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In the standard model, the polarization of Z, singly produced by arbitrarily polarized incident
electron and positron beams, is obtained in a manifestly covariant way. It is shown that the vector
polarization of Z depends on the longitudinal polarization of the incident beams awhile the tensor
polarization of Z depends on both the transverse polarization and longitudinal polarization of the
incident beams. %e also obtain the polarization effects on the forward-backward asymmetry, the
longitudinal asymmetry, and the final polarization of an outgoing fermion in the decay process
ZO

I. INTRODUCTION

The discovery of the intermediate vector bosons'~ %+-

and Z at the CERN pp collider renders bright prospects
for physics to be studied by two future machines: the
Stanford Linear Collider (SLC) and the CERN LEP.
Many Zo's may be seen in the future and hence an inves-
tigation of reactions related to Z is very promising. The
standard model of Glashow, Weinberg, and Salam is
more or less confirmed except for the higher-order correc-
tions and the nature of the symmetry breaking. Neverthe-
less, many gauge models whose low-energy effects are
very similar to those of the standard model can exist. Of
course, these different gauge models can predict different
phenomena at some level. For this purpose, we concen-
trate in this paper on the polarization effects in e e+ re-
actions. Typical examples are the polarization of Zo, the
decay distribution of Zo, and s polarization from Zo de-
cay.

It is also known that the polarization of an incident
electron beam is important in the production and decay
process of Z because they change the Z polarization.
Experimentally the processes we are considering in this
paper are feasible. Polarized high-energy electron beams
are available; the e e+ collision experiment with a longi-
tudinally polarized electron beam at the SLC will be done
in the near future, and the experiment with transversely
polarized e e+ beams at LEP might be possible.

The purpose of this paper is to obtain the vector polari-
zation and rank-2 tensor polarization of Zo in a manifest-
ly covariant way through the density-matrix formalism.
This formalism makes it easy for the case of arbitrary po-
larization of incident bemns. The vector polarization de-
pends only on the longitudinal polarization of incident
beams. On the other hand, the tensor polarization of Z
depends on the transverse polarization as well as longitu-
dinal polarization of incident beams in the standard
model. Once Z is produced in e e+ annihilation, it de-
cays into various channels. In this case, the density ma-
trix of Z obtained in the production process is useful to
discuss the various decay processes of Z s. The decay
Z ~ff (two fermions) is simple enough to discuss the

II. POLARIZATION OF VECTOR BOSON

The pure-state density matrix for the spin-1 state
described by the Proca vector et'(K) with a spin state K
becomes'6

Here M and p~ denote the mass and momentum of the
spin-1 particle. sl" is the polarization four-vector which is
related to the polarization three-vector s by the rest-to-
laboratory Lorentz transformation,

p p's
M(E+M) '

sl =p s/M,
I""= g""+ p "p"/M-',
~pv 3pc~v lpv

(2a)

(2b)

The mixed-state density matrix can be obtained by intro-
ducing the probability weight factor W(K) to Eq. (1) as

g"= g W(K)d"(K)e"(K)'

Pk'r ~flvkTp P Q+v
2M

P, and Q""are called the covariant vector and tensor po-
larization of the spin-1 particle, respectively.

In particular, the spin-1 density matrix Eq. (5) in the
rest frame can be writte~ as '

p= —,'I+ —,P S+—,Q; (S,S +SS ——,15; )
„

polarization of a final-state fermion. We show that it de-
pends on the polarization of Zo.

The method discussed in this paper can be used in vari-
ous other processes involving spin-1 particles. It goes
without saying that the polarization effects discussed in
this paper can distinguish various gauge theory models.
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where I and S are the usual 3X3 spin-1 matrices. Then
P measures the mean spin vector as

fined in terms of Weinberg angle Oa following the nota-
tion of Refs. 9 and 10 by

P=Tr(Sp)

and traceless Q;J measures the mean rank-two spin tensor
as

QJJ
——Tr[(S,SJ +SJS;——,I5,J )p] .

g, = .
' =(v 2G M')'",

2 sin8~cos8~

EL = T3L —Q Sill Her,f 2

&R=T3R —Q»n |)w .f ~ 2

(12)

