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Pion interferometry is discussed as a tool for viewing ultrarelativistic heavy-ion collisions. Several
dynamical scenarios are considered for the phase transition into quark-gluon plasma. Experimental
signatures for a first-order phase transition are predicted for collisions where the produced matter
has no initial collective motion. Recommendations for future experiments are made.

I. INTRODUCTION

A transition into a phase of matter where color is
deconfined has been predicted for temperatures around
200 MeV. At these temperatures the hadron density is so
high that the distinction between the different hadrons is
blurred by their overlap. The system is then better
described by the quark and gluon degrees of freedom. Ul-
trarelativistic heavy-ion collisions should produce regions
of space of sufficient size and with sufficient energy den-
sity that this phase transition could occur and be
described with models based on thermal equilibrium.

Yet experiments would not view the matter while it is
in the deconfined state. Evidence of the transition must
come from studying the particles that are emitted from
the region after it has reentered the normal hadronic
phase. These particles would largely consist of pions since
they are the lightest hadron. Two proposed experimental
signatures for a quark-gluon plasma are enhancements in
the strange-particle’ and lepton? production. But these
are not signatures unless the lifetime of the system is well
measured. Pion interferometry should give a good mea-
surement of the lifetime if the experiments can measure
the correlation function for different directions of the rel-
ative momentum.

The equation of state of the emitting region can only be
inferred from experiments when the volume is well under-
stood. Pion correlations give the clearest picture of this
volume. Large rapidity correlations may also be a signa-
ture for bubbles formed by a phase transition,’ but this
can only be discussed when the size of the bubbles is
known.

The phase transition may also make a significant differ-
ence in the dynamics of the collision. A first-order phase
transition with a large latent heat would mean lower pres-
sures in the deconfined phase and very much lower pres-
sures in the mixed phase regions when compared with the
confining phase at the same energy density. The lack of
pressure gradients would allow the energy density to
remain static for a longer period of time. This could in-
crease the lifetime by an order of magnitude, which can
then be measured in the interferometry.

Single particle emission spectra have difficulty showing
collective expansion in relativistic heavy-ion collisions.
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Collective expansion also manifests itself in the inter-
ferometry when the source size is measured for pion pairs
with different average momenta. At the very least, pion
correlation functions provide another check for any
theoretical scenario that might be proposed to accurately
describe an ultrarelativistic heavy-ion collision. This tool
could be very accurate and decisive due to the tremendous
number of pions produced, but only if the experiments are
designed to measure the correlation function for all dif-
ferent magnitudes and directions of the pion momenta in-
volved.

We calculate the pion correlation function for two dif-
ferent dynamical scenarios. The first is for stopped
matter with spherical symmetry. The matter expands due
to the hydrodynamic equations under the constraint of en-
tropy conservation. This scenario may not be the most
likely, especially at higher bombardment energies, but it
does show most clearly the effects of the phase transition
on the dynamics. These effects are clearly manifest in the
correlation function. The interferometry is also calculated
for the Bjorken scaling solution. Here the interferometry
can be used to measure the breakup time of the collision.
In this sort of expansion the initial longitudinal expansion
dominates the dynamics and it is much harder to see the
effects of the phase transition. Pressure is not needed to
expand the plasma if it is not initially at rest.

This paper is structured as follows. Section II contains
a discussion of how the two-particle correlation function
of identical particles as measured in momentum space is
used to infer the space-time structure of the emission
function. The simple bag-model equation of state is re-
viewed in Sec. III. Section IV gives the results for a
spherically expanding plasma. The interferometry is per-
formed for the case when there is a phase transition and
when there is not. The phase transition is shown to affect
the expansion very significantly and to give a clear signal
in the correlation function. The Bjorken scaling solution
is described and evaluated in Sec. V. The phase transition
does not have as big an effect with this scenario since the
initial conditions are more important than the equation of
state in determining the expansion. There are also three
appendixes which include discussions of the spherical hy-
drodynamic code, how the correlation functions are calcu-
lated from the results of the code, and the details of shock
fronts.
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II. THE POWER OF INTERFEROMETRY

The pion correlation function can be used to measure
the size and lifetime of a source.* Pions emitted from
random sources in a finite volume are correlated in their
two-particle momentum distribution in the same way that
electrons in a metal are anticorrelated in their spatial dis-
tribution due to the fact that they occupy only a finite
volume of momentum space. The width of the two-
particle correlation in the pion’s momentum distribution
function is related inversely to the size of the source from
which they came. The correlation function is defined:

C(p,q)=P(p,q)/[P(p)P(q)], 2.1

where P(p;-- - p,) in the probability of observing the
pions p; through p, all in the same event. If the proba-
bility g(p,x) of emitting a pion of momentum p from a
space-time point x is known the correlation function can
be predicted:’

P(p,@)=P(p)P(q)+ [ d*xd*y g(K,x) g(K,y)

xXexplik(x —y)],
2.2)
P(p)= [ d*xg(p.x),

where K=(p+q)/2 and k#=p#—q#. Thus, measuring
the pion correlation function gives the Fourier transform
of the spatial probability for emitting two pions with
identical momentum. Corrections can be made to these
formulas for the effects of final-state Coulomb interac-
tions, coherence effects due to the source not being com-
pletely incoherent, and resonance decays.® The interfer-
ence term in Eq. (2.2) depends on the spatial distribution
of pions with the same momentum after they have been
emitted. Since k-(x —y) is a Lorentz invariant the argu-
ment of the exponential can be boosted independently to a
frame where the pions have zero total momentum. In this
frame ky=0 and the argument can be written as the prod-
uct of a vector K* with the separation of the pions after
they have been emitted:

k-(x —y)=k*-[vg(x°—y%) —(x—y)],
k=Ko 2.3)
k paraiiel =Y K K pacaties — ¥ k Kok

where v is the velocity of a pion of momentum K and
yx = —vg?)~1/2, The subscripts “parallel” and “perp”
refer to the direction of K. Since the interference term
depends only on the probability of emitting pions with the
same momentum, and since the argument in the exponen-
tial depends only on the relative positions of the pions
with the same momentum after emission, the correlation
function measures the final spatial distribution of all
those pions emitted with exactly the same momentum.
One cannot distinguish between cases where the source
was large along the direction of the total momentum or
whether the lifetime was long which allowed the pions
time to separate in their final state. If a symmetry is ex-
pected the lifetime can be inferred by measuring the corre-
lation function both perpendicular and parallel to the total
momentum of the pair. A long-lived source does not

separate two identically moving pions in the direction per-
pendicular to their velocity. Measuring pion pairs with
higher total momentum is better for showing this effect,
since the pions can separate further along the direction of
their momentum during a given lifetime when they are
moving faster.

