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Path-integral bosonization for massive fermion models in two dimensions
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%e study the bosonization of the massive Thirring model in the framework of path integrals.

The analysis of quantum field models in two space-time
dimensions has proved to be a useful theoretical laboratory
to understand phenomena such as dynamical mass genera-
tion, confinement, and topological excitations, all features
expected to be present in the more realistics four-di-
mensional quantum theories.

Recently, a powerful nonperturbative technique has been
used to analyze several two-dimensional nonmassive fer-
mion models in the (Euclidean) path-integral approach.
This technique is based on a suitable chiral change of vari-
ables. '~

It is the purpose of this Brief Report to show how to deal
with the case of massive fermion models in the framework
of the above technique by studying the massive Abelian
Thirring model. 5

Let us start our analysis by considering the Euclidean
Lagrangian of the model

~i(Q, Q)(x) = —iiliy~8„$+ mQQ+ ~(gy„p)2 (x), (1)

where Q= (Qi, $2) denotes a two-dimensional massive fer-
I

mion field of (bare) mass m and coupling constant g.
The Hermitian y matrices we are using satisfy the (Eu-

clidean) relations

[yp, yv] = 2yps ~ yglys = ~&guy ys = iyoyi

Ko~ = —E]0= 1

The Lagrangian (1) is invariant under the global Abelian
group i' e' Q (a6 a ) with the Noetherian conserved
current

8„(iTiy"i')(x) =0 .

In order to construct an equivalent bosonic theory for the
model (1), we consider the quantum partition functional

Z=J D[y(x)]D[iTi(x)]exp —„d'xW)(y i')(x) (3)

It will be useful for our purposes to write the interaction
Lagrangian in (3) in a form closely parallel to the usual
fermion-vector coupling in gauge theories by making use of
the following identity:

2 s

exp —~ d2x(py"p)2(x) =
~ D[A„(x)]exp — 'dxTA~ (2)xexp + d2xig(illy"$)(x)A„(x)

i

where A„(x) is an auxiliary Abelian vector field.
After the use of (4), Z becomes

t' 1

Z = D [A„(x)]D [$(x)]D [&(x)]exp —T d2xA„2(x) exp — d2x [ —iitiy„(9„—gA„)$+ mph] (x)

Now, we proceed as in the massless case by making the change of variables

i[i (x) = exp[igysp(x) + iq(x) ]X(x)

$(x) = X(x)exp[igysp(x) —i'it(x)]

A„(x) = +e„„tl„P——'B„v] (x)

(10)

At this point, it becomes important to remark that the fermionic measure D[$(x)]D[$(x)] in (5) is defined in terms of
the normalized eigenvectors of the Hermitian Dirac operator —iy„(B„gA„),s—ince we are dealing with the massive Thir-
ring model as a mass perturbation model around the massless case closely to the idea of the conventional bosonization
scheme implemented by Coleman. 4'

As has been shown by Fujikawa' the transformations (6) and (7) are not free of cost due to the noninvariance of the
functional fermionic measure under chiral change of variables. The resulting Iacobian is given by3

P 1

2 1 1+
D [ii (x) ]D [j(x) ] = exp —

~ d'x —1+~ (B„p)'—— g (8„7t)' D [x(x) ]D [x(x) ] (9)
1

Concerning the transformation (8), we have the result'
i T

D[A (X)]=Det —'(80 —Bi') D[p(x)]D[g(x)]
g
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Substituting Eqs. (9) and (10) in Eq. (5), we obtain the expression
f

2 1 1+
Z = D [P(x) ]D [q(x) ]Det —'(80' —8)') exp — d'x —1+~ (B„P)'—— g, (B~q)'

ai

T

„D[X( )]D[X( )]e p —Jr d' ( —X „t}„X+ X ~X)( )

Now we note that the (unphysical) q(x) field is decoupled in the effective partition functional given by Eq. (11); since it

is related to the spurious longitudinal part of the conserved U(l) current of the model [note that at the classical level the
fteld A„(x) coincides with (Py P) (x) ]. As a consequence solely the transversal part of A„(x) effectively contributes to the
partition functional (11). Thus, we get the effective result

fa 2

Z=„D[p(x)]exp —
J d x —1+~ (8+)2(x)

&
D[X(x)]D[X(x)]exp —„d2x ( —Xiy„8„X+mXe X)(x) . (12)

