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Gauge-invariant energy-momentum tensor for massive @ED
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For massive QED with a gauge-fixing term a candidate for the energy-momentum tensor is

presented. Both cases of scalar and spinor matter fields are treated. The energy-momentum tensor
is invariant under the restricted gauge transformations which exist in that model. This property
guarantees that the unphysical scalar photons do not contribute to the energy-momentum densities.

The difference between the translational generators and the energy-momentum observables is point-

ed out.

The indefiniteness of the space-time metric
=diag(1, —1,—1,—1) makes it impossible to realize a
canonically quantized free Hermitian vector field with
four independent degrees of freedom A& on a positive-
metric Hilbert space in a Lorentz-covariant way so that
the space-time translation generators have their spectra
confined to the forward light cone. ' This means that
vector-field models in general contain unphysical degrees
of freedom. An exception is Proca's model ' in which no
ghost states are present due to the constraint 8 A =0. Yet
this model has problems when the vector field is coupled
to charged matter and, in addition, the vector field's prop-
agator is singular in the zero-mass limit which makes it
cumbersome to recover QED in that limit. These prob-
lems have been resolved's s

by the inclusion of a so-
called "gauge-fixing term" into the massive vector field's
Lagrangian. (A coherent textbook treatment of perturba-
tive massive QED with a gauge-fixing term is presented in
Ref. 4.) Such models with a gauge-fixing term contain
unphysical spin-zero quanta which, however, can be elim-
inated from the physical asymptotic states through defin-
ing the physical subspace P" by the weak Lorentz condi-
tion t) A'+'4=0, V@CA . In contrast with zero-mass
QED (Refs. 10 and 11}no zero-norm states are left in 4
and all three helicity states of the spin-one boson are
physical. The models, however, ftt into the general frame
of indefinite-metric quantum field theory as formulated
by Wightman and Garding. ' In this framework not all
Hermitian operators are physical observables. As observ-
ables only those operators on the full Hilbert space can be
used which leave invariant the physical subspace and
whose restriction to 4 is Hermitian on A . ' lt is the
aim of this paper to present an energy-momentum tensor
for massive QED which is observable in this sense.

The class of models we have in mind is generated by
Lagrangians of the type W =W„+&st with
(a &0tr &0}

2'F +»"— (t) A—)—'+—A At'

and A& being a Hermitian vector field on Minkowski

space M ". The matter part &st contains the matter
fields and their coupling to Au but shall not depend on
the vector field's derivatives. Scalar QED chooses a non-
Hermitian field (() and, with U: R +-+ I +,

&sr = [(i)t' ieA—")P]'[(t)„ieA—q )P] U(—P'P) . (2)

Spinor QED is characterized by

if'"—[( t) „ieA„—) (r)„—+ieA„)]g m~—
2

The vector field equation reads, with j"=——BWst /BA„,

d~~+a2d. A lt'+trzAt' jt' (4)

Introducing 4t'—= Bt' ieAt—' and &"=r)t'+ieA" the
current is given, respectively, by j"=—e~"g and

j t'= led'( —9' t' —&")p.
The tensorial fields are quantized via canonical equal-

time commutation relations, the nonvanishing ones of
which read

[hatt', A„]ET—— i5t'„5—', [n,p]ET i5', ———

[m', P']ET—— i5'—
with the canonical momenta

=F" a2rlt'od A, —
t)4,o

go~
~0~o

Anticommutator quantization rules are imposed on the
spinor field:

Choosing a =0 in W„gives Proca's model which we
exclude in order to be able to employ the canonical for-
malism without having to care for the constraint which
the zero component of the vector field equation consti-
tutes for a =0.' In addition, we exclude from the outset
the zero-mass case tr=0 of ordinary QED with a gauge-
fixing term since we need factors tr well defined for our
treatment.
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Current conservation 8 j=0 renders trivial the dynam-
ics of B.A, the negative-metric field, ' which is con-
strained to vanish in Proca's model. 8 A solves the free
Klein-Gordon equation with mass parameter» a . [We
have excluded a &0 in order to have 8 A as a positive
(mass) field. ]

At the quantum level formally, and at the c-number
level rigorously, the ghost field 8 A can be extracted from
the fields A„and f (denoting either spinor or scalar
matter fields). Define the fields V„,gi by
A&