Particles with the same velocity are more likely to have
come from that part of the source moving in the direction
of the pion pair. If there is collective radial expansion
slow pions have a greater part of the source from which
they can be emitted than do fast pions.® Hence, collective
expansion leads to smaller effective source sizes for pion
pairs with higher total momentum. A long lifetime leads
to larger effective source sizes for pion pairs with higher
total momentum. However, the effect of the lifetime
disappears unless the correlation function is measured for
relative momentum in the same direction as the total
momentum. Thus there is truly a wealth of information
about the dynamics of the system to be gathered if the
correlation function can be measured for different magni-
tudes of the total momentum and different directions of
the relative momentum.

III. THE BAG-MODEL EQUATION OF STATE

The simplest equation of state that interpolates between
the relativistic pion gas at low temperatures and the
noninteracting quark-gluon plasma at high temperature is
the bag model. Here we will assume massless particles
with no conserved quantum number. (Since we are only
considering temperatures above 120 MeV the assumption
of massless particles is good to within 5%. The pion gas
has only three degrees of freedom due to the three types of
pions while the deconfined plasma has 16 Bose degrees of
freedom and 24 Fermi degrees of freedom. Here strange
particles have been neglected. The energy density of the
quark-gluon plasma is also given a bag constant that
forces the pion gas to be the thermodynamically favored
state at low temperatures. The pressure P and the energy
density p of a gas of massless particles at high tempera-
ture with Ny Fermi degrees of freedom and N, Bose de-
grees of freedom are

P=(m/90)(Ny,+7/8N/)T*,
3.1)
p=3P .

The pressure and energy density of the hadronic and
quark phases are therefore

P,=(37/90)T*,

pr=(972/90)T* ,
(3.2)
P,=(377/90)T*-B,

pe=(377%/30)T*+B .

The two equations of state are shown in Fig. 1 as a
function of the energy density. For any given temperature
the system will choose to be in the phase with the higher
pressure. Equating the pressures of the two phases yields
the critical temperature where the phase transition occurs:
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FIG. 1. The first-order phase transition yields a phase of
constant pressure. This phase covers a large range of energy
densities.

P (T,)=(377%/90)T,.*—B

=Ph(Tc)=(3ﬂ'2/90)Tc4 ’

(3.3)
T.=(90B /341*)!/* .

The energy densities of the two phases are different when
they are at this critical temperature. The bag model has
some support in the fact that a first-order phase transition
also shows up in much more complicated analyses such as
lattice Monte Carlo analyses.” Figure 2 (Ref. 8) shows the
discontinuity in energy density as a function of tempera-
ture for a gluon gas in QCD. There is still great difficulty
in treating the Fermi degrees of freedom effectively. It is
surprising how closely the plasma phase resembles an
ideal gas.
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FIG. 2 The energy density from a Monte Carlo simulation of
quarkless SU(3) on an 8% 3 lattice shows a discontinuity mean-
ing a first-order phase transition. The low-temperature phase
corresponds to massive glueballs while the high-temperature
phase corresponds to perturbative plasma. The solid curves are
calculated from perturbation theory. The dashed line represents
a noninteracting gas of gluons.

There is a range of energy densities between p,(T,) and
pq(T,) where the matter is in a mixed phase. The pres-
sure and temperature are constant throughout this range
of energy densities. The fact that the pressure does not
change for a range of entropy densities means that the
sound velocity is zero in a region of mixed phase. The
fluid elements in this region cannot react to adjacent ele-
ments until the adjacent elements have a different pres-
sure. This requires a discontinuity in the energy and en-
tropy densities.’ If a region of space is static and in the
mixed phase and it is surrounded by matter in the hadron-
ic phase the matter in the mixed phase cannot expand un-
til a shock wave carrying the discontinuity arrives from
the outside. The speed at which the shock wave advances
and the properties of the matter just outside the shock
front can be found by requiring conservation of energy
and momentum across the front while making some as-
sumption about the amount of entropy produced. Shocks
are discussed in Appendix C.

When there is a nonzero baryon number the pressure in
the mixed phase will depend on the energy density and en-
tropy per baryon. A mixture of two phases at equilibrium
will always share the same pressure and the same baryon
chemical potential:

Py(p, T)=Py(u, T) . (3.4)

This yields u(T) for any temperature that can support a
mixed phase. To solve for an isentrope one must pick a
specific ratio of entropy to baryon number. One can now
solve for the temperature and chemical potential for any
ratio of phase mixtures that give the correct entropy. De-
fining f, and f}, as the proportion of the baryon number
in the quark and hadronic phases (f, +f4 =1) and defin-
ing o as the given ratio of entropy to baryon densities,

o =1 [5g(1ts D) /1y, )1+ fulsn(, T /my (0, D] . (3.5)

Since f,, f» and o are chosen and p is known as a func-
tion of T from Eq. (3.4), Eq. (3.5) can be solved for T.
The temperature and pressure will be different for dif-
ferent ratios of the phases. This is usually a difficult pro-
cedure even for simple equations of state. When baryons
are introduced there may be pressure gradients within a
region of mixed phase.