Now we note that, opposite to the massless case, we have not decoupled completely the massive fermions from the field

A„(x), since there remains in Eq. (12) the mass coupling term

~+
m Xe "~X (x)=m X

' Xe'"'~+X '
Xe 'a& (x) (13)

2 2

%e, then, face the problem to evaluate the fermionic functional integral
I' 10 1

I[p(x)]=„D[X(x)]D[X(x)]exp—„d'x][—X(iy„8„)x](x)+m(o+e'"a+o e '"&)(x'))

where we have introduced the objects

] +y5op(x)= X X (x)
2

(14)

(15)

In order to evaluate (14), we make a series expansion of the term

exp —m ' d x(o+e "'~+o. e &~)(x)
aJ

in powers of the (bare) fermion mass m.

Explicitly,

l[p(x)]= X, ~
d'x) d'x„~ D[X(x)]D[X(x)]exp —

J d'x[X( —iy„8„)X](x)
a~0

x(ope"go+a e "~a)(x)) (ape'a~+a e '"~)(x ) (16)

Now it is a well-known result that the only nonzero terms in (16) are those with equal number of a+'s and o 's i.e.,
k

2a g (x, —x, )'(y; —yi)'

J D[X(x)]D[X(x)]exp —„d'x[X(—iy„8„)X](x) ff a+(xI) ff o (y;) =
' i~1 i~1

with the massless fermion propagator given by

(iy 8 ) '(x,y) = +
x —yj'

(18)

By following Coleman, ' we introduce a massless scalar field $(x) with the (infrared regularized) Green's function given

by h(x) = —(I/4n ) ln(x /e ) (e is a infrared cutoff with mass dimension) and rewrite Eq. (17) in the form
'2k k

e '"~'")~D[y(x)]exp —Jfd'x~(8„y)'(x) exp 44ni g y(x, ) —y(y, ) (19)
].

By noting that the averages

1 k l

D[y(x)]exp — d'x Y(8„@)'(x)exp J4ni X g(x, ) —$ P(y, )
1 i=1

are zero for kel due to the infrared divergences of the massless scalar field $(x) (Ref. 5) we can write 1[P(x)] [see Eq.
(14)] in the form
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I[p(x) ] =„D[&(x)]exp — d2x ~(8„$)2(x) exp —„d2x[me ~to'] cos(2g/3+ 44rr@) (x)
L

(20)

where we see that the (bare) mass parameter gets a multiplicative (ultraviolet) renormalization mn = me
Finally, substituting Eq. (20) in Eq. (12), we get the effective bosonic action for the fermionic massive Thirring model

[see Eq. (3)]:
T

fO 2Z= D[P(x)]D[@(x)]exp — d'x T 1+~ (Bg)'+ (8„$)' (x) exp— "
„I d'xcos(2gP +44m@)(x) . (21)

Cl 1

co t~ (1+g'/m )

vn
eo g

(23)

In terms of these new fields, the effective Lagrangian in

Eq. (21) takes, then, the more transparent form

In order to analyze the physical spectrum associated to the
effective bosonic action Eq. (21) we introduce the new
fields

2gP(x) = (2g/3+ J4rrdi) (x)

y (x) = ( ca8+ ciiti) (x),
where the arbitrary constants co, c~ satisfy the relation

I

regularized result reads

k k I
' —].

Q(lx —x I/e)'g(ly —y I/e)' ff g(lx —y. I/ )'
l&l l&l l l

where we have ignored the field's contractions at the same
point and the functional $-independent determinant
Det(8otlo+Bi8i). Taking now the limit e 0+ we see easi-
ly that the only nonzero terms are those with k = t.

Third, after this work was sent for publication, we became
a~are of the paper of Ref. 10, ~here some comments relat-
ed to the non-Abelian case are made, and of other papers, "
where the problem analyzed in this paper is studied by using
an inappropriate fermion mass-dependent Jacobian [see Eq.
(9) of this paper and final comments of Ref. 4] and leading
to a bosonic sine hyperbolic theory in the Abelian case, a
result opposite to the usual operator analysis (see Refs. S,
10, and 12).

1

~(- -)( )= i( -)2 (1+g'/m)4cl'g'+4g'co'
(2gc, 44m —co)'

t

+ 1(g y)2 (1+g2/e)41r+4g2
(2gci —44m co)'
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APPENDIX: THE NON-ABELIAN CASE

+ " cos[2gi3(x)1 (24)

There is thus, in the spectrum of the model, a massless
scalar field $(x) and a sine-Gordon field l3(x).