——V„a»—d&B A, P—=exp( ie—a» 8 A}gv From
the equations of motion for A„,f it follows that B.V=0
holds and that V„,gi solve Proca's field equations. The
equal-time commutators which result for V„,gi from the
imposed canonical quantization rules coincide with the
ones derived from Proca's Lagrangian. ' Thus V„and Pv
are insensitive to a and identical with Proca's fields.
Note also [8 A(x},V„(y)]=0=[8.A(x), gv(y)] for arbi-
trary (x,y). ' Thus the field B.A is decoupled completely
from V„,fi and the Hilbert space of the model factorizes
into a tensor product of a space A i carrying V„,gi and
a space ~a ~ carrying d A: ~=~v ~s ~

Accordingly, the translation generators P" must
decompose into a sum of two commuting and therefore
separately conserved contributions P"=PP+P$ A, each.
generating translations on the respective space.

The commutator

[8 A(x), B A(y)]= — ib(x —y;» a )4

differs from the one of a canonical Klein-Gordon field by
the factor ( —» a ) [k"—= (co(k),k)]:

ilL(x;rn )= (2—m) '(e ' —e' ) .
d'k

2'(k)
From this commutator Pg.z can be read off immediately:

4

Pg.„=—', J d*x (a A)'~(a A)"

(a A)„(a.A}"

K
(8 A)

g 2

If the field B.A is realized so that its positive-frequency
part acts as an annihilation operator the spectra of P$.„
are, due to the minus sign in the commutator function of
8 A, in the forward light cone, yet the scalar product,
which is defined implicitly by 8.A =(B.A), is indefinite.
In the other way, to realize B.A, its negative-frequency
part acts as a creation operator. In this case the spectra of
P(.„are in the backward light cone, but the scalar prod-
uct is positive dcflnltc. 80th rcallzations sccIxl to cxcludc
a physical interpretation of the scalar photons connected
with 8 A and since these quanta do not interact they
indeed escape detection by any measurement process
whose dynamics is determined by the model.

There are two equivalent ways to deal with this situa-
tion. The usual one' is to restrict the physically realiz-
able states to the subspace without spin-zero photons
A =A v(30&.& with 0&.& being the vacuum in A &.&.

The observables are then given by the operators which
leave invariant A and whose restriction to P is Hermi-
tian. On P they have the form B =Bi gQ&.„(Q&.„, }.
In case of the positive-metric realization of B.A, one may,
however, equally well allow arbitrary states from 4 and
restrict the observables to the form B =Bi 8 Is.g with Bv
being Heallitian on 4 z. By this procedure the states on
A, i.e., the density operators, are grouped into
equivalence classes of physically indistinguishable states.
Any two density operators on A are equivalent if for all
B =Bi S Is.z holds Tr( IViB) =Tr( 8'2B). The usual
treatment then simply chooses the representative
IVi g Qs.„(Qs.„, ) from each class.

In both ways of keeping the scalar photons unobserv-
able it is trivial to identify the energy-momentum observ-
ables. They are given by PP, since these generate the
translations for the observables. It is with the construc-
tion of the energy-momentum tensor T""that the second
approach proves of advantage.

Starting from the canonical tensor we shall construct a
candidate T""by employing the property of "gauge in-
variance" of observables. The "gauge transformations"
of massive QED are mappings of the types'' ' '
A„~A„+A&„,~ exp(ieA)g with (a CI+» )A=O and
A:I "~IR. They leave the (anti)cominutator algebra,
the field equations and the fields V„,fv invariant, while
8 A transforms as 8 At-+8 A —(» /a )A. Therefore the
observables B =Bve ls.~ are identical to those field func-
tionals W(A„,g, g} which are gauge invariant, i.e., func-
tionals of the form W(V„,fi,g~). From this it follows,
since V&,fi are independent of a2, that all observable
physics of massive QED is insensitive to that parameter.

After this summary of the general structure of massive
QED we shall now describe the construction of T""and
prove its main properties which make it a reasonable can-
didate for the energy-momentum tensor of the model.