IV. SPHERICALLY EXPLODING PLASMA

The effects of the phase transition on the inter-
ferometry are most apparent when the initial conditions
are such that the difference in pressure due to the energy
being absorbed into latent heat is most manifest. We give
the computer-generated solutions for three choices of ini-
tial conditions. Each case is solved for both the bag-
model equation of state and for the equation of state of an
ultrarelativistic pion gas without a phase transition. A
plasma that is almost entirely in the mixed phase and ini-
tially static shows the most dramatic change in the dy-
manics when the phase transition is introduced. Here the
pressure is constant in the region of mixed phase and an
initially static plasma requires pressure gradients in order
to accelerate radially and expand. The case where the ini-
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tial energy densities are high enough that much of the
matter is completely in the deconfined phase shows the
same signals though not as strongly. The signals are
greatly reduced for the third case where an initial radial
velocity distribution is introduced.

The initial conditions were chosen to describe a large
spherically symmetric fireball where all the energy is
within 8 fm of the center. The initial energy density was
scaled such that it would be a maximum at the center and
go to zero at 8 fm:

po(r)=pol1—r?/R?), r<R=8fm,

4.1)
po(r)=0, r>R .

The maximum energy density p, was picked to be 2
GeV/fm? in the first and third example so that the center
was in the mixed phase and nearly into the quark phase
while the second example has a p, of 5 GeV/fm® which
corresponds to the deconfined phase. The initial velocity
for the third example was chosen to increase radially from
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the center:

yo(r)=r/R . 4.2)

The numerical technique used to solve the equations of
motion are described in Appendix A. Energy and entropy
are conserved explicitly. The entropy is divided into
shells and followed throughout the calculation. When the
outermost shell reaches the breakup temperature of 120
MeV the shell is removed from the calculation and the
velocity, position, and time of the shell’s breakup is
stored. (At 120 MeV the mean free path of pions in a
pion gas approaches the size of the system.) This infor-
mation is sufficient to calculate the emission function g
from which the correlation function can be determined.
The technique for calculating the correlation function for
a set of expanding thermal shells is shown in Appendix B.

Figure 3 shows the energy density Ty and the velocity
yv as a function of time for the case where the matter is
initially static and almost entirely in the mixed phase.
The matter in the mixed phase cannot move since there
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FIG. 3. (a) Initially static spherically symmetric matter described by a free gas of pions expands and dissolves in 10 fm/c. The to-
tal energy density is shown in GeV/fm3. The velocity yv increases from the center and with time. (b) When a phase transition is in-
troduced the expansion is greatly slowed so that it lasts 90 fm/c. Since the matter inside is in a mixed phase at constant pressure, a

shock wave approaches from the outside.
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are no pressure gradients. A shock wave approaches from
the outside at a very slow velocity. Shock waves usually
generate entropy but this code conserves entropy exactly.
In Appendix B the characteristics of shock waves between
the mixed and hadronic phases are derived for both the
cases of maximum and zero entropy generation. The
speed at which the shock wave advances varies only
slightly when the entropy is allowed to be a maximum.
The amount of entropy generated is never more than a
few percent. The case of maximum entropy generation
does yield noticeably higher temperatures and lower veloc-
ities immediately outside the front, but after a very short
time the matter will have accelerated and cooled to look
very much like the case with no entropy generated. The
computer model cannot be compared to the solutions in
Appendix B since the mesh size is too rough to distin-
guish the boundary of the front very accurately and the
breakup temperature is often lower than the temperature
outside the front solved for in Appendix B. However, the
speed at which the front encroaches into the mixed phase
does follow the solution given in the Appendix to within
about ten percent. A finer mesh seems to lower the speed
of the front and better approach the solutions.

The first example shows that the matter does not com-
pletely dissolve until 90 fm/c. Running the program with
the hadronic equation of state yields complete dissolution
in 10 fm/c. The collective or explosive velocity are much
greater without the phase transition. Both these dynami-
cal effects have very clear signatures in the correlation
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function. The long lifetime yields a much larger apparent
source size when the relative momentum of the pion pair
is chosen to be parallel to the average momentum. This is
shown in Fig. 4. Plotting the correlation function for dif-
ferent average momentum, and the relative momentum
perpendicular to the total momentum, shows the differ-
ence in explosive velocity. Pions of greater energy appear
to come from a much smaller source when there is a
higher share of the energy in collective expansion. Here
the width of the correlation function increases less rapidly
with increasing average momentum when a phase transi-
tion is introduced. One must remember, however, that
this scenario is the most extreme. When the lifetimes are
extremely long one would expect leakage of pions from
the inner regions to be important. Perhaps the mixed
phase could be produced with beam energies low enough
that the nuclei would effectively stop each other. This
scenario might then be more relevant, although the equa-
tion of state would have to be parametrized for regions
with nonzero baryon number.

The same calculations are shown in Figs. 5 and 6 for
the case where the initial energy density pg is 5 GeV/fm.}
This is well into the deconfined phase. There are now
pressure gradients in the center of the plasma and the ex-
plosion starts from the inside as well as the outside. The
matter quickly expands into the mixed phase where it
drifts at this abbreviated explosive speed until it dissolves.
The phase transition extends the lifetime of the collision
to 50 fm/c from 12 fm/c. The same dynamical effects
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FIG. 4. (a) The correlation function is calculated from the emission function that was generated from the scenario described in Fig.
3(a). Collective expansion manifests itself through broader correlation functions for pion pairs with higher average momentum K.
The upper graph shows the case where the relative momentum k is parallel to the average momentum and the lower graph is for
when the relative momentum is perpendicular to the average momentum. (b) The scenario described in Fig. 3 (b) yields these correla-
tion functions. The phase transition brings little qualitative difference to the correlation function when the relative momentum & is
perpendicular to the average momentum K (lower graph). The widths increase for pairs with higher momentum due to collective ex-
pansion. The long lifetime shows itself when k is parallel to K (upper graph). The widths then decrease for larger values of K.
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FIG. 5. (a) Here the initial energy density is higher and the matter gains more collective velocity before it explodes. The duration
of the collision is longer and the outer radius is larger due to the higher initial energy density. (b) The higher initial energy density al-
lows pressure gradients at the center since this matter is in the quark phase. The extension to the lifetime due to the transition is re-

duced compared to the initial conditions of Fig. 3 (a).

are signaled in the interferometry, only less dramatically
than the first example. One would expect that with even
higher initial energy densities the signatures would contin-
ue to fade.

