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Evaluation of the chiral anomaly by the stochastic quantization method
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The method of stochastic quantization of Fermi fields is used to calculate the non-Abelian chiral

anomaly. The calculation is based on the formalism for the stochastic quantization of Fermi fields.
The regularization scheme followed is the one introduced by Breit, Gupta, and Zaks. The zero-

mode ambiguity is avoided by introducing a small energy for the zero mode. The result obtained is

the gauge-covariant anomaly.

I. INTRODUCTION

Recently the chiral anomalies were discussed extensive-

ly from various points of view —perturbative, path in-

tegral, and topological. In this paper we develop a
method for calculating the chiral anomaly in terms of sto-
chastic quantization.

We start from the (Euclidean) Dirac action

S= fdxPgP,
where

S~S+5S,
5S= —f d~x P(x) I e(x)ys, P j g(x) .

If A„(x) is changed simultaneously as

A„(x)~A„(x) t)„e(x—), (1.5)

then 5S is compensated by this change so that the action
is invariant.

Let us consider a path integral over Fermi fields:

a D e-'~~ l= a D exp — x

g =i y"[t)„V„(—x) i@ A—„(x)] w(v, a ] z (1.6)

and V„(x),A„(x) are NXE Hermitian matrices (vector
and axial-vector fields).

Under the local chiral transformation

If the integration measure of (1.6) is invariant under (1.2),
we should obtain

IV[Vq, Aq —B~e]=W[Vq, A„] .

P(x)~e ' g(x),

P(x)~f(x)e

the action transforms as

(1.2)
That is, W is chiral-gauge invariant. The existence of a
chiral anomaly means that this relation is invalid and the
functional IV[ V&, A&] is not chiral-gauge invariant.
Therefore we intend to calculate a variation of IV by in-
finitesimal chiral-gauge transformation:

—f DQDQ f dx a(x)B„(+"ygktexp —f tegdx

D D exp — x
=(5S) . (1.8)

This relation is an ill-defined quantity if 8 contains zero
modes. In this case both the numerator and denominator
become zero and the procedure for the calculation of the
anomaly becomes ambiguous. It is known, however, that
if we regularize the integral by assuming a small, finite,
nonzero value for the zero-mode energy and by letting go
to zero at the end of the calculations, we avoid the ambi-
guity. This is the infrared regularization. (This method
of regularization is implicitly mentioned by Fujikawa,
but it was pointed out to me by Sakita. )

There are two distinct ultraviolet regularizations in the
stochastic quantization procedure. The first (original) is
to keep fictitious time ~ finite. It is known that this is not

sufficient to regularize all the perturbative terms. Thus,
Breit, Gupta, and Zaks introduced an additional regulari-
zation an the random average procedure. %e use this reg-
ularization scheme to compute (1.8).

11. STOCHASTIC QUANTIZATION
OF FERMI FIELDS (REF. 7}

In this section, the stochastic quantization of Fermi
fields is reviewed. The specific formalism we are going to
use is due to Sakita. Since this work was published in an
obscure publication we shall outline only the significant
points.
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The path-integral expression of Fermi fields to be con-
sidered is given by

D D ~-~f4. ]

where g and P are independent Grassmann variables. We
restrict S to be a bilinear form

since we can always bilinearize S by introducing a set of
auxiliary fields. G may contain not only derivative opera-
tors but also other (external) fields.

In general,

G ~G. (2.3)

S= f dx f(x)GQ(x), (2.2)
An appropriate form for the Fokker-Planck Hamiltonian
is given by

H„,= fax G +5 t 5 5S
5$(x) 5$(x)

5 GTt 5 5S
5$(x) 5$(x)

5 +Gg(x)
5$(x) 5$(x)

(2.4)

which has been proved that it has positive-definite eigenvalues.
The corresponding l.angevin equations are

P(x, r)= GG—P(x, r)+ —,
'

G rli+r12,

(2.5)

where

(rl (x,w)rip(x', w'))„= —(rip(x', r')r} (x,r))„=25 p5(x x')a„(w—r') . —

The general expression for the rl average is given by

(2.6)

f Dr}Dr} exp ——,
' f dx d~dr'az(r r')rl(x, r—}rl(x,r')

DqDgexp ——,
' x cd''ah ~—v' g x,~ g x,~'

(2.7)

where a„(~ r') is a symme—tric regulator function, which
has the following properties:

up(&) =&p( —&),

f

dic'a&(r

r') = 1, —

where we assume that ggt does not contain the zero-
mode energy. According to our prescription for the
correct definition of (1.8), we need a small energy for the
zero mode. Nevertheless, allowing this to be zero at the
end of the calculations we recover the right theory.

The stochastic quantization prescription gives the quan-
tity to be computed as

ID. CALCULATION OF (5S )

Our action is in bilinear form
(5$[f,g]) = lim (5S[fv(x,~),gz(x, r) j)„, (3.3)

S= f P(x)gg(x)dx . (3.1)

P(x, r) = ggg(x, r) +g g(x—,r),

P(x,r) = (ggt) P(x, r)+g(x,—~),
(3.2)

g and f are Fermi fields and g contains derivatives as
well as external fields.

The Langevin equations taken from (2.5}are

where g„(x,r} and g„(x,~) are the solutions of Eqs. (3.2).
These give the evolution of the Fermi fields P and g with
respect to the fictitious time ~ as

T

pv(x, ~)= f 7](x,ri)e ' dr, ,
(3.4)

Then the il average of 5S is specified by
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&MCP„(*,rlA~(x, rl'j&~=( —f P„(*,r)IF(*)ys 8 j+„(x,r)d'x
j

—~'s(~-~ )
&2'Qa» i

Using the relation (2.6}and performing the g average of the noise function we have

T2 -~s'(~-~ ) —NtP(~ —~ )

(5S[g„(x,r),g„(x,~)])„=—lim f d x f d~i f 2aA(ri —rz)tr[e ' Ie(x)y&,PIe '8 ] .