(13)

+gz g ffY„[EL(1 Ps)—+ER(1+)'s)]HZ",
f

(10}

where f indicates specific fermions, Qf is the fermionic
electric charge of fermion f, and gz, eL, and ER are de-

The purity of states described by the density matrix of Eq.
(5) is measured by the parameter g defined by

4 + 8 QIJQfJ

which ranges from zero for an isotropic state to unity for
a pure state. Therefore, the problem of treating the polar-
ization of a spin-1 particle is equivalent to finding out P"
and Q"" (or P and Q,J in its rest frame).

III. POLARIZATION OF Zo PRODUCED
BY e e+ COLLISION

For arbitrarily polarized incident electron and positron
beams, the Z polarization can be calculated. In the stan-
dard model, the relevant Lagrangian for our discussion is

I. =e g Qfgfyqpf A"
f

JM V

xu(k ) —g""+
M

(14)

where EJ' is not normalized but Z" is a normalized pure
state, and ki, k2, and p are momenta of E, E+, and Z,
respectively.

The covariant density matrix pJ'" which is normalized
as g pp

~= —1 becomes

P = —E E /g~IJE E~ (15)

From Eqs. (14) and (15), one can obtain the explicit value
for g" in the form of Eq. (5) and the vector and tensor
polarizations become

For the Zo production by electron and positron beams,
T3L T3R and Q are ——,', 0, and —1, respectively.

The wave vector of Z can be obtained from Eq. (10) as

gzU(k2)7 [EL(1 7 s)+ER(i+rs)l&(ki }g Z"'Z"
SP111

=gzU«2)7', [EL(1—ls)+ER(1+7s)1

ER (1+kl'sl)(1 k2 s2} EL ( ki sl)(1+k2 2}pP—
A

ER (1+ki si)(1 —k2 s2)+EL (1—ki si)(1+k2 s2}

1 1
$1T$2T+$1T$2T+slT's2? (I"" b "b,"/M )—

Q""= bi'6" ' I""+2E—LE„— A
ER(1+ki si)(1'—k2 s2)+EL (1—k, si)(1+k2 s2)

4ELERg kl '$2? k2'$1? —'ki '$2? (k2$1T+k2$1T) k2'$1?(k1$2? +k is2?')
A 7

ER (1+k1 si)(1 —ki s2)+EL'(1 —k, si)( 1+k2 s2)

(16)

where k; is the unit vector in the k; direction,
5&=k", —k~2, and s;? has only space components s;?
which is transverse to k;. From Eqs. (16}and (17), one
can see that the vector polarization PI' depends on the
longitudinal polarization of the incident beam while the
tensor polarization Q"" depends on the transverse polari-
zation of the incident beam.

If incident beams are longitudinally polarized, we have
s 1?, s2?.——0, and if incident beams are transversally polar-

ized, we have k2.si, k2 s2 ——0 in Eqs. (16) and (17). For
unpolarized incident electron and positron beams, i.e.,
s ~

——0 and s2 ——0, we obtain

P=k)P,
where

2 2

~R +~L

(20a)

(20b)

In the center-of-mass frame of e and e+, which is
also the rest frame of Z, the last term of Eq. (17) does

not appear and P" is (O, P), b, is (O,Mk, ), and Q"" has
only Q'J components. Therefore, in the c.in. frame of
e e+

2 2

&z +&x.

Pp(1 —ki sik2. s2}+(ki.si —k2.s2)P:—
( 1 —ki'sik2's2}+Pp(ki'si —k2's2)

(20c)

QJ» gag» ' Iv»
~2 (19) Q"=Q/+Q", (21a)
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Qj =k'k J ——'O'J (21b)

2exeL S lTS 2T+S lTS2T+slT $2T(k lk I 5 )

2 2
e& +eL (1—kl slk2. s2)+Po(k. , s, —k2 s2)

where Qg and Q'j are polarization-independent and
polarization-dependent parts of Q j, respectively,

