
PHYSICAL REVIEW D VOLUBLE 33, &KJMBER 4 15 FEBRUARY 1986

Path-integral derivation of gauge and gravitational chiral anomalies in theories
with vector and axial-vector coupHngs in arbitrary even dimensions

John M. Gipson
Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 2406I

(Received 20 December 1984; revised manuscript received 31 October 1985}

The anomalies associated with general linear transformations of fermions coupled to externa1 vec-

tor and axia1-vector fields in curved spaces of arbitrary even dimensions are derived within the

path-integral framework. The anomalies are due to the noninvariance of the fermionic functional

measure under these transformations. The anomalies satisfy the %ess-Zumino consistency condi-

tions. This implies that the choice of the fermionic functional measure is the correct one. Special

cases of the general formula obtained agree with all previous results.

I. INTRODUCTION

For some time it has been known that a naive applica-
tion of symmetry arguments to models of fermions cou-
pled to gauge bosons in even dimensions may lead to in-
correct results. ' A straightforward application of
Noether's theorem leads one to believe that the vector
(and axial-vector) currents generated by global vector (axi-
al) rotations should be "covariantly" conserved. A careful
evaluation of the "covariant" divergence of these currents
leads to the surprising conclusion that at least some of
these currents are not conserved. Such nonconserved
currents are said to have an anomaly.

The modern rediscovery of the anomaly arose in the
context of perturbation theory. When one calculates the
divergence perturbatively, some of the contributing dia-
grams are divergent, and must be regularized. It is impos-
sible to impose a regularization scheme which simultane-
ously respects all symmetries. As demonstrated by Bar-
deen, it is always possible to choose a scheme such that
the vector currents are conserved, but at least some of the
axial-vector currents have anomalies. Alternatively, in a
theory with pure left-handed coupling, one can always
regularize so that the right-handed currents are anomaly
free. The different results can be viewed as due to the ad-
dition of different counterterms to the Lagrangian. The
particular regularization scheme one employs is arbitrary.
However, Wess and Zumino proved nonperturbatively
that, the anomalies must satisfy certain consistency condi-
tions. 3

An alternative, nonperturbative, derivation of the
anomalies is due to Fujikawa. He derived the axial-
vector anomaly of Dirac fermions coupled to vector gauge
bosons using functional-integral techniques. The anoma-
ly arises because the functional measure is not invariant
under the axial transformation which generates the axial-
vector current. Hence this symmetry is not a symmetry
of the quantum theory.

The local form of the anomalies have also been known
to mathematicians for some time, although under dif-
ferent names. For the most part, their derivations of the
anomalies have ban indirect, utilizing abstract topologi-

cal arguments. It has only been recently that direct
derivations of the anomalies have appeared in the physics
literature.

The absence or presence of anomalies has many impor-
tant physical consequences. Anomalies in currents which
couple to gauge bosons break the gauge invariance of the
theory. Since gauge invariance is necessary for renormal-
izability, it is important that no such anomalies appear.
This places constraints on the allowed particle content of
these theories. Anomalies in currents which do not couple
to gauge bosons are allowed, and at times welcome. For
example, the U(l) isoscalar axial-vector anomaly cleared

up the mystery of n -+2y (Ref. 2). Last, as 't Hooft has
pointed out, any effective theory must reproduce the
anomalies of the underlying fundamental theory. This
puts severe constraints on various composite models.

Recently there has been much renewed interest in
anomalies in four and higher dimensions. The interest in
four dimensions stems from some ambiguities in the
path-integral derivation of anomalies in theories involving

ys couplings. It has been claimed that the anomalies de-
rived using functional-inte ral techniques differ from
those derived perturbatively. This discrepancy can be at-
tributed to the definition of the measure appearing in the
functional integral. Since the anomaly is due to the
noninvariance of the functional measure under vector and
axial transformations, different definitions will give rise
to different anomalies. Two essentially different measures
have been proposed. The measure used in Ref. 8 leads to
results which agree with those obtained in perturbation
theory. One can verify after the fact that the anomalies
satisfy the Wess-Zumino consistency conditions. In an al-
ternative scheme, first proposed by Fujikawa, ' one ob-
tains a result in four dimensions which neither agrees with
the perturbative calculation nor satisfies the consistency
conditions.

