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Color radiation in the classical Yang-Mills theory
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The total gauge-invariant color of a line source in Yang-Mills theory may or may not change as a
result of color radiation, depending on the non-Abelian waves considered. %e illustrate this by ex-

plicit examples.

I. INTRODUCTION

In classical electromagnetic theory, a point source,
when accelerated, will radiate electromagnetic waves
which carry energy and momentum, but the total charge
of the source remains constant. In the non-Abelian
Yang-Mills (YM) theory, the gluon field, apart from car-
rying energy and momentum, also possesses a non-
Abelian charge (color) and furthermore, unlike the Abeli-
an case, the total color of an external source need not
necessarily be conserved. Thus it appears that the total
color of an external source can be radiated away. The
answer is, however, not so straightforward and it requires
some careful analysis. ' It has been shown by Trautman
and others that for a single point source its color content
will remain constant although gluon waves are radiated
out, provided that the non-Abelian gauge group is com-
pact and semisimple. In their analyses they have made
use of the Abelian solution —the l.ienard-Wiechert poten-
tial. For a system of point sources they indicate that the
total color may change as a result of the gluon radiation.
Actually from the gauge-covariant conservation of the
external source current j&, one anticipates that the integral
of jt'ijo can be time dePendent as long as j is nonvanish-
ing. That this integral may vary is either due to the flow
of the current density j in the source region or due to the
color exchange between the external source and the YM
field.

In this paper, we consider, instead of a point source, a
continuous line source lying along the x3 axis. This line
source must vanish sufficiently fast when

~
xi

~

tends to
infinity so that the total source strength is finite. The
non-Abelian wave solutions are then so constructed as to
correspond to a line source. We find that, depending on
the gluon field constructed, the total color of an external
line source may or may not change as a result of color ra-
diation. Although this is expected for an extended non-
Abelian source, to our knowledge so far there are no expli-
cit solutions illustrating this phenomenon.

In discussing the color radiation problem, we must first
clearly define in a gauge-invariant manner the total color
of the system (the external source together with the gluon
field), that of the external source and that of the gluon
field. These quantities could be susceptible to changes by

II. GAUGE-INVARIANT COLOR CHARGES

The YM field equations in the presence of an external
source are

PPV jV (la)

(lb)

(lc)

where tr' are the Pauli matrices and our metric is

diag(g&„) =(—+++ ); the gauge-field coupling constant

g is set equal to one. The external current j„ transforms
gauge covariantly and is gauge-covariantly conserved:

D~"=0.

Hence even though j; vanishes sufficiently fast at large
distances, the quantity

is neither necessarily conserved nor gauge covariant. A

arbitrary gauge transformations if they are not carefully
defined. The next stage is then to construct explicit
non-Abelian wave solutions. In the following section we
introduce our notations and describe the gauge-invariant
color charge. In Sec. III we present non-Abelian wave
solutions of a line source lying along the x& axis. We find
that the gauge-invariant color charge of the external
source and that of the YM field are nonzero and time
dependent although their sum, which is conserved, van-
ishes. There is exchange of color between the external
source and the YM field as time proceeds. Another type
of non-Abelian wave solution in which the YM field car-
ries no color, so that the gauge-invariant color of the
external source is a constant, is illustrated in Sec. IV. For
these types of solution there is no color transfer between
the external source and the YM waves although the latter
do transport energy and momentum. %e end with some
remarks in Sec. V.
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3 O aQs= d x Jai} (4)

where rl'(x) is a unit vector in the internal group space
and it transforms gauge covariantly. Note that if rP is
also gauge-covariantly constant then

gauge-invariant specification of the total external source
is'

wave solutions are associated with a continuous line
source along the x3 axis. Currently there exists no sys-
tematic method and after some effort we find the follow-
ing gauge field potential will serve our purpose:

A&(x)=B&U Pfi(U)+ lntan —fz(U)+h'(U)

B„(j'"rl'}=0, (5)
(13a)

but here we shall not impose such a condition on i}'(x).
For the total color of the system a perceptive expression is

~aI=I' . = xj+ A F'
2l

(6)

If we restrict gauge transformations to those which are in-
dependent of space-time coordinates at large distances
which in turn means we only consider YM connections
that vanish faster than lir at large r, then I' is a gauge-
covariant and a gauge-invariant conserved total color
charge is

g (Iula) 1/2

Expression (6) is however not suitable for the purpose of
determining whether there is color exchange between the
external source and the non-Abelian waves because neither
(6) nor (7) can be written in a gauge-independent manner
as a sum of the gauge-invariant color of the external
source and that of the YM field. In particular the part

IF—— x A;,F' (8)

in Eq. (6) is highly gauge dependent and cannot be used to
indicate the color content of the YM field although unfor-
tunately it has been employed in Ref. 4.