The case where the initial conditions contain an initial
explosive velocity is shown in Figs. 7 and 8. The lower
pressures due to the phase transition manifest themselves
only slightly in this scenario. The lesson to be learned
here is that a strong dynamical signature for the quark
gluon plasma is only expected if the plasma can be formed
in a near static condition.

Until stopping power is better understood there can
only be speculation as to the initial conditions of a plasma
formed by heavy-ion collisions. Most of the theoretical
effort in describing a quark-gluon plasma has centered on
searching for signals for extremely energetic collisions,
often around 20 GeV/fm>. Here we have shown the pos-
sibility of a strong signature with a rather small energy
density. If the mixed phase is produced at low bombard-
ment energies so that the projectiles stop this calculation

becomes more realistic, although more work would be
needed to include nonzero baryon number.

V. THE BJORKEN SCALING SOLUTION

The pion spectra from ultrarelativistic hadronic col-
lisions have been seen to be invariant to boosts parallel to
the beam. This invariance extends over a substantial por-
tion of the rapidity region in which pions are emitted.
The central rapidity region is also expected to carry very
few baryons which tend to stay close to the initial rapidi-
ties of the beam and target. This motivated Bjorken to
find a solution to the hydrodynamic equations of motion
that would retain this invariance to longitudinal boosts.!°
All of the hydrodynamic variables can be chosen to be a
function of a proper time that is invariant to boosts along
the direction parallel to the beam, the z axis:

r=(t2—2z2)1/2 (5.1)

The velocity and entropy density of the matter can be
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FIG. 6. (a) We show the correlation function calculated from the scenario shown in Fig. 5 (a). Collective expansion manifests itself
in both cases where the relative momentum k is perpendicular (lower graph) and parallel (upper graph) to the average momentum K.
Since the matter breaks up almost all at once there is little difference between the upper and lower curves. (b) Here the correlation
function is shown for the case described in Fig. 5 (b). The phase transition is evidenced in the same way as the case with a lower ener-
gy density shown in Figs. 4 and 5. The extended lifetime yields a more narrow correlation function for higher momentum pairs when
the relative momentum k is parallel to the average momentum K (upper graph).

written in such a way that they are independent of longi-
tudinal boosts:

YV, =2/7,
(5.2)
s(r)=s(ro)7o/7) .

Here v, is the Lorentz factor for the velocity v,. The
solution is considered valid only for proper times larger
than some starting time 7, This satisfies the hydro-
dynamic equations of motion for the case where no entro-
py is generated and the transverse degrees of freedom
have been neglected:

3,T*=0,
(5.3)
TH=(P+p)UFU”— Pgh*e,

Here THY is the stress energy tensor, U* is the four veloci-
ty and g*" is the metric (g®=1). One can neglect the
transverse degrees of freedom if the matter cannot expand
appreciably in the transverse direction during the longitu-
dinal lifetime of the system. This should be the case when
the transverse size divided by the sound velocity is much
greater than the breakup time 7. We consider only this
simple case, where the transverse dimensions are kept
fixed in time, and the temperature is considered to be in-
dependent of the transverse position. A first-order phase
transition would slow the transverse expansion,
strengthening this assumption.

Here we solve for the correlation function due to such
an expansion where the pions are all emitted at the same
proper time 7 at a breakup temperature 7. The correla-
tion function does not depend on 7, since the emission
function only depends on the properties of the matter at
breakup, not at any previous time. In the center-of-mass
frame the matter at z=0 reaches the breakup temperature
first. The matter at z breaks up at t=(7+2%)!/2. The
emission function at z=0 is

8(p,z =0,t)=exp(—E, /T)b(t —7) . (5.4)
Using the fact that E,g(p,x) is a Lorentz invariant the
emission function at any position z is given by

g(p,z,t)=exp[ —YZ(Ep —0;p;)/T)8(y,(t —v,2)—7)
XV:Ep —v,p,)/E, . (5.5)

The correlation function should be invariant to boosts
along the z axis since the emission function is invariant.
Therefore the correlation function only has to be solved
for when the average momentum is perpendicular to the
axis. C(p,q) can be solved for explicitly in this case:

C(p,qQ)=1+LI(x,y)I;I*(x,p)/[P(p)P(q)], (5.6)

where I (x,y) and I, are given by
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FIG. 7. (a) Here an initial explosive velocity is introduced. Pressure gradients are not needed for the matter to expand. The initial
thermal energy density distribution is the same as that in Fig. 3. (b) Introducing a phase transition extends the length of the calcula-
tion from 8 to 12 fm. This is much less dramatic than the previous scenarios.

I(x,p)= f,,dx dy elk:x+y)
I,=fdzexp[ik,z——iko(t2+zz)“2]
X exp[ — Ex (7?4292 /T+] .

The single-particle probabilities P(p) are related to the
probability of emitting a particle with zero longitudinal
momentum and the same transverse momentum p; :

P(p)=P(p,)(1—p,2/po2)'/?
(5.7
P(P:):fAdxdy fdzexp[-Ep‘(TZ+zz)1/2/TT] ‘

The correlation function can be found explicitly for the
case that k is along the z axis. The answer is a function
of k.7 and the energies are measured in units of the tem-
perature:

C(p,q)=1+(B,B KBy +k; 1)
XK\ (B B2+ k)], (5.8)
where B,=E,/T and K, is the first-order Bessel func-

tion. If the temperature is known the lifetime 7 can be ex-
tracted from the width of the correlation function. Plot-
ting the correlation function for different total momenta
would give a good measure of the temperature. In Fig. 9
the correlation function is plotted for several values of the
total energy when T =120 MeV and =5 fm/c.