(3.5)

(3.6)

We compute the last trace

-gp~(r-r ) —gtp(~ —~ ) —gg~(2w-r —v ) -pe(2v-w -x )

P8 and 8 8 are two Hermitian operators, which pick only even values of the gauge field since

8 (&„)=8(—&„)

Then

(5S[g,g)) = llin (5S[P„(x,~),g„(x ~)])„
T~ oo

—gg~(2v' —v' —r )= —lim lim x ~& ~22ah ~& —~2 tr e x y e
t~ co h-+ oo 0 0

-Ptg(2v —v' -w )
+tr[e(x)yQ ge ' ' ]I .

(3.7)

(3.8)

(3.9)

First we perform the integration over time r We c.hange the variables

+1++2

2
=T. (3.10)

Then the first term of (3.9}becomes

—lim lim f d4x f dT f dt2aA(t)+ f dT f dr2aA(t) tr[e(x)y+8 e ' '] .
A~ ce J

(3.11)

We keep A finite during the integration over r. Because of the relations (2.7) the regulator function gives the following:

l 2T 1 1

2T
dt ah(t) =1 o~y if 2T & —or T&

2(v- T) 1 1
dhaA(t)=1 only if 2(r—T)& —or T&r-2(w- T) A 2A

(3.12)

and (3.11) takes the form

—lim lim Jt d~x
r-+ co A-+ oo

P

T2+ T2 tr ex y ~e

r—1/2A ~~—T= —lim lim f d xtr e(x}yq f dT2ggte
r~ co A~ tN 1/2A

= —um hm f d'xtr[e(x)(y, e ~~"" y,e "'—'-'"-"'}]
t-+ e A-+ tN

(3.13)

As we already discussed, gg has a small finite value for the zero mode. Thus we can take the limit ~~ ao, while gg
is finite. Then (3.13) gives

—gg~/h—lim f d'x tr[e(x)y, e ~~ '"] . - (3.14)

The trace in the last expression can be evaluated by using the plane-wave basis. Taking both terms of (3.9) into account
we have
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&6S[t),tp])= —iim iim f d x tre(x) f t'te ee "e' '* r'+tre(x) yee e cree' '*—j)lit/A ik(x —) —j)tj)/A ik(x —)

A-+ ce X~@ (2~)4 '
(2n )

d k (DI'D +sr~I' /2)/A ik(x —)= —lim lim f d x tre{x} yze " ~ e' '
A-+ oo x-+J (2n )

d k (Dl D—+cr~F /2)/A ik(z+tre x yse " ~ e'
(2~)4

= —lim f d x tre(x) f y&exp [{D—i'+ik&)(D +ik )+ , o~E—]-d'k 1

A-+ co )4 & 8 P

4
+tre(x) f ysexp [(D—"+ik")(D +ik )+—,

' o~F ]—
)4 P it & P

where

Dit Bit
——i V)t—+iysAit& D~ B~ ——i V~ —iy5A—qe F~—Ft4t+ysft4tr Et' E~ ——ysf

(3.15)

(3.16)

E' = —(~.V, —~,V.)+&[V V,]+&[a„,a„l, f =(BQ„—B„A„)—l[V„,A ]+l[V„,A„] .

After the expansion of (3.15) and rescaling

k~-MAk~,

we have

(3.17)

(3.18)

(5S[(){t,g]) =—lim f d x tre{x)y5

'2
2 4A d k rr{k2}

2!A (2n )
(3.19)

g(0)=1. (3.20)

In obtaining (3.19) all other terms vanish either due to the
trace operation over the y matrices or because they con-
tain the factor 1/A, I & 0. Finally, using

d4kf 4g"(k )= (3.21)
(2n) 1

we obtain

(ss&=—
8
—tr f d x e(x)y&[(o~E~} +(o~E~) ]

tr f d xe(x)e~ (F~~+f~~),

where F,F',F,f are given at (3.16) and (3.17).
(3.22}

IV. CONCLUSION

%'e have shown by explicit calculation that the stochas-
tic quantization method can be applied to the evaluation

—k2/where we replaced e /" by g (k lA).
The result of (3.19) is independent of the specific form

of g(z), if we require that g(z) is any smooth function
which approaches zero as z = Do,

g(m)=g'(~)=g"(~)= =0

of the chiral anomaly. Notice, however, that it would be
impossible to achieve the result without the specific regu-
larization scheme which we used. This method of
regularization —stochastic regularization —Hue to Breit,
Gupta, and Z~ks respects the chiral-gauge symmetry of
the system and recovers the unregularized theory at the
limit A~0(). The crucial point in our calculation was the
regularization procedure in which A was kept finite while
the limit r~cc was taken. Then the limit A~no is tak-
en. Also the infrared regulator was kept finite but
nonzero during all calculations. Letting it go to zero at
the end of the calculations the right theory can be
recovered. We also emphasize the important role played
in this work by the computation of the Langevin equa-
tions for anticommuting Fermi fields.

Our result for the chiral anomaly is in covariant form.
According to Bardeen and Zumino, the chiral anomaly
can assmne covariant form when the definition of the
composite current is covariant. In that sense the "con-
sistent" anomaly, which can be obtained by varying the
functional with respect to gauge potential and the "covari-
ant" anomaly, are allowable.

%hen we had completed our calculation we received a
paper prior to publication from Alfaro and Gavela. ' Our
prescription for infrared regularization which we used to
avoid ambiguities at the zero mode (assuming gg dif-
ferent than zero), is equivalent to that used by Alfaro and
Gavela {assuming a finite mass in the Langevin equa-
tions).
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