
PHYSICAL REVIE% 0 VOLUME 33, NUMBER 4 15 FEBRUARY 1986

Proof of one-loop finiteness of type-I SO(32) superstring theory
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%e prove, in the Lorentz-covariant formulation of the type-I superstring theory, that the parity-
conserving one-loop amphtudes with arbitrary numbers of external gauge bosons are finite if the
internal-symmetry group is SO(32).

In the past year a great amount of interest has been re-
kindled in supersymmetric string theories by the prospect
of developing an infinity-free and anomaly-free theory of
fundamental interactions including Yang-Mills and gravi-
tational forces. ' Of particular interest from some points
of view is the SO(32) type-1 theory which includes both
open and closed strings. Using a nonmanifestly Lorentz-
invariant light-cone formulation, Green and Schwarz2
have recently shown that the one-loop four-point function
is finite. One might expect from this, using a heuristic
duality argument, that all the higher-N-point functions
are finite at the one-loop level. However, in the light-cone
formulation, the finiteness of the four-point function ap-
pears to depend explicitly on the number of external parti-
cles.

In this article we show directly the finiteness of all the
parity-conserving one-loop N-point functions. The van-
ishing of the one-loop two- and three-point functions fol-
lows in the Lorentz-covariant formulation from simple re-
lations among Jacobi 8 functions.

The type-1 superstring theory corresponds to the
Ramond-Neveu-Schwarz model projected onto the even-
6-parity bosonic sector and the Majorana-Weyl fermion
sector.

Up to internal-symmetry factors the one-loop g-point
functions in D dimensions with external gauge bosons are
given by expressions of the form

L=g d p TrP + [V(k„l)h] . (1)

With bosons circulating in the loop the vertex for gauge-
boson emission is

V(k;,pt) = Vtt(kt, p;)

=e ' '
[gt P(pt)+ kt H(pt)gt H(pt)]

and the string propagator is

b =be —— (1+0)1 1+6
Lo —1 2

its(LD &0 /2)0=—e

b, =b, = (1+0)
Po 2

In the following we will not treat the parity-violating termI" in the propagator. Possible divergences due to these
terms cannot cancel divergences in the parity-conserving
terms. The parity-conserving loop is also given in an al-
ternate (F~ ) formulation by

Vy(k;,p) =e [gt'P(p) —
2 kt'I"(pg't"'I (p)] ~

ik& Q(p) 1

hp —— (1+0),1

Lo

(8)

providing one supplies an extra factor of —,
'

on the right-
hand side of Eq. (1). With fermionic states circulating,
the trace in Eq. (1) is, of course, also taken over the Dirac
matrices.

Loops with a positive even number of twists in Eq. (1)
are finite except on the poles of intermediate graviton
states and need not be considered here. Loops with an
odd number of twists are equivalent to the Mobius loop
with a single twist if the integration range of the propaga-
tor variables is appropriately adjusted as discussed below.

It is convenient to replace the loop momentum integral
in Eq. (1) by a trace over canonical zeroth-mode oscilla-
tors using the limiting procedure of Ref. 4. Then the bo-
sonic loop takes the form

and 6 is the 6-parity operator

2~i(L,,—p,2in]G=e

P in Eq. (1) is the Brink-Olive projection operator onto
positive-norm states. The amplitude is given by a D-
dimensional loop momentum integration times a trace
over excited states of the circulating string. With fer-
mions circulating, the amplitude takes the same form (ex-
cept for a fermionic loop factor of —1) with the substitu-
tions

V(k;,p;)=V@(k;,p;)=e ' '
g; I'(p;),

dx to~(10)1+6
0

(3)
I-tt ——g f 10Trw P(1+0)

Here 0 is the twist operator given (up to a gauge transfor-
mation) for an orthogonal-group internal symmetry by

N

X+V(k;,p;,a,a ),
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dp,.dQ= (11)
N i 2 P]

The arguinents a,a in Eq. (10) refer collectively to the
boson oscillators in Q& and P„and to the fekklkion oscilla-
tors in H&. The string coordinate Q&{p,a,a ) and conju-
gate momentum P„(p,a,a ) are