A phase transition could make a difference in the prop-
er time at breakup. For a given initial energy density and
To the plasma or mixed phase allows a higher initial entro-
py than a pure pion phase. Assuming that entropy is con-
served, and that the breakup criteria only depend on the
final entropy density, this allows a longer breakup time.
The time is lengthened by the ratio of the initial entropy
densities. For high initial energy densities the initial en-
tropy is larger by a factor of (37/3)!/%. Measuring the ini-
tial conditions is very difficult and almost by definition
cannot be done with interferometry since the correlation
function depends only on the final emission function.
Viewing the initial conditions could only be done by view-
ing more exotic particles which might escape unscathed
from the primary stages of the collision.
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FIG. 8. (a) The correlation function is calculated from the case described in Fig. 7 (a). There is little difference between these corre-
lation functions and those shown in Fig. 4 (a). The relative momenta k are shown perpendicular (lower graph) and parallel (upper
graph) to the average momentum K. (b) The introduction of the phase transition brings little difference to the lifetime of the collision
since the expansion is dominated by the initial explosion. The only marginal difference between the correlation functions is when the
relative momentum Kk is plotted perpendicular (lower graph) rather than parallel (upper graph) to the total momentum K.

VI. CONCLUSIONS

Pion interferometry can nearly determine the emission
function. Although  the correlation function
C(pxsPy>Pz34x,9y,9;) depends on six independent variables
and the emission function g(px,py,p;;X,y,z,t) depends on
seven, the correlation function contains a wealth of infor-
mation. If the emission function is known to obey some
constraints such as thermal emission and spherical sym-
metry then the correlation function should in principle
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FIG. 9. The correlation function due to a Bjorken expansion
is shown for the total momentum K being perpendicular to the
beam and the relative momentum k being parallel. All the
matter dissolves at the same proper time 7. The width increases
with larger values of K. This is a way of viewing the breakup
time 7.

uniquely describe an emission function. Although it is
not feasible to measure the correlation function for all
combinations of momenta, an experiment can yield good
insight into the lifetime and the explosive velocity by
measuring the width of the correlation function for dif-
ferent directions of the relative momentum and different
magnitudes of the total momentum.

The emission function can give strong hints as to the
properties of the system at earlier times as well. Investi-
gation of spherical sources shows that an anomalously
long-lived source with a smaller explosive velocity is a sig-
nal of a first-order phase transition with a large latent
heat. This dependence is especially striking when the ini-
tial energy density was close to that of the critical energy
density for entering the quark-gluon phase entirely.
Another explanation for a long-lived source could be large
viscosities which slow the expansion. This scenario would
necessitate a growing source, which would mean a larger
source size and a very low explosive velocity.

Unless the matter is initially static there probably is not
such an extraordinary signal to the equation of state as
the one mentioned above. However, the size, lifetime, and
explosive velocity of the source are always important tests
of any picture of the collision. Any model of the collision
such as hydrodynamics or intranuclear cascade, will
predict an emission function and therefore a unique corre-
lation function. For instance, the solution to Bjorken’s
model shows a very clear structure in its dependence on
the total momentum of the pion pair and its invariance to
boosts. Combining the interferometric information with
that from single-particle emission spectra and the mea-



surement of exotic species should give good insight into
the properties of the matter in the early stages of the col-
lision.

If it were possible the best method to study the quark-
gluon plasma would be to measure the temperature and
pressure by inserting a gauge. Three extensive quantities
must be measured to obtain an equation of state for a stat-
ic gas with no nonzero conserved charges. In heavy-ion
collisions the total energy and entropy can always be es-
timated from experiment. (The entropy is proportional to
the pion number.) Knowing the volume and fraction of
collective energy for a given time of the collision would be
sufficient to yield a single value in an equation of state
corresponding to the conditions at that time. The correla-
tion function can give a good estimate of both size and ex-
plosive energy at breakup. Discerning any information
about the equation of state at previous times necessitates
some trust in a set of initial conditions and a scenario for
the expansion. If the initial conditions could be checked
by measuring the abundance of hadrons or leptons that
would be produced and that escape during this early stage,
then experiments could check both the beginning and end
of any theoretical picture.
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APPENDIX A: COMPUTER-GENERATED
SOLUTIONS TO THE HYDRODYNAMIC EQUATIONS
OF MOTION

The hydrodynamic equations of motion are solved with
a code designed to conserve energy and entropy explicitly.
The spherical source is divided into 80 shells with an
equal amount of energy in each shell at the beginning of
the calculation. The entropy for each cell is then chosen
to give the appropriate energy. The positions of the cell
boundaries are stored for integral multiples of the time
step &¢. The velocities are stored for integer plus one-half
values of 8¢. The velocities will be specified for the center
of each cell. The cell boundary denoted by i is found at a
later time step from quantities at earlier time steps using
the formula:

ri(t +8t)=r;(t)+[v;(t +8t/2)+v; (¢t +81/2)]8t/2 .

(A1)
The subscript i for the velocity refers to the cell bounded
by r; and r;_;. The velocities at a later time step are

found by solving the conservation of energy condition for
the velocity. The energy E;(t) at an integral time step is a

J
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function of the cell boundary positions r;(¢) and r; _,(1),

the entropy S; and the velocity [v;(z+8¢/2)
+u;(r —8t/2)1/2,
E;=4n/3(r —ri_dpiv*+Pi(y*—=1)] . (A2)

If the energy distribution E; is known the only unknown
is the velocity v;(t+56t/2), which can be solved for. The
energy density in the rest frame p and the pressure P must
be given in terms of the entropy density. If there was
another conserved quantum number such as the baryon
number, that would also be stored and like the entropy it
would be conserved for each cell. The equation of state
would then be a function of each conserved quantity. It is
difficult to write an equation of state in terms of the en-
tropy density and baryon density when a nonzero baryon
number is introduced. With zero baryon number the pres-
sure and energy density are proportional to s*/3.

