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It is shown that the recently observed pseudorapidity-interval dependence in multiphcity distribu-
tions and the existence of positive long-range correlations between the numbers of charged particles
in different pseudorapidity intervals give further evidence for the statistical nature of nondiffractive
hadron-hadron collision processes. Quantitative predictions are made for future experiments at
higher bombarding energies. It is pointed out in particular that for every (sufficiently high total
c.m. -system} energy ~s, there exists a (pseudo)rapidity interval W in which the probability Prr(n n )

to find nir charged hadrons (in this given interval) satisfies (nn }Pn(nn )=4nn/(nn }
Xexp( —2nir/(nn ) ), where (na }is the average value of nir

I. INTRODUCTION

In a recent paper' the UA5 Collaboration published
their investigation of multiplicity distributions in different
pseudorapidity intervals ( W) in pp reactions at center-of-
mass-system (c.m.s.) energy v s =540 GeV. It is observed
that the width of the multiplicity distributions, scaled to
their means, increases as W is made smaller. In particu-
lar, the corresponding Kuba-Nielsen-Olesen (KNO} plot
[that is, (,nit )Pn (nn ) =gn (zn ) as a function of
zis nrem/(nn ),——where nits is the charge multiplicity ob-
served in the given pseudorapidity window W, (nn ) is its
average value, and Pn (nrt ) is the probability to find nn
charged hadrons within the window Wj changes its form
in the following way. (i) The position of the maximum
value z~ ~ moves to smaller values for smaller pseudora-
pidity windows. (ii) The curve of fn(zn ) at large-z
values becomes more and more flat when the size of the
windows decreased. That is, the relative number of
large-fluctuation events increases for smaller pseudorapi-
dity windows. Furthermore it is found that, for a given
pseudorapidity interval ( W =0.4, 1, and 2), the moments
of the multiplicity distributions remain practically the
same when the center of the interval is shifted from g =0
to other values, provided that it is not taken too far away
from ri =0.

The purpose of this paper is to show that the above-
mentioned new experimental results' as well as the ex-
istence of positive long-range correlations between the
numbers of charged particles in different pseudorapidity
intervals give further evidence for the statistical nature
of high-energy nondiffractive hadron-hadron collisions.

II. THE MODEL

A model based on statistical methods was suggested
some time ago in order to understand the non-single-

diffractive hadron-hadron collision data at high energies.
While the basic ideas and the main results remain un-

changed, some of the details of the proposed semiclassical
picture need to be modified. The underlying physical pic-
ture of this model is the following. In a typical (here we
neglect the violent collision events which are rare; for fur-
ther details see Ref. 4 and the papers cited there} high-
energy nondiffractive hadron-hadron collision event the
projectile P and the target T can be envisaged as spatially
extended objects which go through each other and appear
as leading particles. While going through and interacting
with each other, the colliding objects P and T lose a con-
siderable part of their energies and momenta. A part of
this "lost energy" materialize~in general, into a number
of clusters6 which subsequently decay into hadrons. This
part of energy —the materialization energy —is distributed
in three distinct systems C', P', and T' which are
characterized by their locations in rapidity space. (Here
C' stands for the central rapidity region, and P~ and T'
stand for the projectile- and target-fragmentation regions,
respectively. ) In terms of the conventional quark-gluon
picture, in which hadrons are made out of valence quarks
and gluons, and on the average about 35—50% of the
momentum of a high-energy hadron is carried by its
valence quarks and the rest by the gluons (and/or sea-
quark pairs}, the hadronic matter created in system C' is
due to the interaction between the gluons (and/or sea-
quark pairs) in the projectile and their counterparts in the
target. That is, the clusters in system C obtain their en-
ergies and momenta from ttoo sources, namely, the gluon
part (gluons and/or sea-quark pairs) of the projectile and
that of the target. Similarly, the materialization energy in
the system P' (T') is also due to two energy-momentum
sources, namely, the energy-momentum of the quark part
and that of the gluon part of the projectile (target). That
is to say, the quark-gluon picture implies that the number
of such two-source systems in high-energy nondiffractive
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FIG. 1. Formation of the three excited hadronic systems

C,P, T in high-energy nondiffractive hadron-hadron col-
lisions. Here E~ stands for the energy of the quark part, and

E~ for that of the gluon part (gluons and/or sea-quark pairs}
of the projectile P. E~ denotes the internal energy of the group
of leading particles P'. This group has the same quantum num-

bers as those of the projectile P. E~ and E~' are, respectively,
the contributions to the materialization energy of the system C
and that of P from the gluon-part of the projectile. E~' is the
contribution to the materialized energy of P from the quark
part of the projectile. The symbols ET~, etc., have similar

meanings. Note that all the quantities with asterisks are inter-
nal energies which are measured in the rest frames of the corre-
sponding materialized objects. Note also that all these quanu-
ties are random variables.

hadron-hadron collision proctases should be three .This
point is illustrated in Fig. 1.

