varies, of course, with the Q con-
sidered, but the results shown in impact-parameter space
typically required less than 80 CPU seconds to compute
the values at 7 grid points plus b =0. Another moderate-
ly time-consuming calculation is the fit of the parameter
a in the Laguerre expansion used for the Fourier-
transform inversion. On the whole, this is not inuch by
modern computing standards and, if one were so inclined,
the programs could no doubt be improved to increase both
speed and accuracy.

Our solutions of the integrodifferential equation for
moments in impact-parameter space are quite accurate and
reproducible. Further calculations by the differential-
equations approach (such as solution of the remaining
equations in Ref. 9) await a more reliable method of in-
version from impact parameter to transverse momentum.
In other words, the full numerical consequences of the
backward-moving equations can be achieved either by
resolving the above difficulty, or by solving the integrodif-
ferential equations directly in x and pi space. This sort
of calculation may become commonplace as supercomput-
ers are used more frequently with large meshes in integral
equations, but for the moment the physics gains do not
seem to ~arrant the programming difficulties.

Thus, if we stick with computations of manageable size,
further calculations by the differential-equations approach



1334 L. M. JONES, I.. SAGAI.OVSKY, AND R. MIGNERON

are not likely to yield as much new information as the
QCD Monte Carlo approach. In addition to the difficul-
ties mentioned above, incorporation of extra degrees of
freedom into the differential equations increases the com-
plexity of the solution process a great deal, whereas the
Monte Carlo has all these kinematic variables to begin
with.
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APPENDIX

In this appendix we discuss a few of the more detailed
points in the evaluation of the expression in Eq. (2.3). In
particular, after a polynomial approximation is made for
W(zb), the z integral reduces to terms of the form

W~(bj, k)= f dzz Jo(b;k[z(1 —z)]'~ )

bjk
=ApP (A 1)

and

The Jr functions can, as shown, be split into two terms.

One (f,) is evaluated once for each Q and b;, and the
Q 2

other (, ) is evaluated as a separate variable in the
k2

Runge-Kutta integration.
However, the Mz function in Eq. (Al) would be rather

time consuming to evaluate at each step of the integrator.
In fact, these can be obtained analytically beginning from
Eq. (29) of Ref. 21.

Hence, setting p =0, we find by standard methods
(x =bk/2)

Mo(b, k) =An
bk

2

slnx

1 sinxA)(x)=—
2 X

(A4}

1 sinx
A2(x) =—

4 X

cosx slnx
X2 X3

+

Using Bessel's equation for Jo, these integrals obey the
recursion relations (x =bk/2)

&q+2(x) =—(p+1) 2Aq+)(x)
1 1 1

4 P+
p p+1

1——A (x)P

[(p+1)A~(x)—pA~ &(x)]
1

X

(A5)

f cos[P(a x—) '/ ]Jo (x )dx
o (a 2 x 2)1/z

sin[a (p +1)' ] . (A3)
1

(P'+1)'"

k' dt
W(bj, k)= f, a(t)Jo(bf—v t )

p02 t

f,—f, ct(t)JO(b, v—t ) .
Q' Q' dt

0
(A2)

Hence all the necessary ones can be generated from simple
functions.

Unfortunately the recursion relation runs into difficul-
ties when k is small. In this case, we use a series approxi-
mation, which is also quickly evaluated.
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