A prescription has not yet been given for finding the
energies E;(¢) in terms of the quantities that are prior to
t+6t/2. Once this is found the velocity v;(¢ +8¢/2) can
be solved for using the method of the above paragraph us-
ing only quantities from previous times. The energy of a
specific cell changes by doing work on its outside cell and
having work done on it by the inside cell. This can be
shown using the conservation-of-energy condition for the
energy-momentum tensor for a system with no viscosity
or heat conductivity:

9,T°=0,
(A3)

TH'=(P +p)UFU"— Pgh” .

The change in energy for a cell characterized by a volume
V during a small time step 8¢ comes from the change in
energy density inside the volume and the new energy den-
sity captured by the changing boundaries:

sE=bt [ [ a% 3%+ daor®|. (A%)
The first integral can be changed to an integral over the
surface by using the conservation of energy condition, Eq.
(A1), to change the term to an integral of a divergence
and then using the divergence theorem to obtain

8E=8t [§ dd n(~TO+uT%)| . (A5)
Using the definition of T yields the result
S8E=—8t § Pv-dA . (A6)

This is the familiar result from thermodynamics when
there is no viscosity or heat transfer: 8E = —P dV.

The energy E;(t) can now be written as a function of
quantities at times no later than ¢ (P;,andP,,, refer to the
average pressures at the boundaries of the shell during the
time interval during which work was done):

E,-(t)=E,<t—at)~4T”{pom[r,l(n—r,.?(t-5:)]+Pi,,[r,._13(t)_r,._,3(t_az]} :

P =[Pi(t)+P; _(t)+P;(t —8t)+P; _,(t —61)]/4 ,
Poy=[Pi(t)+P; ((t)+P;(t —8t)+P; , \(t —81)]/4 .

(A7)
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This prescription yields a solution to the equations of
motion that conserve both energy and entropy explicitly.
Calculating a quantity requires knowledge of the quanti-
ties a full time step before the one that is being calculated.
This is a problem for the first time step since the initial
conditions are given for only one time. The first set of ve-
locities were therefore calculated with the differential
equations of motion:

v,(8¢/2)= —56t(3P; /3r) /(P +p;) . (A8)

The breakup criteria was chosen so that when the
second outermost shell reached a chosen breakup tempera-
ture the adjacent cell outside it would lose contact and any
energy in the outermost shell would be emitted as pions.
This cell at the breakup temperature would no longer do
any work on the cell outside it and it would henceforth
become the outermost shell. This restriction, that no
work can be done by the outermost shell, is only physical
if there is no pressure at the outer boundary. If the pres-
sure were arbitrarily set to zero then for an infinitesimally
thin outer shell a finite amount of energy would enter
from the inside while none would leave at the outside. A
vacuum energy 4 was added to the energy density every-
where and subtracted from the pressure everywhere. It
was picked such that the pressure would be zero at the
breakup temperature:

P->P—-4,
(A9)

p—-»p+A .

This added vacuum energy does not affect the equations
of motion inside the source. However, when a cell breaks
up and the energy is dissolved into free pions the energy
of the pions is E;=py?+ A since the pressure is zero at
breakup. Neglecting the vacuum energy po=3P, for
massless pions which means that 4=p/4 at breakup.
Thus the vacuum term contributes one fourth of the final
thermal energy. For the cases studied here the final
thermal energy was of the same magnitude as the energy
in collective expansion. This vacuum energy can be con-
sidered as an unthermalized energy that does not contri-
bute to the entropy or the dynamics. It is necessary be-
cause the system is not of infinite size; thus not all the en-
ergy contributes to the pressure P=(p—2A4)/3 and a
fraction of the energy only manifests itself when the sys-
tem dissolves. This crude approach is needed since viscos-
ity and thermal conductivity have been neglected while
the system is still expected to leave the hydrodynamic re-
gime.

APPENDIX B: CORRELATION FUNCTION
FOR SPHERICALLY EXPANDING THERMALLY
EQUILIBRATED SHELLS

Here we explain how the expression for the correlation
function in terms of the emission function is calculated
for the case of equilibrated spherical shells of given radii
dissolving into the vacuum at given times. The correla-
tion function can be written in terms of the integrals I
and I*:

C(K,k)=1+I(K,k)I*(K,k)/P(p)P(q) ,
IK,k)= [ d*xe™(K,x), (B1)
P(p)= [ d*xg(p,x)=1(p,0) .

The integral over time and space can be written as a sum
over the given shells: I(K,k)=23 I,(K,k). The integrals
I, are over the angular coordinates @ and ¢ which can be
done explicitly. They are functions of the radius of the
shell, the velocity of the shell, the breakup temperature,
and the thickness of the shell. The shell is assumed to
dissolve instantaneously in the rest frame of the expand-
ing shell. If all the shells have the same breakup tempera-
ture, the thickness of the shell in the rest frame of the
shell should be proportional to the entropy of the shell di-
vided by r2. The emission function g(K,x) is found by
using the fact that E;g(K,x) and drdt (when boosted
along r) are Lorentz invariants:

d’K*g*(K,x)dr*dt* =d’K g(K,x)dr dt ,
g*(K,x)dr*dt*=(S, /r*)exp(—E*/T) , (B2)
d*K*/Ef =d’K /E; .