M =g*u{Pl)7',lei(1 r s)+ex(1+rs) IU{P2)&, (25)

the previous section can be used, consider in particular the
case that Z decays into two fermions (fermion and anti-
fermion). The fermions can be v, e, lM, T or quarks such as
u, d, s, c, b, t I.n the standard model, the transition am-

plitude for the decay becomes

The parameter g defined in Eq. (9) becomes

P2+ 3 Q2

where

g (g ijg fj)l/2

2v 2exei
I slT I Is2T I

2 2 A A
(1—kl slk2 s2)+Po(kl sl —k2 s2)

(21c)

(22)

{23)

where pl, p2, and d' are the momenta of two decay prod-
ucts and the Proca vector of the initial Zo.

If the decay products are unpolarized, the absolute
square of the amplitude, after the spin states of decay
products are summed and d'e"' is replaced by the density
matrix pl'" of Eq. (5), becomes

2'
[(ejl2+eL 2)(M2 m—2}+6m ejl e'I

3m

+3«L' &,x'—)Mpl P

Po+kl sl

1+Pokl'sl
(24)

From Eq. (22}, one can see that Zo is not in a pure state
in general.

If the incident positron beam is not polarized as in the
SI.C machine, the s2 terms can be neglected and one ob-
tains

+3(&x' &i')—Q""plidll I (26}

where m is the mass of decay products.
If the values given in Eqs. (16) and {17)are used, and

one chooses the vector kl, pl, slT, and s2T according
10, 11

Q'j=k', k]--,' 5'j. (21d)

IV. DECAY DISTRIBUTION OF Z

Equation (24) was obtained by Prescott. From Eq. (20c),
one can see that the vector polarization becomes max-
imum in magnitude when one of the incident beams is
completely longitudinally polarized.

kl ———kl ——(0,0,1},

pl ———p2 ——(sin8 cos4t},sin8 sing, cos8),

slT ——
I slT I (cospl, sin/i, 0),

I s2T I (~2 sin4'2 0}

(27a)

(27b)

(28a)

(28b)

Once Zo's are produced, they decay into various decay
modes. To show how the Z density matrix obtained in

I

one obtains the angular distribution for one fermion of Zo

decay products:

dr
dQ

' 1/2
m 4m

16Mir M2

2
' 1/2

g. M 4m2, 2, 2

2
'1/2' S2 S2

4m &x —eL, 1 . 2 4m
&& R(m2)+2cos8 1 — P+ sin28cos(2{(j —{|'ll—$2) 1 — Q

2 M' (29)

where R (m ) is defined as

4m'
R(m )=1+ 1 — cos28+8

M2 M2 ~g2+~L2
L

The charge asymmetry is defined by

(dI'/dQ)f (dI /dQ)y—
(dI /dQ)f+(dI /dQ}

(30}

(31)

where (dl /dQ}y implies the decay distribution when the

antifermion is going out in (8,$) direction instead of the
fermion, and (dI /dQ)f is defined similarly. This is the
same as the forward-backward asymmetry A~ of the
outgoing fermion defined by

(8,$)— (m 8,n.+P)—dI dI

AFa{8,$}=,(32)

(8,$)+ (n 8,~+$)—
where dI /dQ is for the fermion f. From Eqs. (29) and
(31},one obtains at the Zo pole
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A,h(8, $)=AFS(8,$)
T

2
'1/2 '

&2 ~2
4m

2cos8 1 ——
M'

d0' ~ dP
(H, k, s, =+)— (H, k, s, = —)

(8)
dQ dQ
de du

(H, ki si ——+)+ (H, ki.si= —)

(37)

R (I )+ sin Hcos(2(})—y$ —$2)g
2

where sir and szr are assumed to be zero. Since the dif-
ferential cross section is of the form

(33)

In particular, for small m /M, R (m ) becomes
1+cos28. If incident particles are longitudinally polar-
ized, Eq. (33) becomes

cf0' 2

dQ
~ [ea (1+ki si)(1—k2.S2)

A r
+eL, (1—ki si)(1+k2 S2)] (3&)