Each of the three excited systems (O',P', T') is as-
sumed to have the following properties.

(i) The amount of energy contributed by each of the two
sources to the materialization energy of the system is a
random variable. After the materialization, the system
'forgets its history" in the sense that the probability of
forming such a system characterized by the total amount
of materialization energy does not depend on the specific
way of its formation. In particular, it "does not
remember" how much of this materialization energy is
due to one source, and how much of it is due to the other
source. Another way of expressing the second part of this
assumption is the following. In a system characterized by
a given total amount of materialization energy, because of
the above-mentioned randomness, the difference between
the contributions of the two sources may have any one of
the possible values in the corresponding energy range.
Since there is no a priori reason why the occurrence of a
particular value in this range should be more probable
than others, it is assumed that any one of these values is
equally likely to occur.

(ii) The amount of momentum contributed by each of
the two sources to the net momentum of any one of the
clusters of the system is also random. As a consequence,
the rapidities of the clusters in the system may have any
one of the possible values in the corresponding kinemati-
cal region. Since there is no a priori reason why any par-
ticular one of these values should be preferred, it is as-
sumed that their occurrences are equally probable

Because of the fact that the key features of the present

model are characterized by notions such as randomness,
memory loss and/or equal probability, and that very little
knowledge on the quark-gluon dynamics such as QCD
has been incorporated, a comparison between data and
model will yield useful information on the following ques-
tion: Are high-energy nondiffractive hadron-hadron col-
lisions statistical processes?

First, we note that assumption (i) implies the following
(see Appendix A). The materialization energy E of the
system i (i =O',P', T') is distributed in the following
way (we omit the asterisks on the subscripts; that is, we
write Ec instead of Ec„etc.):

(E )P(E )=4, exp —2

i =O',P', T' . (1)

Here, (E ) is the average value of E . This means, the
distribution of the total internal energy of the created
clusters in any one of the systems O', P', and T' can be
determined, provided that the corresponding average
value is known. This is in good agreement with the ob-
served' properties of the "total transverse energy E!" (the
sum of ezsin8J where ej is the energy, and 8J the scatter-
ing angle of the Jth observed particle) in the central rapi-
dity region. In fact, it has been shown (see footnote 20 of
the first paper in Ref. 4} that

(E,') (3)

where (N& ) and (n; ) are the average values of N& and n;,
respectively.

From Eqs. (1) and (3) we obtain

E! E!.(E! )P(Ej )=4 exp —2
Ei E!

While Eq. (2) is evidently a strong experimental support
for assumption (i}, the validity of this formula in such a
large pseudorapidity range indicates that the carriers of
Ei, namely, the created clusters, are more or less equally
distributed in a rapidity range of comparable size—in ac-
cordance with assumption (ii).

In order to compare this model with experiments in
which charged hadrons are observed, we adopt the usual
picture for hadronic clusters as a working ansatz.

The clusters formed in the systems O', P', and T' are
charge-neutral hadronic objects (color singlets} of approxi-
mately the same size. They decay isotropically (with
respect to their own rest frame) into a small group of had-
rons (e.g., m+m. m, pp, etc.).

It is well known that the formation and decay of such
clusters are consistent with the experimental findings
concerning short-range rapidity correlations and local
charge compensation. Note that this ansatz also implies
that the number of clusters N, and the number of charged
hadrons n; produced by the system i (i =O', P', T') are
proportional to the materialization energy E; of the sys-
tern. That is,
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Pl) Pig(n;)P(ni)=4(
)

exp —2
( )

i =O', P', T', (4)

where P(n; ) is the probability that the system i produces
n; charged particles. It means, in particular, that in the
central rapidity region, in which the products of the C'
system dominate, the multiplicity distribution should have
the form given by Eq. (4). It also tells us that, in order to
obtain the multiplicity distribution in the entire kinemati-
cal range we have to take the contributions of O', P',
and T' into account. (See the first part of Appendix B.)
This offers a simple explanation for the experimental ob-
servations that KNO scaling is approximately valid in a
given central rapidity region, but violated in the entire ra-

pidity space.

III. MULTIPLICITY DISTRIBUTIONS
IN DIFFERENT RAPIDITY INTERVALS

Here, P(XC) is the probability for the system C to have

Nc clusters. Because of the simple relationship shown in

Eq. (3) (Nc n——c/2 in this special case), P(Nc} has the
same form as that given in Eq. (4). We recall that the bi-
nomial distribution as used in Eq. (7) is the simplest non-
trivial discrete distribution for two possible outcomes.
%whether the simplest possibility is indeed realized in na-

ture has, however, to be checked experimentally.
First, we see that Eq. (7) implies

Pw(nw)~P(NC) for qcw~l .