' 1/2

Qil plala( 't) '+ I (it+2S)
(

II II g+ Ilt II+4)
nt ail p ail p

(12)

P&(p,a,at)=ip Q&(p, a,a ) .
dp

(13)

Using the results in Appendix C of Ref. 4, the four terms
in Eq. (10) can be written

After evaluating the trace in Eq. (10) one takes the limit
c~0 using the relation

Hm(4ra) ~~exp — Xk, r/4r =5~ Xkr . (14)e~o i

N
La= dQI (Tr~ )PNS(»~NS(Pi ui)+~NS(u)e )~NS(Pi use

2

~NS( ) ~NS(Pi ) ~NS( ~ )~NS(Pi —~ ' }l (15)

The projected Neveu-Schwarz partition function is

~1/2 co $+WN
—1/2

' D-2

1 —W"
(16)

'D —2

P (~) 2(D —2)/2 g
1 —w

(21)

We have taken the liberty of including in this a factor of
I/u), which is more properly a part of dQ. This gives a
differential d Q, which is then the same for boson and fer-
mian loops. We assume the effect of the physical-state
projection operator is such as to maintain the form of Eq.
(16}in the Mobius as well as in the planar loop. We have
also defined

N

(p;, )=(—&I I ) (0 ii V (p,d( ),d( )) 0)i~1

N

T„(p„)=(— In( I ) (0 iI V (p„d( ),d( )) 0) .
i=1

(22)

The vertices V~ of Eq. (8) appear in Eq. (22) with their
fek~ionic and bosonic oscillators transformed by Eqs. (18}
and {19)with, effectively, 7=0 and —e, respectively. The
vacuum expectation value in Eq. (22) is defined to include
a normalized Dirac trace:

(0~ f(y„) ~0)=—2 trf(y„) .

with

gN
d II( i0 ) +a IIt

l+ We -I

(17) The vacuum expectation values in Eqs. (17) and (22) are
completely detek~ined by the elementary correlations of
pairs of conformal fields. The automorphisms of Jacobi 8
functions relate these to similar correlations with
transformed variables:

g'nWs —J
d N(u)) alit+ )+We-J (19)

2m', /b
p,' =e

~SF /lllN

(23)

(24)
the plus and minus signs referring, respectively, to the fer-
mionic and bosonic oscillators which have, respectively,
J=——,

'
and —e. The zeroth modes in Eq. (17) are un-

derstood to depend only on the absolute values of p, and
N.

Similarly, the parity-coasting fermion loop with N
external gauge bosoms is

I.F — d Q[ (TAO)F——a (w) Ta (p;, ic)

P'a( ~)2a(pi -~-)j

r )i/2

r )1/4

More specifically, with

inW

2'M

one finds

(0 i Q&(p;,d, d)Q„(pj,d, d)
i
0)

= (0 ( Q„(p,',d', d ')Q„(p', d', d')
~
0)

r

(25)

(27)

where the projected partition function in the Ramond sec-
tor is

1 1
gil v 6

—in', (28a)



L. CLAVELLI 33

(0 i P„(p;,d, d)Q„(pi,d, d ) i 0)

'(0
i P„(p';,d', d ')Q„(p,' ,d.',d ')

i 0},
(0

i P„(p;,d, d)P„(pj,d, d )
i
0}

{,'0
i P~(p,',d', d ')P„(pj,d', d')

i
0} .

(28b)

(28c)

Equations (28b) and (28c) follow a simple differentiation
of Eq. (28a). Here we have defined

Q„(x,d,d)= D2e)'i (a„x '+a„tx')

N

T„(p,', w')=(4we) )
(0 ii V (p,',d', d') 0),

i=1
(33b)

(34)

Under the same transformation the Neveu-Schwarz parti-
tion function satisfies

where each Q&,P& in Vs or Vz has been replaced by

Q„,P„, to form Vs or VF. Then
—D/2

TNs(p; w)= —. r "TNs(p,' w'}

' 1/2
1 (5 +2e)

nI

x(d~ " '+d„"x"+'), (29)

' D/2 —1

FNs(w) = —. FNs(w')
1

and the differential transforms as

dQ=r +'dQ',

(35)

(36)

P~ (x, d& d ) = lx Q» ( xd, d ),
dx

(30)

d'=d(w'), d'=d(w') .

