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for the same chaige distribution in SU(2) Yang-Mills theory
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%e propose a new cylindrical ansatz for SU(2) Yang-Mills theory which lifts the degeneracy between the
two non-Abelian solutions in the presence of a time-independent charge current. %e then construct explicit
solutions for which we find that (i) Q- Qi is the point of bifurcation between the two nondegenerate non-

Abelian solutions and a Coulomb-type solution, (ii) for Q, & Q & Q, , EN„& Ec& EpA, (iii) for Q Q2,

EN„& Ec-EL, (iv) for Q & Q2, EgA & EpA & Ec. Here Q is the gauge-invariant charge and E is the

total energy. Finally, we show that our ansatz is related to the usual cylindrical ansatz by a nonsingular

gauge transformation.

In the last few years the question of the stability of the
classical solutions of the Yang-Mills equations in the pres-
ence of external sources has received a lot of attention. '

One of the motivations for this study is the hope that even
at the classical level there may be a definite indication of the
phenomenon that leads to confinement in the quantum
theory. One of the earliest works in this direction was by
Mandula' who sho~ed that for a spherically symmetric static
source the Coulomb solution is unstable when the source
strength exceeds some critical value. For a nonspherical
static source a similar result does not exist. Ho~ever,
Sikivie and gneiss have constructed a non-Abelian magnetic
dipole solution which always has less energy~ compared to
the corresponding Coulomb solution. In the case of their
ansatz it turns out that (see below for details) for a given
charge distribution there are two degenerate non-Abelian
solutions (i.e., they have the same energy).

It may be interesting to enquire if it is possible to lift this
degeneracy between the two non-Abelian solutions. In this
context it may be worthwhile to recall that such a degenera-
cy also exists in the case of the spherical ansatz. In that
case it has been sho~n by Jacobs and udka5 that such a
degeneracy can be lifted by introduction of a current source.
However, for the Sikivie-%'eiss ansatz such a degeneracy is
not lifted even in the presence of a current source. 6

In this note we propose a new cylindrical ansatz and show
that within this ansatz the degeneracy between the two
non-Abelian solutions is lifted in the presence of a time-
independent charge-current source. As an illustration we
explicitly construct magnetic dipole and total screening solu-
tions and show that in both cases we have three nondegen-
erate solutions for the same charge distribution. The com-
parison of their energies as a function of the gauge-invariant
charge Q shows that (i) Q= Qi is a point of bifurcation
between the three solutions, (ii) for Qi & Q & Q2, ENA

& Ec & EGA, (iii) Q=Q2 is a crossover point at which
ENA & EC Ei]IAr (iv) for Q + Q2~ ENA & E?jA & EC.
nally, we show that our cylindrical ansatz is related to the
Sikivie-gneiss ansatz by a nonsingular gauge transformation.

The Yang-Mills equations in the presence of external
source J„' are7

D pupatt Just
s

where

and

D d, u~ g yu+ geubcA b d, c

The Sikivie-gneiss ansatz is

r

At (x) = g '8"etsI —A (p,xs)",p,

(4a)

(4b)

On substituting this ansatz in Eq. (1) we have the Yang-
Mills equations

sv'2@ —rtrA 2 = —q (5a)

't72A ——+ A dr2 = —m
p

2

where

Jii(x) = —g '5"q(p x )
t

XgI;(x) = g '5"etsI———I—m(p, xs)
, P,

(6a)

reduces to

E = — d x [/('7 r)tr+rtr2A —/Am]
g

(8)

Let us first look at Yang-Mills equations (5) in the case of
m —0. It is clear from Eqs. (5) and (8) that if ($,A) is a
solution to these equations for a given q, then (rtr, —A ) is
also a solution for the same q possessing the same energy.
Even if m —= 0 it follows from Eqs. (5) and (8) that (rtr, A )
and (rtr, —A ) are still degenerate.