That is, if the rapidity window W in the central rapidity
region is, on the one hand, large enough to include all the
hadrons produced by the system C' but, on the other
hand, not too large so that the contributions from the P'
and T' systems are negligible, the multiplicity distribu-
tion Pw(nw ) is expected to satisfy

We now calculate the multiplicity distributions—
including the higher moinents —in different rapidity inter-
vals and compare them with the existing data.

I.et us first consider the contributions from the C' sys-
tem which gives the dominating contribution, especially in
the central rapidity region. The isotropic decay of cluster
mentioned in the working ansatz implies that the proba-
bility density to observe, at a given rapidity y, a hadron
produced by the cluster j (we denote the location of the
jth cluster in rapidity space by Y&) is '

p(y, YJ)=
I

(5)
2 cosh~(y —YJ )

Hence, the probability qcw for a hadron produced by one
of the N, clusters of the system C' to be in the rapidity
interval ("rapidity window") W, yi (y &ys, is

&a "c~ 1
qcw=

Ycmax Ycmin cmm 2 cosh (y Y)
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Here, Ycm,, and Ycm~ are the kinematical limits for the
rapidity of the clusters in system O'. They can be deter-
mined by a simple method given in Appendix B. Expres-
sions similar to that in Eq. (6) can also be obtained for the
probability qzw (qrw} for oteerving a hadron produced
by one of the clusters in the system P' ( T') in a given ra-

pidity interval. Note that the contributions from P' and
T' are relatively unimportant unless we consider rapidity
intervals far away from the central region. We therefore
neglect these contributions in calculating the multiphcity
distributions.

Hence, in the approximation in which every cluster is
assumed to contain one positively and one negatively
charged hadrons, the probability of observing nw (either
positively or negatively} charged hadrons in the rapidity
window &is

Xg!

C

n~. /2 %~—ng /2
Xqcw (1—qcw}
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FIG. 2. Charged multiplicity {n~) distributions in the pseu-
dorapidity intervals (" i dwns"o}w~ g ( &gs =5.0, 3.0, 1.5, and
0.5, plotted in the variables (nw)Pw(nw} vs Zw nwl(nw). ——
Here (nw ) is the average value of nw, and Pw(nw } is the prob-
abihty of observing n~ charged hadrons inside the window
W=2gw. The data (Ws =540 GeV} are taken from Ref. 1.
The curves are calculated from Eq. (7}. Note that in this equa-
tion only contributions from the C system have been included.
Here, as well as in the following figures, rapidities are approxi-
mated by pseudorapidity in order to compare with the existing
data.
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f/p 7l gr
(ng )Pgr(na )=4 exp —2 —, (9)

na Il gr
J

where (n~) is the average value of na in the rapidity
window W; It means, in particular, that for every given
(total c.m.s.) energy v s (sufficiently high so that the over-

lapping regions of C' with P' and T' systems in rapidi-

ty space are relatively small) there is a rapidity interval 8'
in which the probability Pis (na ) to find na charged had-
rons in the interval 8' satisfies Eq. (9). The size of this
particular rapidity interval at a given energy can be es-
timated by the method given in Appendix B. It is approx-
imately ~y ~

&1.5 for vs =63 GeV, ~y (
&3 for

Vs =540 GeV.
In Fig. 2 we show the result calculated from Eq. (7) for

v s =540 GeV and the following rapidity intervals:

~ y ~ &ya ——5, 3, 1.5, and 0.5. The results are given in
terms of the scaled variables nii /(na ), where (na ) is

the average value of nis in the interval W. The data
points are those pubhshed by the UA5 Collaboration' for
the pseudorapidity intervals

~
rj ~

& il a ——5, 3, 1.5, and 0.5.
The comparison shows that the measured distribution

(na )P(n~) has indeed the form given by Eq. (9) provid-
ed that the rapidity interval in which the measurement is
made is not too far away from ya -iI~=3. It also
shows that Eq. (7) gives a good description of the data for
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FIG. 4. The moments Ci =(n~') j(nq )', for 1=2, 3, 4,
and 5, of the multiplicity distributions of charged hadrons in the
rapidity window ji1 ~ &q~, as functions of gg. The data
points {V s =540 GeV) are taken from Ref. 1. The curves are
the results of this model. Here the dashed, solid, and the dotted
lines have the same meaning as those in Fig. 3.
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FIG. 3. The average multiplicity (n~) of charged hadrons
in a given pseudorapidity window ~g~ &g~, and the ratio
(ng )/D~ where Ds = ({n~ (n~) )i)'~i, as func—tions of i1~.
The data points {vs =S40 GeV) are taken from Ref. 1. The
curves are the calculated results of this model. (See Appendix C
for details. ) The dashed curves represent the calculations in
which the corresponding multiplicity distributions are normal-
ized up to the last measured points (with the largest multiplici-
ties in the window 8'), while the solid curves are those in which
such normalization effects due to measurements are neglected.
%%enever the dashed and the solid curves coincide, only the
solid one is drawn. The dotted bne is given merely to guide the
eye.

il~ &3. The discrepancy at rI~ ——5 is due to the neglect
of the P' and T' systems. We note, in particular, the
two observed characteristic features of rapidity-interval
dependence mentioned in the Introduction of this paper
are nicely reproduced by this formula.