The Neveu-Schwarz field H& satisfies

(0
/ Hq(p;, d, d }H„(pj,d, d )

f
0}

'(0
i H„(p,',d', d ')H„(pj,d', d ')

i
0} .

(31)

(32}

The nonsingular, p-independent terms in the large
parentheses of Eq. (28a} do not contribute to the loop am-
plitude with massless external particles since the Q„Q„
correlations only occur in the combination

g k; kj (0
~ Q„(p;,d, d)Q„(pj,d, d )

~
0)

i&j
(33)

i.e., in Q&, by definition, the zeroth mode remains un-
transformed by Eqs. (18) and (19). The prime on d and d
indicates that the argument w in Eqs. (18) and (19) is re-
placed by w'

where dQ' is given by Eq. (11) in terms of primed vari-
ables. Putting Eqs. (34), (35), and (36) together implies for
the first term in Eq. (15)

d QFNs(w) TNs(p&, w) =id Q'FNs(w') TNs(p,',w') . (37)

c
1„(p„d,d) I „(pg,d, d)

0 ~ 0 =gatv opj pi'v 2 i~2

then

(39)

One can write similar relations for the correlations occur-
ring in the Mobius loop and 6-parity-projected loops.
The results are that, in the Mobius loop, the Neveu-
Schwarz field correlation transforms into the 6-parity-
projected NS correlation and vice versa. Similarly the
Planar-Ramond correlation transforms into the 6-parity-
projected planar Neveu-Schwarz correlation. That is, if

(0
~ H&(p;, d, d )H„(pj,d, d )

~
0}=g&„X(p&lp;,w) (38)

and the total four-momentum is conserved. The singular
terms in the large parentheses only affect the coefficient
of the momentum-conserving 5 function.

Equations (28) and (32) imply that the vacuum expecta-
tion value of Eq. (17) is simply related to another vacuum
expectation value in which each Q„(p,d, d) is replaced

by Q„(p,',d', d '), each P„(p;,d, d) is replaced by

'Py(p, ',d', d'), and each H&(p;, d,d) is replaced by
'~ H„(p,',d', d ').
More specifically, we define parallel to Eq. (17),

X(x,w) =r 'X(x', w'),

X(x,we ') =~ 'Xo(x', w'),

Xo(x,w)=T X(x,w e ),
X(x, —w)=(2~) 'X(x",—w"e '),
X(x, —we ') =(2r) 'X(x",—w"),

Xo(x, —w) =(2~) 'Xo(x", —w") .

(40c)

(40d)

(33a)
The Mobius loop involves correlations of fields with nega-
tive m:

(0~ Q„(p;,d( —w), d( —w)), Q„(p, ,d( —w), d( —w)) ~0}

= (0
i Q„(p;",d( —w"),d( —w"))Q„(p,",d ( —w"),d( —w"))

i 0}+g„„
lnw

Kl 'P

6
—ln2w

(41)
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(42b)

Since the twist operator of Eq. (4) involves no zeroth
modes, the d's of negative argument in Eq. (41) and else-
where are defined so that the zeroth mode depends only
on the absolute value of the argument. By differentiating
Eq. (41) with respect to Inp; and/or 1qp~ we find analogs
of Eqs. (28b) and (28c) with primes replaced by double
primes on the right-hand side and v replaced by 2~.

Putting these together with Eqs. (40a)—(40fl implies, in
addition to Eq. (34), that

—D/2

TN$(pg, we' ')= —. ~ "Ta-(p,',w'), (42a)

' —D/2

Ta(A~w)= . & TNs(p(~w e
l

' —D/2

TN$(pi, —w) = —. (2r) +TN$(p;", —w "ez '),
l

D/2 —1

Fa(w) =— —. FNs{u 'e' '),
l

(43b)

FNs( —w)=

' D/2-1

FNs( —w "e' '),
l

(43c)

FNs( —we' ') = 27
' D/2 —1

FNs(w"» (43d)