Here the quantities marked with an asterisk refer to the
rest frame of the shell. Combining these equations we
find

g»(K,x)dr dt=(S, /r*\E{ /E}) exp(—E§ /T) . (B3)
Thus I, becomes
1,=S, [ d¢d cosbe™*y,(1—K-v,/Ey)
X exp[ — Y. (Ex—v,-K)/T] . (B4)

The velocity v, is always along the direction of r. Pick-
ing K to be along the z axis and k, =0, I, is written

1,=S, [ d¢d cos6 exp[i(k,R cosé+k,R sinf cos¢ —kot)]
XY nll—v,K cos@/Ey)
X exp[ —¥n(Ex —v,K cos8)/T] . (B5)

The radius of the shell is R and the breakup time is ¢.
The integral over ¢ can be performed:

I,=s, f d cos6@exp[i (k,R cosf—kgt)]
X 2mwJo(ky R sin@)y,(1—v,K cos6/E;)
X exp( —Yp(Ex —v,K cos8)/T) . (B6)

The integral over cosf can also be done explicitly using
the relations:'!

[ d cos8Jo(b siné) cos(a cosd) =2sina /a ,

(B7)
f d cos6J (b sinB) sin(a cos@) cosb

= —2a(cosa/a*— sina/a’) ,

where a=(a*+5?%)!/2. The difficulty lies in the fact that
a is a complex quantity. The real and imaginary parts of
I, must be separated using angle addition formulas. The
results are rather lengthy:



I,=S,4my,e (IR 4il") exp( —y,Ex /T)

Iz =(aa*)"'[(a*)g sinag cosha; —(a*); sinha; cosag ]
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+(aa*)" —A;(a*?)g cosag cosha; — Ag(a*?); cosag cosha; — A (a*?); sinag sinha; + A (a*?); sinag sinha; ]

+(aa*)"3[A;(a*?)g sinag cosha; + Ag(a*?); sinag cosha;

— A;(a*®); sinha; cosa; cosag + Ag(a*3)g sinha; cosag] ,

Iy =(aa*)~![(a*); sinag cosha; +(a*)g sinha; cosag ]

(B8)

+(aa*) ™[+ Ag(a*?)g cosag cosha; — A;(a*?); cosay cosha; + Ag(a*?); sinag sinha; + A;(a*?); sinag sinha;]

+(aa*) [ — Ag(a*?)g sinag cosha; + A (a*?); sinag cosha; + Ag(a*?); sinha; cosag + 4;(a**)g sinha; cosag] .

The subscripts R and I refer to the real and imaginary parts of the quantity which they index. The real and imaginary

parts of a are
ag?=k*R*—y*+[(k*R*—y*}+(2y-kR)*]'?,
a?=yp?—k?R?*4+[(kR?—y?)2+(2y-kR)?]\/?
and A and y are defined as
AR =(T/v,E)y-kR ,
Aj=(=T/y,E)y?,
y=vaUu,K/T .

(B9)

(B10)

The imaginary part of a is always positive and the real part of « is of the opposite sign of k,. This means that ay is al-

ways the opposite sign of k.

The pion correlation function was calculated previously for an expanding spherical shell, however the emission func-
tion did not correspond to a thermal distribution in the rest frame of the shell for relativistic velocities. Following the
procedure outlined above the correlation function can be calculated in closed form for a single shell that dissolves instan-

taneously in the rest frame of the shell. For a single shell:

C(K,k)=1+exp(—2aE /T){Q ~* cos2ag + cosh2a;)+AA4*Q ~*( cos2ag + cosh2a;)
+AA*Q 8 — cos2ag + cosh2a;)+AA*Q ~8 —2ay sin2ag —2a; sinh2a;)
—(2agA;—2a;AR)Q ~*sin2ag +(2ag Ag +2a;A;)Q ~*sinh2a;

+[2(aR2—a12)A1 —4agpa;Ag ]( cos2ag + COShZ(ZI)}/2[P(p)P(Q)] ,

where Q?=az?+a;%. P(p) is the single-particle emission
probability to within a constant,

P(p)= exp(—yE, /T)[ sinh(y,)/y, +(T /YE,y,)sinh(y,)
—(T/yE,)cosh(y,)] ,

where E, is the energy of a pion with momentum p and
yp=vvp/T. This gives the correlation function in closed
form for a single shell. Viewing this by itself illustrates
how interferometry is affected by expansion.

APPENDIX C: SHOCK FRONTS

Here we derive the properties of shock fronts between
the mixed phase and the hadronic phase. If matter in the
mixed phase is surrounded by matter in the hadronic
phase it must eventually expand since it is at a higher
pressure. But there are no pressure gradients inside the
mixed phase and the sound velocity is zero, which means
that a shock front must develop in order for the matter to

(B11)

T
expand. This shock front is a discontinuity in the pres-

sure, energy density, entropy density, and the velocity.
We will solve for the temperature and velocity of the ha-
dronic matter outside the front and the speed at which the
front moves inward through the matter. These three un-
knowns should only depend on the entropy density of the
matter inside the front and the amount of entropy gen-
erated by the front. Conservation of momentum and ener-
gy across the front provide two conditions, and entropy
flow provides the third condition, that is necessary to
solve for the three unknowns. Unlike most shocks there
does exist a solution where there is no entropy generated.
It is not clear how much entropy should be generated by
the front. The answer should depend on microscopic
properties of the matter. The maximum amount of entro-
py that a shock can generate is never more than a few per
cent but the speed at which the shock approaches inward,
and the speed of the ejected matter, could vary substan-
tially. Here we give two solutions to the equations
governing the front. The first solution corresponds to a
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shock with no entropy generation. The second is the solu-
tion for maximum entropy generation. This turns out to
be identical to the solution given by Baym’ where the ejec-
tion velocity in the frame where the shock is at rest was
chosen to be the speed of sound of the hadronic matter.
This solution also turns out to be the solution that allows
the shock front to move inwards at the highest speed.