In Figs. 3 and 4 we compare the calculated average
multiplicities, dispersions as well as higher moments in
different rapidity intervals with those measured experi-
mentally. ' The contributions of the P' and T' system
are taken into account. The details of this calculation is
given in Appendix C.

The calculated and the measured moments of the multi-
plicity distributions in noncentral rapidity intervals are
compared in Fig. S. It should be pointed out that the fol-
lowing experimental fact is one of the characteristic prop-
erties of this statistical model. The moments of the multi-
plicity distributions are approximately independent of the
location of the rapidity interval provided that it remains
in the central rapidity region.

In Fig. 6 and Table I are show the calculated results for
the same set of rapidity windows for different c.m.s. ener-
gies. The data are taken from Refs. 11—13. The predic-
tions are based on this model under the same conditions
as those mentioned in Ref. 10 {for details see Appendix
8): (a) The average multiplicities of the P' (and the T')
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FIG. 6. The calculated results of (ns ), ( ns ) /Ds, and C3
for four different pseudorapidity windows:

~
r)

~
&rin =0.5,

1.5, 3.0, and 5.0, as functions of the total c.m.s. energy ~s.
The normalization effect due to measurements mentioned in
Fig. 3 is not taken inta account. The broken lines are dragon to
guide the eye.

TABLE I. Energy dependence of the normalized charged-multiplicity moments, which are defined as
follows: yq -—({n&—(ns ))')/(n&), y3 ——((ns —(ns ))')/(ns )', y~ ((nn ——(ns ))—)/(ns )
—3(y~ }~. The experimental data are taken from Refs. 11—13.

(GeV}

53 Model
Expt. (Ref. 11}

0.38
0.45 +0.01

0.28
0.37 +0.02

0.34
0.37 +0.06

63 Model
Expt. (Ref. 11)

0.41
0.46 +0.01

0.31
0.28 +0.02

0.45
0.29 +0.05

Mode1
Expt. (Ref. 12)
Expt. (Ref. 13)

0.54
0.52 +0.01
0.441 +0.017

0.57
0.53 +0.05
0.308+0.021

0.89
0.80 +0.18
0.216+0.050

0.55 0.90

0.55 0.57 0.90

0.55 0.57 0.90
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systems, which turned out to be the same at vs =63 and
540 GeV, remain the same also at higher energies. (b) The
empirical formula for the averaged multiplicity of
charged hadrons n, h

——a+b lns+c(lns) with a, b, c given

by the UA5 Collaboration' is valid also at high energies.
Rapidity distributions at different energies have already

been calculated in the framework of this model. ' ' In
particular, a flat rapidity distribution for the produced
particles has been used in Ref. 15. Discussions on this
and other related topics will therefore not be repeated
here.

IV. LONG-RANGE CORRELATIONS

We now consider the long-range correlation between the
forward and backward multiplicities, nF and ns, of
charged hadrons measured in the following rapidity inter-
vals ( b&y—& —a; a &y &b) where a and b are positive
real constants. Experimentally, there exist data at
vs =540 GeV (Ref. 2) and at all five standard CERN
ISR energies for (a,b) = (0,4), (0,1), (1,4), . . .. Hereafter
we shall denote rapidity regions b&y —& —a and
a &y & b by 8 and E, respectively, denote the rest of the
kinematically allowed rapidity region by R, and denote

n&

the number of charged hadrons in R by n„. That is, the
total number of prongs in a collision event is
n =nB+nF+nR.