It is instructive to point out that the massless scalar field
$(x) is a remnant of "almost long-range order" of the
Kosterlitz-Thouless type which occurs in the infrared region
of the massless Thirring model (mit =0).'

Finally, we note that a similar analysis can be straightfor-
wardly implemented for the non-Abelian version of the
model, ' or for the massive (Abelian and non-Abelian) fer-
mion gauge theories.

As we have shown, chiral changes in path integrals even
for massive fermion models provide a quick, mathematical-
ly, and conceptually simple way to analyze two-dimensional
fermion models.

Note added. We would like to make some clarifying re-
marks on the analysis implemented in this Brief Report.
First, the expansion (16) is possible because the fermionic
functional measure D[X(x)]D[X(x)] in Eq. (16) is now de-
fined in terms of the eigenvectors of the free Dirac operator
iX„B„[seeEq. (9)]. Second, we observe that the average
before Eq. (20) is zero for kai [see Eqs. (4.3)-(4.6) and
Eq. (4.11) of Ref. S] by its direct evaluation. The infrared-

Z, [A„]=„D[y (x) ]D [y(x) ]
t

x exp —
&

d x[ —iiliy„(8„—gA„)$+ mQQ] (x)

is the vacuum energy density of a theory of SU(N) massive
fermions interacting with the external gauge field A„(x).

As in the Abelian case there is a chiral change which
decouples the fermion fields ill(x) @(x) from the SU(N)
gauge field A„(x). This change is implemented by using
the Roskie decoupling gauge'

—i y Sp(x) i y 5p(x)
(y„A „)(x) = ——e (y„8„)e (A3)

We now briefly discuss the non-Abelian SU(N) Thirring
model.

Proceeding as in the Abelian case by introducing an
SU(N) auxiliary gauge field A„(x) =A„' (x)h.„with A., be-
ing the generators of the associated SU(N) Lie algebra, we
write the quantum partition functional of the model in the
following form:

Z=J D[A„(x)]exp —~J d'x TrA„A„ZF[A„], (Al)

~here
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where P(x) = (P'X, ) (x) takes value in the Lie algebra of SU(N).
—Iy (x)

So, we make the variable change in Eq. (A2) [Us(x) —= e ]

y(x) =e ' x(x) = U5(x)x(x)

y(x)=i(x)e "+ =x(x)U5(x),
—ip'{x)z,

which yields the result [U(x) —= e ']

Zr[~„(x) l = J D [x(x) ]D [x(x)]J["„lexp —
J d'x[x(iy„8„)x]+m(a+(U')+ a-(U')') (x)

where the quantum aspect of (A4) and (AS) is taken into account by the Jacobian [see Eq. (7) of Ref (13)l

Det[a(a„)]
Det(iy„8„)

which can be explicitly evaluated [see Eqs. (9)-(15) of ~ef. 1']

d'x Tr(~t"„."„)(x)+,' dt d'xTr[(a, U) U-'(a„U) U-'(e„U) U-"„,l(x, t),

(A4)

(AS)

(A6)

(A7)

(AS)

U(r, x) =e-"s'"' (0» t» 1) . (A9)

The first term in Eq. (Ag) is the non-Abelian Schwinger-mechanism mass term. The second term can be written as
4+if'wz[U(t x) ], where F wz[U(t x) l is the well-known two-dimensional Wess-Zumino functional"""

Twz[U(t, x)]= d3xe""Tr[(8tUU ')(BtUU ')(BkUU ')](x) (Alo)

wbere g is tge upper bemisphere on S', whose boundary S' can be considered as the compactified space-time A.'
"fhe (g(x), y(x)) fermionic functional integrations are evaluated as in the Abelian case by considering the power series in

the (bare) fermion mass m [see Eq. (16)] with the result

fO fO

I[U(x) ] = „D[d'(x)]exp —p „d'x(8„&)'(x) exp—
t

dxme a Tr[e'~~~U'+e ' a(U') ](x), (All)

which is the SU(N) version of the sine-Gordon term Eq. (20) in the text.
Finally, we remark that one can implement the variable change A'„(x) P'(x) in Eq. (Al) leading to an effective theory

in terms of the fields P'(x) [see Eqs. (18) and (19) of Refs. 13 and 15].
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