' 1/2

1—4m

M

m' m' ~R~L,
1 — +6

M2 M2 6~ 2+~& 2

I
+R ~L P.2+ p 2

(35)

(36}

In the SLC, the longitudinal polarization of the in-
cident electron beam can be reversed without difficulty,
and hence, it is useful to consider the longitudinal asym-
metry defined by

—E2cosH s —z p
1 +cos 8 E'g +eL,

which is given in Ref. 4.
Sometimes the forward-backward asymmetry AF3 is

defined by integrating out the solid angle to give

fo dd f dcosd+ f dd f dcosd

one obtains explicitly

2 cos8
R (m2)

2 cosa
R (m2)

' 1/2
4m 2

1 ——
M

'1/2 '

4'1—
M

+E'I
(39)

R

2 r 2

where P is defined by

AL, (8)=

I 2 I
2 cos8 ea —e'r,

1+cos 8 Eg +e'L

2 cosH ea —eL,

1+cos 8 eg +EL

(41)

The longitudinal polarization is sometimes defined by
integrating out the solid angle to give

Po —k2 S2
(40)

1 —Pok2 s2

If the incident positron beam is unpolarjzed and the mass
of the outgoing fermion is small, i.e., m 2 «M2, one ob-
tains

JdQ
1

AL ——

' JdQ

(H, ki si ——PI )— (H, ki si ———Pi )

(H, k, S,=PIi)+ (H, k, s, =—PI)
(42}

alld it beconles

PO —k2.S2
Al ——P=

1 —Pok2 sz

For the unpolarized incident beam, one obtains

ER —EL
2 2

L =Po=
ER +EL

2 2

(43)

(44)

which is small. But since P can be increased with the negative helicity of a positron beam, Ai, (8) and Ai, can be
enhanced if polarized positron beams are available.

If muon pairs are produced by the collision of a polarized electron bemn and an unpolarized positron beam at the Z
resonance, as expected from SLC and LEP, and if electron-muon universality is assumed, one obtains, from Eqs. (36) and
(44),

AFS= —.'(AI. )' .

The transverse polarization asymmetry is defined by

(45)
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Ai(8, $}= 1

CF J

Q
' '

2I siT I
=pi

I s2T I p2 0'i P2=—

do'
(unpolarized)

(46)

and from Eq. (29) one obtains at the Z peak
(cos2&) = f cos2$(du/dQ)dQ

f (der/dQ)dQ

Ai(8, $)=
1 — sin 8cos2$

4m

M

4m
R(m )+2pocos8 1—

M

r

2&R &L

&R +&I.2 2

' 1/2
ER

~R +&I.

(47)

This asymmetry is of great interest at LEP. The azimu-
thal distribution of the outgoing fermions produced by the
transversely polarized electron-positron colhsion becomes

t PEP' 1 —4m R L2E

M eR +eL
(48)

m 6m
1 — +~2 M2 ~& 2+6~ 2

and (sin2$) is related with the y-Z interference term
which is relatively small at the Z peak.

So far, we have considered the asymmetries in the
e e+~ff process on the Z pole, but for completeness
in treating the process off the Z resonance as well, single
photon exchange must be considered. From Eq. (10} the
transition amplitude for the process e e+~y, Z~ff
becomes

M = V(k2$2)y"u (k is i )u (p is i )y&v (p2s 2 )
ie2Q, Qf

S

i,'+ 2 U(k2$2)yp[eL(1 —y5)+eR(1+y&)]u (kisi )u(pis i )y"[ei (1—ys)+eR(1+ys)jv (p2s2 ) .
s —M +iMI

(49)

This amplitude is applicable to all final fermions except f = e or v. After the spin sum of the final fermions, the abso-
lute square of the amplitude becomes

IM I2=
r

e Q (1—ki sik2 s2) 1+cos'8+ mf sin 8—+ lsiTlls2T I
1 ——m/' sin'Hcos(2$ —pi —$2}

16m2m 'f S S
I

r r

2e Qfg, s(s —M ) 2 4 2 2(1—ki sik2. s2) (eR+eL )(eR+eL } 1+cos 8+™fsm 8
(s —M') +M I S