According to the discussions which led us to Eq. (6),
the probabilities qcs, qcz, and qca for a charged hadron
produced by C' to be in 8, I', and E. can be written as
follows:

—0 1
qca= J &

dy
~C max ~C min

C max 1

2 cosh (y —Y)

(10a)

VCR 1 VCB 'VCF ' (10c)

Here Yc;„,and Fc,„have the same meaning as those
in Eq. (6). It is clear that also in Eqs. (10a)—(10c) only
contributions from C' have been taken into account.
Those from P* and T' can be included in a straightfor-
ward manner. But it is expected that they will not have
much infiuence on the final result, except when the total

b 1 C max 1
qcF = dy

cmax cmin
' 2 cosh (y —&)

(10b)

34 0 S 10 11 12 13 1. 3 12 1 l

32 7 10 13 15 17 18 18 17 15 14 11

30 8 12 16 20 23 25 25 24 22 19 17 14 11

8 13 20 26 31 34 35 34 31 28 24 19 15 12

26 8 15 23 32 40 45 48 47 44 40 34 28 22 17 13

24 6 14 26 39 51 60 65 66 62 56 48 40 31 24 18 13

4 13 27 44 63 78 S7 90 87 79 68 56 44 34 25 13 12

9 24 48 74 98 115 123 120 110 96 79 62 47 35 25 17 11

18 4 18 46 82 120 149 164 165 153 134 110 87 66 48 34 23 15 10

16 8 36 83 138 186 216 223 211 186 153 120 90 65 45 31 20 13

14 18 69 145 222 276 298 288 255 211 165 123 87 60 40 26 16 10

12 38 129 244 339 388 387 348 288 223 164 115 78 51 32 20 12

10 78 231 389 488 509 460 387 298 216 149 98 63 39 23 13

151 390 579 649 611 509 388 276 186 120 74 44 26 15

277 607 781 772 649 488 339 222 138 82 48 27 14

449 831 911 781 579 389 244 145 83 46 24 13

550 899 831 607 390 231 129 69 36 18

22 550 449 277 151 78 38 18

8 10 12 14 16 18 20 22 24 26 28 30 32 34
F

FIG. 7. The calculated scatter plot of multiplicities n~ and nF for the pseudorapidity intervals 8 ( —4~ q ~0) and F (O~g ~4).
The plot is normalized in an arbitary scale. Comparison with the corresponding data in Ref. 2 shows that it has indeed the same
structure.



33 STATISTICAL APPROACH TO NONDIFFRACTIVE HADRON-. . . 1293

c.m.s. energy of the system is so low that the central sys-
tem C' loses its dominating role (see Appendix 8) or
when the (pseudo)rapidity gap between the F and the 8
regions is very large ( & 6, for example).

Since there are three possible outcomes (with probabili-
ties qcs, qcF, and qcn ) for every (Positively or negatively)
charged hadron in any (high-energy nandiffractive
hadron-hadron collision} event, the random variable is a
three-dimensional vector (ns /2, nF /2, nn /2), but the
range of values is restricted to a two-dimensional, e.g.,
(ns, nF), sPace because of ns+nF+na n——c, where nc/2
is the number of positively (or negatively} charged had-
rons produced by the central system C'. [Recall that in
the approximation in which each cluster is assumed to
contain one positively and one negatively charged hadron,
nc/2=Nc is the number of clusters in the system C'.
From Eqs. (3} and (4) we know that the cluster distribu-
tion P(Nc) should have the same form as that given in
Eq. (4).] The distribution Q (ns, nF) in the two-
dimensional (n~, nF ) space is assumed to be a trinomial:

As-12 ---UA5
= Model
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C
(D Q)0-

I La
r 4—.
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I ~i
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I I

!
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0 2 4 6 8 &0 ~2
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FIG. 8. Comparison between experiment and theory for the
n~ distribution for a given value of n, . Data are those given in
Ref. 2. Black dots and the solid line are the results of our calcu-
lation.

Q(na, nF)=
+c&("s+"a)/

Nc' B/2 nE/2 ~NC "B+nF /2)

(ns /2)!(nF /2)![Nc —(ng +nF )/2]'

which, as we know, is the simplest nontrivial discrete dis-
tribution for the three possible outcomes.

In order to see whether nature indeed chose the simplest
possibility, we first calculate this joint distribution
Q(ns, nF}. This is because, if the model is correct,
Q(ns, nF) should be nothing else but the scatter plot in
which nz/2 and nF/2 are the positively (or negatively)
charged hadrons observed in the corresponding 8 and the
F regions in rapidity space, respectively. To compare
with the published data for the (ns, nF ) plat, the calculat-
ed Q(nz, nF ) is shown in Fig. 7. In Fig. 8 we compare the
measured nF distribution for ns+nF 12 in th—e—rapidity
interval (a,b)=(0,4), with the corresponding result ob-

l

tained fram Eq. (11). Furthermore, the average value of
nn for a given nF can be readily obtained from

)le Pig, tlp

(12)
na, nF

Sg~Oy2, e ~ ~

and Eq (11). Th. e comparison with the data at Vs =540
and 63 GeV for different rapidity intervals is shown in
Figs. 9—11. In particular, as we can see from Fig. 11, for
a given energy the strength of long-range correlations be-
comes weaker and weaker when the separation between
the two rapidity windows increases. This kind of