In order to lift the degeneracy between the two non-
Abelian solutions we now propose the ansatz

1

Ag (x) = g 'e"' —'
rt (p, xs)

, p,
r

At (x) = g 5 erst —A (p,x3) ——
, p, , p,

(9a)

W'ith this ansatz the general expression for field energy
given by8

E= d x [~(EtuEt'+BtuBtu)+Atujt'], i =1,2, 3, (7)
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Substituting this ansatz in Eq. (1) yields the same Yang-
Mills equations as given by Eqs. (5) with

is given by6

1

Jl[(x) = —g '~"' —'
q

, p,
(10a)

where

d'x [ ' (Vy)'+ y'A'+ &(Vx)']
g2 J (16)

Jf(x) = —g 8 Kgb
—m-i u3

, p,
(lob)

Ho~ever, the expression for field energy is now different
from (8) and is given by

V'x=gA' . (17)

%'e now present explicit solutions ~here all the features
described above are present and compare the energies of the
non-Abelian and Coulomb-type branches as a function of
the gauge-invariant charge Q given by

T

ENg= — d3x Y(VQ)2+$2A2 —~Am+ — . (11)
g2 J p

Only in the special case of m —= 0 [or f (m/p) d'x=0] are
the two energy expressions (8) and (ll) identical. Thus

IO fb

Q = d3x [Ja (x)Ja (x) ]' '= — d'x
~ q ~4 g J

in view of Eq. (10a).
As our first choice we choose

(18)

418 y2
4 =4sw= y=r/a

a cosh(y')
' (12a) A = —ye ~sing

a
(19)

1

A =Asw= — tanh(y ),c sing 3

a y2
(12b)

are also solutions within the new ansatz (9) possessing the
same energy and the same q in Ref. 3.

One might naively think that, unlike the Sikivie-Weiss an-
satz, our A, as given by Eq. (9b) is singular in case A is
chosen to be regular [as is done above in Eq. (12b)]. How-
ever, this is not so. The apparent singular term in A&',

Xg

'p' (13)

does not contribute either to the electric or to the magnetic
fields, which for our ansatz are given by

'I

E'= —g 'e'3& —81$+g '(x' —5"x3)e,3J
—~ $A

, p, '.p'

(14a)

where y = r/a, a being the scale factor with dimension of
length and A. a dimensionless parameter which we always
choose to be non-negative. In order to obtain a nonsingular
and short-ranged $ we choose

X= +
y e ~sing

a
(20)

where p, = p, (h. ) is dimensionless. Using Eq. (17) we have

+ y e sin 8[12+ (3y —14y)sin 8]3
a

(21)

The corresponding electric and magnetic fields can be com-
puted by using Eqs. (14) and it turns out that both of them
are totally screened. Using Eq. (11) the energies corre-
sponding to the solutions (@,A ) and ($, —A ), which we
denote by ENA and EPA, respectively, are given by

2 I

=2880JM, + p, A,
—A. +8k. — A.p,

1408 2187

&(=g '8"&IIk&k318J(xiA/p) (14b) (22a)

As a matter of fact our ansatz (9) can be obtained from the
Sikivie-Weiss ansatz (4) by the time-independent nonsingu-
lar gauge transformation

with

A„' = UA„U-'+ g-'U8„U-', (isa)

—lpga 3
fWO'Q2 AFOOT

~
/2U= e 'e e, tanco = X2 (15b)

One might then wonder as to why the energy expression
(11) differs from the Sikivie-Weiss expression (8). This is
so because the term f d'x (Jl'AP) in (7) is not gauge invari-
ant. Ho~ever, in the case of m =—0 the two energy expres-
sions are identical as they should be since f (EI'E,
+ BPBI')d3x is gauge invariant.