The gauge-invariant conserved color current density
g", introduced in Ref. 6, is appropriately useful for the
purpose of this paper:

X"=n'J"+(D,p )'F'""=Xs+XF—
Here the scalar field rl'(x) transforms as the adjoint repre-
sentation of the gauge group in question and
rl'(x}il'(x) = l. Evidently the decomposition of +" into
the gauge-invariant color current density )g of the exter-
nal source and that g F of the YM field is gauge indepen-
dent. The total gauge-invariant color of the whole system
is defined by

g, = fd'xg
and that of the YM field is

QF= fdxWr.

U =e+x (13b)

r =(xi +xi +xi )', x =r . (13c)

Here fi(U), fz(U), and h'(U) are arbitrary functions of
U, 8, and P are spherical coordinates and we shall take
U =r —x . The electric and magnetic field strengths are,
respectively, given by

a a l ~ a ~ a« =Fo= — (4fi+8fi)
p

8 = ,'e;„I" —=—(8;f;—P;f'),
p

where f; and 8; are unit vectors,

2= 2 2
~3jxi ~P~ P —xl +x2

A 38=(5i xixq ip 5;p)lr, —

(14a)

(14b)

(15a)

(15b)

and the index A takes values 1 and 2 only. The energy
density Too and momentum density To; can be easily
evaluated

To =n Too=n (fi +fi )ip

n, =x, ir, f~'=f~f„', W =1,2.
(16a)

(16b)

This expression (16) indicates that the wave propagates ra-
dially outward, but the amplitude varies across the spheri-
cal wave front. For this reason we say that solution (13}
corresponds to non-Abelian spherical fronted wave. Note
that

Furthermore, as the energy and momentum densities are
equal in magnitude, the wave field, when quantized, de-
scribes a massless particle. Expressions (14), (15), and (16)
suggest that there may be a line source along the x3 axis.
We find indeed from solution (13)

j = —n;jo ——n2. (5x) i(5x )in; nfl' (2U).

It is straightforward to verify that expression (17} does
satisfy the constraint D~"=0.

The total color of the external source is given by

g, = f d x i}'j'
QT =Qs+ Q~

where Qs is as given by expression (4).

(12) Qo X3
dx3 f2(

~
x3

~

—t)i}' .

For the color content of the YM field we find

(18)

III. YANG-MILLS %'AVES %'ITH COLOR

We now proceed to next stage of work: construction of
wave solutions to Eq. (1). As mentioned previously our

g, = f d'x a, q'r."= f d'x g'J", — (19)

where the surface integral of (q'I", n; ) vanishes identical-
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ly by using Eq. (14a). Thus at any instant and for any
choice of rt', the YM field always screens the external
source so that the total color of the system Qz vanishes.
To be more explicit we choose

direction and the amplitude of the wave varies over the
wave front, this indicates that solution (23} describes a
plane-fronted wave. The source density for solution (23)
is found to be

X30 jooy
i

jgo
i f4(f 2)—1/2 {20) j = 5—j o 5——;(2n)5(x, )5(x2)g3(U) . {26)

and set

fi (U)=sech (r —t),
whence we obtain

(21}

Qz 2n——f dx3g3(U)rl', (27)

It is easy to check that DJ "=0as expected.
The total color charge of the external source is found to

be

Qs ——4n ( 1+tanht),

Q~ = —4(1+tanht) .

(22a)

{22b)

while that of the gauge field is

QF= Jd xd;rtF = J dSrtF Y/
—Jd x'g J

IV. COLORLESS YANG-MILLS %'AVES

We now investigate another kind of wave solution in
which the total source color remains constant in the pro-
cess of emitting YM waves. For this purpose we write

~pU(xlg i+x2g2+I Pg3+Ng4)

U =X3+t,

(23a)

{23b)

where the g~, A, =1,2,3,4 are arbitrary functions of U and
we choose U =(x3 t). The field st—rengths are

E = 5g; 5,'g—z (p";g—3+/;g—4)ip,

~; =5,'g2 5,'g'i+(p;g4 0—;g3)~P, —
(24a)

(24b)

where

p;=5,". x, /p, A =1,2 . (24c)

The momentum and energy densities can be computed
and we arrive at

Toi=5i~Too=5g~P [P (gi +g2 )+g3 +g4

In this case the source density g'j' has a maximum at
the origin at time t=O. As t increases, the maximum
splits into two maxima located at x3 ——+t on the x3 axis,
which move apart along the x3 axis at the speed of light.
The total source (gauge field) color assumes the value 4n.