24—

t I l

ds s4oGeV
o&IRI 4

I I

v's. s4oGeV
o&IqI&1
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) I 1
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12 18 4 30 36 0
I
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I l I I
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FIG. 9. The dependence of (na{&F)), the average value of na as a function of nF are shown in three different paeudorapidity in-
ta~ah, at ton,!c.m.s. energy Wg =540. Data are ta]e'en from R.ef. 2. Dashed lines are again those in which the normalization effect
due to measurements are taken into account {cf.Fig. 3).
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FIG. 10. (ns(nr) } as a function of nr in different pseudorapidity intervals at the highest CERN ISR energy (V s =63 GeV).
Data are taken from Ref. 3. The discrepancy in absolute values (but not in the slope) for the interval 1 &

~
i)

~
&:4 is expected. It is

due to the fact that at such low energies the contributions from the I' and T systems become significant in these pseudorapidity re-
gions.

behavior is expected and has been discussed in Ref. 4.
Last but not least, we show (in Appendix D) that simple

relations exist between the following measurable quanti-
ties: the sum of the charged multiplicities in the F and
the B region n, =nF+nz, the dispersion d, (nF) of the
distribution describing the probability of finding events
with nF charged hadrons in the F region for fixed n„
and/or the average value of (Z ), for fixed n, where
Z =nF —ng. They are

d, 2(nF) =n, /2,
(Z'), =2n, .

(13)

(14)

As we can see from the proof given in Appendix D, the
validity of Eqs. (13) and (14) is independent of the size of

the B and the F regions and it is also independent of
tohether or not there is a gap bettoeen these two regions,
provided that the dominating contributions in these two
regions remain to be those of the system O'. Experimen-
tal data of the UA5 Collaboration for various sizes of B
and F region seems to indicate that it is indeed the case.
This is sho~n in Fig. 12.

The following should be pointed out in connection with
Eqs. (11)—(14).

(a) Predictions for higher energies can be made under
the same conditions as those mentioned in Sec. III. They
are shown in Figs. 13 and 14.

(b) In the special case (a,b)=(0,y,„), where y,„ is
the kinematical limit of the rapidity space at the given to-
tal c.m.s. energy ~s, that is, when the F and B regions
are identical with the entire kinematically allowed for-

Q4 '-

5 1&~ri~&4

I 1&
~
rI)& 3

a3-CL0

rcipldity windows

QBP
EP=

-4 -2 0 2 4

2 3

QBp S12e

FIG. 11. The dependence of the slope of the linear fit for
(ns(nF) } as a function of nF on the size of the rapidity gap.
The values obtained from the data are taken from Carlson's talk
in Ref. 2. They are shown as in the figure. The correspond-

ing theoretical values are shown as o. Note that, since the

(ns} vs nF curves in our model are not necessarily straight
lines, the slope is obtained by a straight-line approximation of
the curve.

10

FIG. 12. The dispersion d, squared as a function of n, for
three different forward-backward regions each with a gap
( —1 ~ q & 1) between them. The size of the regions are given in
the figure. The curve is obtained from Eq. (13).
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FIG. 13. Our prediction for the ns vs nF scatter p1ot at c.m.s. energy Vs =900 GeV. Here, the 8 and E regions are also taken to
be ( —4 & rl & 0) and (0 & q & 4), respectively. The normalization is made in an arbitrary scale.

ward and backward hemisphere, respectively, Q(ns, nz)
reduces to a binomial distribution. Binomial distributions
as well as cluster formation have been discussed by the
UA5 Collaboration ' and by Chou and Yang. ' In this
special case the difference between their results and ours
is only that the n, distribution in our model is given by
the expression in Eq. (4).

(c) The simple relationship betwo:n (Z ), and n,
drivenin Eq. (14) was first obtained by Chou and Yang 6

by
analyzing the UA5 data. They also pointed out the signi-
ficance and the physical meaning of the factor 2 in that
formula. In our model, local charge neutrality is
guaranteed by the usual assumption that the clusters are
charge neutral objects. Furthermore, Eq. (14) is a direct
consequence of Eq. (11). As shown in Appendix D, the
simple relationship is true also in cases where there is a
large rapidity gap between the 8 and the E regions.

(d) We expect to see that long-range correlations in
pion- and kaon-nucleon reactions at comparable energies

will be the same as those discussed here. This is because,
in our model, the projectile-target asymmetry (viewed
from the total c.m.s. frame) only effects the leading parti-
cles but not the systems O', P', and T'.