From Eqs. (5) and (ll) it is clear that in the presence of
m, if ($,A ) is a solution for a given charge distribution q
then (@, —A ) is also a solution with same q but with dif-
ferent energy, i.e., within the new ansatz the two non-
Abelian solutions are not degenerate. For the same q we
also have a Coulomb-type solution ($„0) which has dif-
ferent energy from either of the non-Abelian energies and

ag Eii ag Ei 16 475 136 ~NA NA 2187
(22b)

~ i/2

p() ) = po+ 0.002K', pa= 2187 (23)

As we shall show below, for this parametrization
Q&= Q(k=0) is a bifurcation point while Q2= Q(A. = X„;,)
is a crossover point. For Q~ ( Q ~ Qq we find that
ENA ( E~~ EpA, while for Q ) Qq we have EN~ ( ENaA

& Fc.
Let us now show that X=0 is a bifurcation point. From

Eqs. (5a), (18), (19), (21), and (23) it is clear that Q in-

The Coulomb-type energy Ec corresponding to the same
charge distribution is obtained from (16), (19), (20), and
(21) as

ag E 288() 2+ 18549 2~2+ 3200 2),4 (22c)
704 19683

The corresponding gauge-invariant charge Q can be calculat-
ed numerically by using Eqs. (Sa), (18), (19), and (21). A
plot of EN&, E|L, and Ec (in units of 25m/ag') as a func-
tion of Q (in units of 8m/g) is shown in Fig. 1, where we
have used the parametrization
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Hence any p, (h. ) satisfying (25) with derivative dp/d)t satis-

fying (24) at X = A.s will give a bifurcation point at Xc provid-
ed d Q/d)t li-~ &0 The value of po in our parametriza-

0
tion (23) is obtained from Eq. (25) by using either ENA or
EP„. Note that the parametrization (23) is also consistent
with Eqs. (24). Further, for the same parametrization (23)
and fOr the Same ValueS Of 1u, (0) and p, '(0), Ec alSO SatiS-

fies Eqs. (24), (25), and d2Q/dk2l&-c&0. Hence A. = 0 is a
point of bifurcation between the two nondegenerate non-
Abelian solutions and Coulomb-type solution. It is also
clear from the above analysis that the point A. = A.„;,is mere-

ly a crossover point.
Finally, we show that with our new ansatz the degeneracy

between the two Sikivie-gneiss magnetic dipole solutions'
(4'sw. ~sw) and ($sw. —&sw) is lifted in the presence of
nonzero m We choose

l

f00

Q

l

$0 4=vtbsw A Asw v &0, (26)

FIG. 1. Plot of E (ln units of 25m/ag2) vs Q (in units of 8~/g),
where the solid line denotes EgA vs Q, the dot-dashed line denotes
Eg„vs Q, snd the dashed line denotes Ec vs Q.

BE~ BE dp,
()

B)t Bp, d)t

BQ+ BQ dp,

Bk Bp, dh.

These equations will admit a nontrivial solution if

(24a)

(24b)

creases with X. In such a case bifurcation will occur at
X = Xc if E and Q have simultaneous extrema at h.c and )ts is
not a point of inflection of Q'. Note that here E stands for
any one of Et[1~, Ep~, and Ec. Therefore p, =p, (X) is ob-
tained from

as the solution of Eqs. (5) in our ansatz. Using Eq. (11) it

is then easy to show that

EN„—EPA = —144mvz(v2 1)—— dy
y

a" o cosh'y
(27)

so that ENA & EPA for 0& v'(1, while EtL & ENA for
v2&1. The corresponding Coulomb-type energy can also
be computed, and one can show that for v'&1 (i) Q
-Qt[ Q(C 0)] is a point of bifurcation between the
two non-Abelian and the Coulomb-type branches, (ii) for
Q1& Q& Q2 ~ ENA &EC&E14i (111) Q Q2[Q(C-C~;t)j
is merely a crossover point at which Eg„(Ec=EtL, (iv)
for Q & Q2, EJNA & EPz (Ec. The degeneracy of the mag-
netic multipole solutions will also be similarly lifted within
this ansatz.

BE BQ BE BQ
Bh. Bp, Bp, BA.

(25) One of the authors (S.K.P.) is grateful to Bishnu C. Parija
for help in numerical computation.
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