( —4m) at t=0 and when t~ao it increases (decreases) to
a maximum (minimum) of 8~ ( —8n). This means that
there is an inflow of color from the gauge field to the
external source. Had we chosen U=r+t instead of
U =r t, then—

Qs ———QF ——4m(1 —tanht) .

Hence in the process of color radiation, the flow of color
is from the external source to the gauge field since initial-
ly the source color Q, =4ir and finally when t=oo,
Qz ——0. Thus the non-Abehan wave as given by expres-
sion (13), apart from carrying energy and momentum, also
transports color.

(28)

and

't} =J '~
1

J"
I
=g3(»(g3')

g3 g3gi ————sech (x3 t) . —

(30)

(31)

We find

Qr=Qs= (32)

In contrast with expression (22a), Qz here is a constant.
Thus although the gauge field (23} carries energy and
momentum, it has no color and consequently there is no
flow of color between the external source and the gauge
field.

From the above we learn that for a non-Abelian line
source emitting non-Abelian waves, the total source color
may or may not alter depending on the non-Abelian wave
solutions considered and the expression for the source
function.

V. COMMENTS

%e make some remarks.
(a) We note that solution (13) is a special case of the

non-Abelian spherical plane-fronted waves discussed in
Ref. 8. For both solutions (13) and (23), the external
source densities and the field strengths are null since

Using expression (24a) for I", and choosing the surface of
a cylinder, we find

S 7ggFg 'g =2& X3g3 U 'g

This means that the gauge field conveys no color and the
total color of the system is contributed by the external
source only,

(29)

which is a constant. As an illustration of the above, we
put

+x i {gig i+8 tg4)

+xi(ghi —g ig4) l . (25)

j~8'Cjl () (33a)

(33b)

Both quantities are bounded whenever g& and gz are
bounded and g3 ——g4 ——0. The energy flows along the x3 [A~,A„]=0, (34a)

(b) Although the wave solutions (13) and (23) satisfy
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[A„,F""]=0

they are essentiaUy non-Abelian since

(35)

gluon wave. Using Q~, we conclude that the Coleman
non-Abelian wave is not a truly colored wave.

(e) For solutions (13) and (23), the gauge-cavariant con-
servation of the external source current, Eq. (2), becomes

This is also the sense in which the Coleman plane wave is
non-Abej. ian.

(c} Solution (23} can be regarded as a linear superposi-
tion of the Coleman plane wave9 and a plane-fronted wave
solution since we can decompose Eq. (23a) as

Aq bq+——Wq,

where

bq (5q ——5q)[—x ig i( U)+x2g2( U)]

(36a)

(36b)

is the Coleman potential and

~„' =(5„' 5„)[—ln„g i( U)+egg( U) ] (36c)

is the plane-fronted wave potential.
(d} From remark (c) it follows that solution (23) is the

sourceless Caleman plane-wave solution when
gs(U)=gq(U)=0. Thus although the Coleman plane
wave transports energy and momentum it carries no color
since QF 0 T——he .authors of Ref. 4 computed the quanti-
ty I~ as defined in Eq. (8} here for the Coleman plane
wave and found that it is zero in one gauge choice and
nonzero in the transverse gauge. As I~ is highly gauge
dependent, one should use the gauge-invariant quantity
Q~ and not I~, to determine the color content of the

8j"=0 . (37)
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However this conservation of j" is due to our particular
gauge choice. In a different gauge choice, Eq. (2) is al-
ways valid but not Eq. (37).

(f) The actual value of the gauge-invariant total color
Qr as well as those of the external source color Qs and
gauge field color QF depend on the scalar function g'(x}.
However, our conclusion, that for solution (13) the non-
Abelian wave does carry color opposite to that of the
external source and for solution (23) the non-Abelian wave
has no color, is valid far any choice of rl'.

(g) Solutian (13) carries no color if the function f2(U)
vanishes. In order for the total color of the external
source to have a finite value, fi(U) must vanish suffi-
ciently fast at large distances. Thus the part of the non-
Abelian wave which has color, namely, the second term in
Eq. (13a), resides mainly at the vicinity of the external
source. In other words the colored wave is more or less
confined.
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