V. CONCLUDING REMARKS

A number of theoretical models' have been proposed
to understand the multiplicity distributions measured at
~s =540 GeV. Some of the calculated results are rather
similar although the underlying physical pictures are very
much different from one another. The new UA5 multi-
plicity measurements' in different rapidity intervals as
well as such experimental data at higher energies are ex-
pected to be able to differentiate between the competing
models. ' '" It is with this hope that we made the present
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,
30

source 2 is simply the product fl(El )f2(E2). Now, if this
probability f(El,E2) depends only on E, the sum of E,
and E2, but independent of E, or E2 [assumption (i)], we
have

20 20
d [fi«l)f2« —El)]=0.

dEl

Hence

(A 1)

10 20

10

[Inf, (E, )]— [lnf2(E —E, )]=0,
1 l

which gives

f, (E, ) =A l exp( BEl )—,

f2(E2) =A2exp( BE2), —

(A2)

(A3)

(A4}

I

10
l

20

-10

(AS)

where A l, A2, and B are positive real numbers. {We re-
call that fl and f2 are probabilities. ) Therefore, the prob-
ability for the system i to be in the state characterized by
the total materialization energy E is

&(E)= J dE, dE2&(E El—E2—}fi{El }f2(E2}

= Jt' dEiAlA2exp{ —BE)

=A l A 2E exp( —BE}.

FIG. 14. Our predictions for the dependence of (nq{nF }}as
functions of n~ for three different pseudorapidity regions at
c.m.s. energies V s =900 GeV, 2 and 40 TeV.

Taken together with the normalization condition

I'(E)dE =1, {A6)

attempt and calculated in terms of our model the multi-

plicity distributions and long-range correlations for vari-
ous rapidity intervals at v s =S40 GeV as well as those at
higher energies.

and the definition for the average value of E,

EI'E E= E

me obtain

I'(E)=4 exp —2
E 2

(A8)
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APPENDIX A

We consider any one of the three systems i
(i =O', P', T'). Let us denote, for the sake of simplicity,
the materialization energy E of this system by E, the
two energy-momentum sources of this system by 1 and 2.
Let fl (El ) be the probability for the system i to obtain an
amount El from source 1, and f2(E2) that for the system
i to obtain E2 from source 2. Then, since the two sources
1 and 2 are independent from each other, the probability
f(E„E,) for i to obtain E, from source 1 and E, from

which is Eq. (1) in the text.

APPENDIX S

According to our model the multiplicity distribution
for charged hadrons observed in the entire kinematically
allowed rapidity region in nondiffractive processes is (the
approximation that each cluster is assumed to contain one
positively and one negatively charged hadron will also be
used in this appendix as well as in Appendix C)

P( ND)= f 25(nc+n +nT ND)—

(B1)

where the subscript ND in nND stands for nondiffractive
and the average values of n;, (n;) (i =O',P', T'} in
P(n;) are given by

)= (
2

(B2)

a is an energy-dependent parameter. In fact, it is
found' ' that a increases monotonically with increasing
energy. Its values is between 0.1S and O.S for
14 & v s &63 GeV, and becomes 0.7S for v s =S40 GeV.
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Comparisons between experiments and theory are shown
in Refs. 10 and 11. The following observations have been
made in this connection.

(1) The scaling behavior of (nND&PND(nND) with
respect to nND/(n D & observed experimentally in the en-

ergy range 14& s &63 GeV is due to the fact that this
expression is insensitive to the variation of a for
0.15 &a &0.5.

(2} By usin the values a=0.5 for vs =63 GeV,
a=0.75 for s =540 GeV and experimental values for
(nND &, the product (1 a—)(nND & calculated at these two
energies turns out to be the same ( =7). That is, the aver-

age multiplicity of the P and that of the T' system are
the same for ~s =63 and 540 GeV. This result is also in

agreement with the hypothesis of liiniting fragmentation.
(3) Based on the observation mentioned in (2) we as-

sume

[1 a(s)](nND &
—7 foi all i/s & 63 GeV . (83)

This can be used to determine the s dependence of a if
that of (nND& is known. Hence, by extrapolating the
empirical formula [e.g., (nND&=a+blns+c(lns) where

a, b, and c are constant' ] we are able to calculate, in

particular, (nc& as a function of the total c.m. s. energy

APPENDIX C

When the rapidity windows are large (
~ y ~

&& Yc
for example) it is not sufficient to consider only the con-
tributions of the C' system especially in calculating the
higher moments. The contributions of the P' and the T'
system can, in general, be included in the following way.