Energy and momentum conservation are expressed by
the Rankine-Hugoniot relations. The subscripts refer to
the matter in the mixed and hadronic phases on either
side of the discontinuity. In the frame where the shock
front is at rest,

(P +Pm )szvmz_(Ph +Pn )Yhzvhz_—'Pm —P,
(C1)

(P +Pm ¥ mVm =Py +pp)¥ 5’0y -

The first equation demonstrates that the momentum flow
across the front changes by the pressure difference. The
second equation states that the energy flow is the same on
both sides of the front. The next condition is for the en-
tropy to be generated (F is the ratio of the new entropy to
the old entropy):

ShY RO =FSmYmUm - (C2)

Using the Rankine-Hugoniot relations the velocities can
be solved for in terms of the pressures and energy densi-
ties inside and outside the front:

}’hzvhzz(Ph —P,,, )(Pm +Ph)

X [(Py+p)ph —Pm +Pm—P)] ",
(C3)
Y Om 2 =Py — Py Ny +Pp)

X[(Pm+Pm)0—Pm + P "P)]—l .

The temperature can be written in units of T, and the
pressures and energy densities can be written in units of
the critical pressure. We define x as the ratio of entropy
in the mixed phase to the critical entropy density at which
one starts to enter the mixed phase from the pure hadron-
ic phase. In these units:

P,=1,

T,=1,

Sm=4x ,

Pm=4x—1, (C4)
Py=T*,

pr=3T4*,

sp=4T,*.

Using the fact that P+p=Ts, we can calculate F in terms
of T, and x:

F=T, 4x —1+T,*)/x(3T*+1) . (C5)

For a given F this could be solved as a cubic equation for
T,% For F =1 the cubic equation can be factored into a
solution with T,?=1 and a quadratic equation. The solu-
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tion of T, =1 corresponds to nothing happening. The
matter on each side of the front would not be moving.
This certainly would not violate any of the conservation
laws. The active solution to the quadratic equation yields:

Ty2=(03x —1)/2—(3)[(9x —1)(x —1)]'2. (C6)

The temperature is shown in Fig. 10 as a function of x,
the ratio of the entropy density in the mixed phase. The
temperature approaches 3~ !/2T, as x increases. The velo-
city of the ejected matter and speed of the shock are
shown in Fig. 10. These are shown in the frame where
the matter in the mixed phase is at rest. The ejected
matter has vanishing velocity as x approaches unity, and
the velocity approaches (2/3)!/* as x becomes large. The
shock front advances into the mixed phase at the speed of
sound of the hadronic phase (1/3)!/2 as x approaches uni-
ty, and the front velocity goes to zero for large values of
x. Thus if matter can be produced in the mixed phase
with no initial expansion velocity the matter can stay in
that phase much longer than it could have if it had a
nonzero speed of sound.

The Rankine-Hugoniot equations and Eq. (C2) can also
be solved for the case where F is maximized. This solu-
tion gives v, =(1/3)!/? for all values of x, which is the
condition Baym imposed in his solution to the Rankine-
Hugoniot equations. The temperature of the ejected
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FIG. 10. The properties of a shock front are plotted against
the entropy density of the matter in the mixed phase which is
inside the front. The entropy is shown in units of the critical
entropy necessary to enter the mixed phase. We show the tem-
perature of the hadronic matter ejected from the shock, the
velocity of the ejected hadronic matter, and the velocity that the
shock front moves inward. These velocities are measured in the
frame of the matter in the mixed phase. Solutions are shown
for the case of no entropy generation and for the case of max-
imum entropy generation.
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matter is higher than when there is no entropy generation
as shown in Fig. 10:

Tpt=2x —1-2[(x —1)(x —1/3)]'/%. (C7)

The velocity of the front is also maximized with this solu-
tion. But it varies very little from the case where no en-
tropy is generated. This is probably the physical solution
to the equations. Since a shock front is a discontinuity
there is no reason to expect entropy to be conserved. En-
tropy is conserved only when the mean free path is much
shorter than a characteristic length over which the system
changes. The amount of entropy that can be generated
for a given value of x is shown in Fig. 11.

There are two solutions to the Rankine-Hugoniot equa-
tions for any given value of F lower than the one for max-
imizing F. One set of solutions lies between the solutions
for no entropy generation and maximum entropy genera-
tion. In the frame of the shock these solutions all have
the velocity of the ejected matter greater than the sound
velocity. These solutions are probably unphysical since
the ejected matter loses contact with the front. The other
set of solutions lies between that for maximum entropy
generation and the trivial solution for no entropy genera-
tion where all the velocities are zero. In the frame of the
shock the ejection velocities are all less than the speed of
sound.

It is not clear what should govern the choice of solu-
tions. If nucleation rates do not provide microscopic con-
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FIG. 11. The maximum allowed entropy production is plot-
ted against the entropy density of the mixed phase. The entropy
generation is never more than 7.5%.

straints on the speed at which the front advances into the
mixed phase, then the solution should be the one that pro-
duces the most entropy. Without a microscopic model of
the plasma this cannot be determined. However, if the
solution were one besides that for maximum entropy gen-
eration, the front would advance even slower and the ef-
fects of the phase transition on the dynamics and the in-
terferometry would be even greater than those reported
here.

1J. Rafelski and B. Muller, Phys. Rev. Lett. 48, 1066 (1982).

2L. D. McLerran and T. Toimela, Phys. Rev. D 31, 545 (1985).

3M. Gyulassy, K. Kajantie, and L. McLerran, Nucl. Phys.
B237, 477 (1984).

4G. 1. Kopylov, Phys. Lett. 50B, 472 (1974).

5S. Pratt, Phys. Rev. Lett. 53, 1219 (1984).

6M. Gyulassy, S. K. Kauffmann, and Lance Wilson, Phys. Rev.
C 20, 2267 (1979); S. Pratt (unpublished).

7T. Celik, J. Engels, and H. Satz, Nucl. Phys. B205, 545 (1983).

8J. Kapusta, D. Reiss, and S. Rudaz, University of Minnesota
Report No. DOE/ER/40105-513, 1984 (unpublished).

9G. Baym et al., Nucl. Phys. A407, 541 (1983).

103, D. Bjorken, Phys. Rev. D 27, 140 (1983).

1], S. Gradshteyn and 1. M. Ryzhik, Table of Integrals, Series
and Products (Academic, New York, 1980).