+ 2cos8 1 ——mf
4

1/2

(eR 6L }(6R eL )

+(ki si —k2 s2) (eR —eL)(eR+eL) 1+cos 8+ mf sin 8
S

+ 2cos8 1 — mf
4
S

' 1/2

(eR+eL)(eR eL)-
+ I slTII»T I

1 mf (eR+eL)(—ER—+EL)sin 8'cos(2$ —p, —$2)S

2e Qfg, 2$Mr 4
(s —M2) +M21' 1»Tlls2T I

1 ——mf' (eR eL }(eR+eL}»n'8»—n(24 y) yi)——
S

4 2

+ gs S
2 2 & 2 & 2 2 4 2 2

(s —M)+M I
kl slk2 s2) (eR +eL )(eR +eL ) 1+cos 8— mf cos 8

S
' 1/2

+2cos8(eR —eL )(eR —eL ) 1 ——m/
S
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+ mf (~a +~I, )~zxl.

+(ki.si ki si) (pa —e'r )(e'a +e'L ) 1+cas 8——mf cos 8

+2 cos8(Ea +er, )(6a —e'L, ) 1 — mf
S

' 1/2

+ mj (ER —EL )AREL
2 ~

S

+2) )~sT( 1 —f — ( + L, ) 8 (Q —p —p), (50}

where the number N takes into account the color degree
of freedam. Schiller i has obtained a special case of Eq.
(50} when the final-feAELLion masses are neglected. Hol-
lik' has considered the e e+ annihilation with polarized
beams in multiboson-exchange models and Eq. (50) is con-
tained in his result as a special case.

Since the differential cross section becomes

ment af x appears to be possible, " the calculation of the
final-fermion polarization is very useful to check e p s--
universality and other gauge-model predictions.

In the standjRFd model, the transition amplitude for the
process Z ~ff, Eq. (25), can be used ta obtain the final
state off

m mg
2 2

4n s
1—

' 1/2
4mf

[M [', (51)

gg g u (pl }u(pi )y„[sL,(1—ys)+ea(1+ys)]
spin

X g v (pi )v(pi )e"
spin

one can obtain various asymmetries from these equations.
In particular, at the Z peak, i.e., S =M, the magnitude
of the last term in Eq. (50}becomes about 10 times larger
than the rest terms. Therefoxe, if one considers only the
last term in Eq. (50), one can obtain the asymmetries

given in Eqs. (33), (39), and (47).
It is also nated that, if incident electron and positron

beams are unpolarized and final-fermion masses are small

( mf « s )~ one can obtain the so-called master formula
for the spin-averaged cross section given in Ref. 14 fxom

Eqs. (50) and (51). The contribution of one photon ex-

change besides Zo exchange can be obtained from these

equations.

m +pi —m +pi=g, y„[eL(1 ys)+ em
—(1+ys)]2m 2m

~~

(52)

The density matrix of the outgoing fermion becomes

p= u u /Tr(ufu I), (53)

whexe d'e is replaced by the density matrix piA" of Eq.
(5) ax Eq. (15). Then the fermion polarization four-vector
Q can be obtained,

V. FINAL-LEPTON POLAREEATION
&=T«y"y sp) (54)

Since the outgoing fermions in the process,
e e+~Z ~ff, may be polarized and a direct measure-

Using the method given in Refs. 10 and 16, the longitu-
dinal polarization and transverse polarization of the out-
going fermion become

P1'S =

~ 2 ~ 2
'

4m 2 &g —~L,

2
E. +2cos8

M

4m 4m' (e'a+eL)
&+ 2, 2, 2 +2cos8~2 ~~ 2+~& 2

1—4m

M

(55)
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2ppfSy=
I

' 1/2
26'g E'L 4m ~a —&1.P+ 1 — 2,2, i cos8 pi X(k, X pi)

2
'1/2, 2, 2

4m 2

1 — 2,z, 2 Qpi X [pi X(siT sirkicos8+Pi. s2rsir+ pi s&rszr)] '

2 M eg +eL

I '1/2, 2, 2 —1
4m 4m (ea +eL ) g 6E. CI.X 1 — R+, +2cos8 1—,P
M M (eg+eL ) ~2 ~I 2+ ~I 2 (56)

where R is defined by

R =1+cos 8+ Qsin 8cos(2$ —Pi —Pi) .2

2
(57)

If the final outgoing fermion is a r lepton and its mass
m is neglected (compared with M), the longitudinal polar-
ization of ~ becomes

' 1/2
4m

P1 OS

M
Im2 ~2 e~pL

1 — +{)~2 ~2 ~I 2+6 2

2 I 2
~Z —~L

, z, 2
for m&&M.