From Appendix 8 we know the following. First, at a
given c.m.s. energy vs the average multiplicity of the
clusters in the systems C', P', and T' are (nc&/2,
(np &/2, and (nr &/2, respectively. They are related to
the measured multiplicity of the charged hadrons in non-
diffractive hadron-hadron processes (nND & through Eq.
(82). Second, for the system C', the average width of the
cluster distribution in rapidity space can be estimated. It
is given by Eq. (85}. Let us now denote the average width
of the P' and the T' system by hp =br ——b, (the average
values are equal because of the symmetry). Since the clus-
ters in each of the three systems are distributed with equal
probability in its own rapidity region, and the leading par-
ticles, on the average, take away half of the total c.m.s.
energy while the rest is distributed in the three excited
systems C', P', and T', energy conservation requires

S.
On the other hand, it is clear that (nc & is closely relat-

ed to the average multiplicity density in the central rapidi-
ty region. In fact, from assumption (ii) which states that
the clusters in system C' are uniformly distributed in the
rapidity region Yc;,& Y& Yc, we see that average
width of this distribution Yc~~—Yc~;„(=2'~,& in the
c.m. system) can be obtained from

(nr & 'r
v s = f„m'coshy dy

T5118

(nc&+ y pl cos p
YC max C min

(np&+ f„m'coshy dy .
P min

(Cl)

n
&Ycmax

y=0
=(nc&,

Here

where (dn /dy)„o is the average multiplicity density near

y =0 in the c.m. system.
Hence, from Eqs. (83) and (84},we can calculate Yc

for all c.m.s. energies, provided that (n ND & and
(dn/dy)„o at these energies are known. By using the
measured (dn/dy)„o values5 and the known values for
(nND & (Refs. 1 and 5) at ~s =63 and 540 GeV, we haveY,„=1.5 for ~s =63 GeV and Yc =3 for

s =540 GeV.
Furthermore, the average width of the cluster distribu-

tion in the C' system obtained by the above-mentioned
method can also be used to determine the corresponding
rapidity window y~ ——Yc,x in which the multiplicity
distribution obeys Eq. (9). The reason is obvious. Using
the two values of Yc,„at v s =540 and 63 GeV as in-

put, a two-parameter fit for Yc,„as a function of c.m. s
energy v s can be obtained:

Yz.max ——Ycm;n, YTm;n
——Ycm;n

YP max = YC max+ ~~ YP min = YC max ~

and m' is the average internal energy of a cluster. [We
used the approximation

m'=3(m '+ —', p, ')'",
where pi is the average transverse momentum of the ob-
served hadron in our calculation. ] The average width 6
can be obtained by solving Eq. (Cl).

The probability q;n for hadron producixi by one of the
Ã, clusters in the system i (i =C', P', or T') to be in a
certain rapidity interval W (yi &y &yz ) is

Ycmax=C +d 18$

&a 1aw= f Yi max Yi min

i max

imin 2 cosh (y —Y)

(C3)
where c=—1.37 and d =0.347. From Eq. (85) we can
then predict the size of rapidity window at any given
c.m.s. energy vs, inside which the multiplicity distribu-
tion has the simple form given by Eq. (9).

Hence the probability to have n~ hadrons in this rapidity
interval can be expressed as
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F(na ) = g P(NC)P(Np)P(NT)
c X~ mr "cw "pw "rw

("cw+ "aw'+" rw ="w &

Bc(NC, ncu )Bp(Np, npu )BT(Nr, nrtp), (C4)

where P(N;) is the distribution of the cluster number in
the system i, and

1

Bt(N;, to;a ) =
i elw/2 N, —n;w/2

/2 e P (1—tI a ) ' (C5)

is the distribution of cluster number n;a /2 inside the ra-

pidity interval IV for the system i with total number of
clusters Ãt.

The lth moment of nor can be obtained from F(nu ) in
Eq. (C4):

Ct (n——a t&/(na &'. (C6)

Note that the moments for P(Ãt) and B; can be given
analytically. In fact, Ct can be expressed in terms of the
moments of P(N~) and B;a through a straightforward
t:alculstion.

APPENDIX D

~e consider Q(nit, np) as given in Eq. (11) as a function of n, =nit +np and np Un. der this variable transformation,
Eq. (11)can be rewritten as ¹! (II —II+)/2 nF/2 t NC Ig /2)

Q ns npinp = g P NC
( )/2)( /2))(N /2)) tICB tICF MICR (Dl)

The quantity d, (np) is by definition

A2
ds (np)=

A0

where

A0 ~2 qCF gCF=2gg +n, (n, —2)
~0 Qcs+VCF Cca+OCF

X Q(n, —np ttp)
nF =0,»

npQ(n, np, np), —
pgF —0,2, . . .

Furthermore, although tIcp and qctt dePend on the size of
the B and F regions, as well as on the size of the gap be-
tween them, the ratio

nF =0,2,

nptQ(n, np, np ),—
VCF 1

Oca+6'cF
(D5)

It can be readily shown that

~1 qCF
=5g

~0 PCS +CCF
(D3)

remains unchanged, because the two regions B and F are
ecp»lly large and symmetric with respect to y =0. From
Eqs. (D2)—(D5) we obtain Eq. (13) in the text
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