D/2 —1

in the Mobius loop correlations leads to extra factors
of 2. In addition to Eq. (35), the Neveu-Schwarz and Ra-
mond partition functions satisfy

D/2 —1

FN$(we ') = — —. Fa (w'), (43a)
l

(42c) Fa( —w") . (43e}

TN$(pi, —we )=
—D/2

(2r) TNs(pi' —w )
Extended to include double-primed variables, Eq. (36)
reads

(42d) dQ=r +'dQ'=(2r) +'dQ" . (44)
' -D/2

Ta(pi, —w) = —. (2r) Ta(p;", —w") . (42e)
l

Note that the (r/i) n~ factor is independent of twists or
6-parity projections since it arises from the zeroth mode
of the bosonic oscillators. Elsewhere the appearance of

Inclusion of Mobius loops with multiple twists merely
fills in the integration range of the p" variables to match
that of the p' variables. Thus, when we substitute Eqs.
(34), (35), (42a)—(42e), (43a)—(43e), and (44} into the sum
of Eqs. (15) and (20), we may drop all primes and double
primes. Then labeling the p'; variables by z;,

L=Lg+Lp

=i dQI (Tr~ )[FNs(w)TNs(z w)+FN$(we )TNs(zi we ) Fz(w)Tq(z;,—w)]

—2 [FN$( —w) TN$(z;, —w)+FN$( we ') T—N$(z;, we ') —Fa ( w)—Tg (z;, —w—)]I . (45}

We may now use Jacobi's famous "aequatio identica" relating, in effect, the Neveu-Schwarz and Ramond partition
functions:

Fa(w) =FN$(w)+FN$(we ) .

The one-loop S-point function then becomes

(46)

L =—g dQ((TrA, )IFNs(w)[TNs(z& w) —Ta(zi w)]+FNs(we )[TNs(z;, we ') —Ta(z;, w)] J
2

—2 ~ IFN$( —w)[TN$(z;, —w) —Ta(z;, —w)]+FN$( —we ')[TN$(z;, we ) Ts(—z;, —w)]—I } . (47)

FN$(w) =w ' +8+O(w), (48)

Since the potential divergence in Eq. (47) arises from the
dw/w behavior of dQ, in order to prove finiteness one
may discard terms in the curly brackets which vanish as
m~0. Note that m~0 here is the point in the integra-
tion range where the original w of Eqs. (11)—(22) ap-
proaches 1. The necessary expansions are

Ta(zi, w) =Ta(z;,0)+O(w) .

%e have then

L=ig J dQ( [(Tr}L, )—2D~ ]

X [ 8[TNs(z;, 0)—Ta(z;,0)]

+TNs« o)]+O(w)) .

(50)

(51)

TN$(zi, w) =TN$(z;, 0)+w T Ns(z;, 0)+O(w), (49) Since 8 =10 in the superstring theory, all the N-point
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functions are finite for Trk, =32, i.e., for an SO(32) inter-
nal symmetry. From Eq. (47) it is straightforward to re-
cover the results of the light-cone gauge calculations for
small N. Since only the difference of the products of bo-
sonic and fermionic vertices [Eq. (33)] appears in Eq. (47)
there is no contribution from terms where only the g; P„
pieces of V33 and V~ are taken. The vanishing of the
two-point function follows then from the relation

FNs(N)[Xz(z, w) —Xe (z,w)]+(N~Ne' )=0 .
Similarly, the vanishing of the one-loop three-point func-
tion follows from the relation

ENs(w)[ X(zz/z), N)X(23/zz, w)X(z3/z|, N)

—Xo(z2 Iz i ~ N )Xe(z3Iz3 y N )Xo(z3 Iz ],w )]
+(w~wez )=0. (53)

A similar relation among the x s also drastically simpli-
fies the four-point loop. We note that the vanishing of
the one-loop correction to the two- and three-point func-
tions is independent of the internal-symmetry group.

The techniques used here also greatly simplify the
analysis of one-loop graphs in the closed string models.
Such results will appear in a later, more detailed article.

After completing this work we heard that some subset
of our results has also been obtained by Frampton, Mox-
hay, and Ng' using the light-cone gauge.
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