+R +6L
(61)

P1 S

2 I 2E'g —E'L

R +2 cos8P
&Z +&I,

I 2 I

E. +2cos8
2 2

I'
&Z +&L

(58)

and the transverse polarization becomes negligible. The
longitudinal r polarization depends on the longitudinal
polarization of incident electron beains through P in Eq.
(20) and also depends on the transverse polarization of in-
cident beams through R which depends on Q. This is the
same as the ~ longitudinal polarization asymmetry A~&
on Z resonance defined by

g + 0'
(e+e ~7 TI ) — (e e ~'r 7a )

0 (e+e ~r+rL )+ (e+e ~r+rIi )
dQ

(59)

The contribution of the photon exchange to A~i can be
calculated, but it is small at the Z peak.

If the incident electron beams are unpolarized, Eq. (58)
becomes

2 I 2

&z +&a
11 S~=

2 cos8
1+cos 8

2 cos8+ 2 Ol+cos 8
2 I 2

+&I.

One can see that this is the same as AL, (8) of Eq. (39)
if e-II, -~ universality is assumed. This asymmetry is of
great interest at the SLC and LEP.

If one integrates out the solid angles in the numerator
and denominator of Eq. (55) or Eq. (59), one obtains

In general the outgoing fermions have longitudinal as
well as transverse polarizations. Equation (56) implies
that the transverse polarization of one of the outgoing fer-
mions is negligible for a small fermion mass if all the oth-
er particle polarizations are summed, but it is not so for a
large fermion mass (compared with Z mass).

VI. DISCUSSION

We have discussed in the density-matrix formalism the
Z polarization produced by the e+e collision. The re-
sult has been used for its decay processes into two fer-
mions, in particular. The method described here can also
be applied to various others cases involving spin-1 parti-
cles, e.g., production and decay processes of W. We have
shown that, once Zo's are produced, they will have a de-
finite polarization which is described by the density ma-
trix. &arious decay processes of Zo can be described
through this density matrix and sometimes one does not
need to go into the tedious work of considering the pro-
duction and decay processes simultaneously.

In particular, we have applied our result to the
e e+~ff process in the standard electroweak model of
Glashow, %einberg, and Salam. Our consideration has
been limited to the tree level, but the final fermion mass is
included explicitly. The result obtained here may be use-
ful for future discovery of new heavy quarks or new
heavy leptons. '

Our method can be applied to multiboson-exchange
models as well. ' In particular, if another neutral heavy
boson Z ' exists, as predicted by the left-right symmetry
model of Barger, Ma, and Whisnant, one can get the
similar formula for WFa, WL, , and Ai in terms of ea and
eL, where e' is the Z ' coupling defined similarly as the
Z coupling. Specific polarization effects and asym-
metries for supersymmetric particle production in e e+
collision with polarized beams have been considered in
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Ref. 19 and our method can be applied there as well.

It is very important to find new particles and new in-

teractions which are not contmned in the standard model.
But also the standard electroweak theory allows a sys-
tematic calculation of radiative correction even though
the choice of the renormalization parameters is not, at
present, unique beyond the tree level. The radiative
corrections to various asymmetries in the e e+~is p+
process have been considered in Refs. 20—22 up to one-

loop level in the standard model. The resulting magnitude
from these radiative corrections is very small. Since we

expect many Z 's to be produced in SLC and LEP in the
future, precise experimental measurements of various

asymmetries at the Zo resonance and of the weak-boson
masses would lead to a test of the standard model at the
one-loop level.
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