The canonical tensor reads E""=Ez"+Eg with

E&" (F~ a'~a A——)A, '"—

and

(10)

E5'= 4r"( ~—"—~ "}4
2

respectively.
In the spinorial case, use has been made of the matter

field equation which implies W~ ——0 for solutions. Now,
by construction, B„Ei'"=0holds, but E""+E"".As to be
expected, K""is gauge variant. By introducing the canon-
ical variables into E""it is straightforward to verify thatP":f d'xE indeed —generates the translations of the
fields:

i[P~,A, ]=A, '~, i[P~,q)=q'~.
Let us see what can be achieved by following

Minkowski's modification of E"", designed for the case
» =0, a =0. It consists of the definition
8""=E"" B~(F~A") wh—ich im—plies B„O""=0,and leaves
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the global conserved qu mtities unchanged. For solutions
of the field equations, 8'" can be written as O'"= Hq" +est
with

Hg"—= FPPF p+ d rf'"F~FP +dr (A"A" ,'—ri"—"ApAP)

+a'[(a A)'PA" —(a.A)AP'"+-,'~"(a A)'] (12)

and 8~=EQ—" jPA—". For our scalar and spinor para-
digms Hg reads

Hst"=4"(~"&"+~ "&")4—n""~st

(14)

The electric current and Hg are gauge invariant, but 8&" is
not. In addition 8'" is not symmetric and thus
Minkowski's procedure does not do the job. If we replace
now in Hq" the field A„by its gauge-invariant part,
V„—=A„+a tr (t} A)d„, we obtain the gauge-invariant
tensor

Since [} A is freely propagating with mass parameter
tc a, the tensor Tg."q has a vanishing divergence:
r}„Tts."„=0. This term produces the separately conserved,
scalar-photon contribution to F"=f d'x 8 with eigen-
values in the backward light cone. The term proportional
to a again has a zero divergence, but it leads to vanishing
global conserved quantities. Therefore we have verified
explicitly the decomposition of the translation generators
into a conserved observable part and a conserved nonob-
servable one:

r"=f d xd —a a f d*x rg g=Pv+Pt. g .

Indeed Fi" commutes with t} A and Fs.z with Vp and gi .
Thus the (gauge-invariant) energy-momentum observables
are givm by pt = f d'* d—~ us return to the search for a symmetric energy-
momentum tensor for spinor QED. Following
Belinfante's's construction we have to check whether the
anttsymmetric part of 8p" is a divergence. This, indeed, is
the case:

pPPpV + ~IlVP +PC

+ tr2( V"V" ,' rl""V—
p

V—P) .
with

Hp[pv] g[tdv}tft yg[tdv) r}W

Since V solves the vector field equation, conservation of
8p"= Tz~"+ est" follows: [}„8""=0.The ~ector field's

contribution Tz" enjoys the following properties: (i}

Tq"(Ap+Aqp) =Tq"(Ap) (gauge invariance); (ii)

Tq ——Ag (symmetry); (ui) Tq &0 (positivity). In the
case of scalar QED the matter part Hg is also gauge in-

variant, symmetric, and 8~ &0 holds. In the case of spi-

nor QED the matter part Hst" a ain is gauge invariant, but
it is neither symmetric nor is st positive.

Before going on to symmetrize HPst" in the sPinorial case,
we shall compare the global conserved quantities connect-
ed with I(.p" or equivalently 8""on one side and 8""on

the other. A simple computation shows that the follow-

ing equations hold for both cases of QED:

8"„"=T„"" aa [~~(a A}A" ~—~(a.A)AP]

—a~ T.q4 -2

with

Tg."„—=(a A)'P(a. A)'"——,'~q(a A)„(a A)»
—tria '([}A) ] .

and X[&")=(il4)[y4, y"] Now t.he way is open for defin-

ing a symmetric energy-momentum tensor:

TP"=8P" —t} (~P[i v}+~id[ P}+~v[tdp})
2 ~ (19)

The authors are indebted to Professor Josef Rothleitner
for several stimulating conservations.

A further simplification can be achieved since [}Q"['p) is

antisymmetric in (p, v). This reduces Tp" to the form
T""=—,'(8""+8~)=Tq"+ —,'(Hst"+8/) which is valid for

both cases of QED.
T""obeys the following crucial properties by construc-

(t) apT'"=0; (ll) [T""(x),B A (y)] =0; (iii}
' (iv) fd'» =Fi"', (v) F "t ——0; (vi) for scalar

QED only: T &0.
It is because of these properties that we consider Tp" an

energy-momentum tensor candidate. The zero commuta-
tor (ii} follows from our construction which made sure
that T""can be expressed in terms of the fields V„,tffv ex-
clusively, and it signals the factorization T "=TP ls.„
which means that T""is indeed an observable.
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