The interest in higher-dimensional anomalies stems
from the renewed activity in Kaluza-Klein theories. The
simplest anomalies to calculate are the isoscalar and iso-
vector axial-vector anomalies of a theory describing Dirac
fermions coupled to vector gauge bosons. These were first
derived perturbatively by Frampton and Kephart. The
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isoscalar anomaly was derived using path integrals by Zu-
mino, Wu, and Zee, ' and by Matsuki. " Matsuki and
Hill' derived the eight-dimensional chiral gravitational
anomaly using path integrals. Alvarez-Gaume and
Getzler have derived the gravitational chiral anomaly us-

ing the path-integral formalism for a supersymmetric
manifold. ' In a previous paper' I used functional in-
tegrals to derive the general formula for the isoscalar and
isovector anomalies of Dirac fermions coupled to vector
gauge bosons in even-dimensional curved space-time. I
made an error in that paper which was subsequently
corrected by Endo and Takao. '

Many workers have examined the question of Weyl fer-
mions coupled to gauge fields. The chiral isovector
currents have anomalies which Zumino, %u, and Zee'
refer to as the "non-Abelian" anomalies. They, and oth-
ers, have derived these anomalies by using the Wess-
Zumino consistency conditions. ' In this approach one
constructs a solution to the consistency equations. Since a
solution with given boundary conditions is unique, one
has found the anomaly. Frampton and I('ephart have ob-
tained identical results perturbatively. ' Alvarez-
Gaume, ' and Alvarez-Gaume and Witten, '~ using the
measure suggested by Fujikawa, "'7 derived a general form
for the combined chiral gauge and gravitational anomalies
using path-integral techniques. The formula they give is
identical to the general formula I derived' for the axial-
vector isovector anomalies of Dirac fermions coupled to
vector fields. Their result, which transforms covariantly
under gauge transformations, is not what is usually called
the non-Abelian anomaly. In fiat space their result does
not obey the consistency conditions. Bardeen and Zumi-
no have examined this discrepancy, and refer to two
kinds of anomalies which they call "consistent" or covari-
ant. The consistent anomalies are associated with the
currents generated by vector and axial transformations.
The covariant anomahes are associated with currents
which differ from these by the addition of polynomials in
the gauge fields.

In this paper I derive the general form for the chiral
anomalies of fermions coupled to external vector and
axial-vector sources in arbitrary curved spaces using the
path-integral formalism. Section II recapitulates the ar-
guments relating the anomaly to the fermionic functional
measure, and proves on general grounds that it must satis-
fy the Wess-Zumino consistency conditions. In Sec. III I
define the functional measure I use, and verify formally
that it leads to an anomaly which satisfies the Wess-
Zumino consistency conditions. In Sec. IV I examine two
regularization schemes one can impose to render the
anomaly finite and well defined. I also briefiy comment
on the structure of the anomaly. In Sec. V I derive the ex-
plicit form of the anomaly in flat space. In Sec. VI I do
the same in curved space. Section VII has some conclud-
ing remarks. A series of Appendixes collect various use-
ful formulas.

II. THE FUNCTIONAL MEASURE
AND THE ANOMALY

The starting point of my derivation is the Euclidean ac-
tion S(%', '4(; V, A) describing N fermions coupled to exter-

P =y"V„=y"—(B„+co„+V„+iy2„+ iA„),
V„= V~TJ, A„= AJ„TJ .

(2.2)

The y~ are the space-time-dependent Hermitian Dirac
matrices appropriate for curved space. y2„+i is the gen-
eralization of y5, and is also Hermitian. co„ is known as
the spin connection and incorporates the effects of curva-
ture. The TJ are the Hermitian generators of U(N) and
the Vs and the A's are Hermitian external fields. In Ap-
pendix A I summarize my notation and review some of
the properties of the Dirac equation in curved space. For
notational simphcity, it is convenient to introduce the ab-
breviation

f dx—= J d~"xg'~~(x)

and the standard fermion bilinears:

With these conventions, the action becomes

S(W, '0;V, d)= I dx[W( Wd+)(Tr( VJ„+ i„+d, )d],

where 8=&+a{.
There is some ambiguity in the Euclidean versions of

field theories with axial-vector couplings. In continuing
to Euclidean space I have let A„~+iA„, which is neces-
sary for i JF to be a Hermitian operator:

X j X 1 k X X k X l J X

The reason for this choice is that I want the eigenvalues
of i& to be real, which is desirable for the manipulations
of the following section. Here f~ and {(}k are arbitrary
square-integrable spinors. The combined vector and
axial-vector transform ations generate the noncompact
group GL(dV, C) (see below). This is in contrast with Min-
kowski space where they generate the compact group
Ul. (N, C)XUit(N, C). At the end of this section I will
comment on what happens if I let A„remain A„.

The classical action is an extremum with respect to all
variations (which vanish sufficiently fast at infinity) of
the classical solutions 4 and 4:

(2.3)

We are interested in the behavior of the action under vec-
tor and axial-vector transformations. Under the general
vector transformation

%'(x)~Q(a)qd(x), qd(x) —+%(x)Q( —a),
where

Q(a) =exp[ia(x)], a(x) =aj TJ

(2.4)

the action transforms into

nal vector and axial-vector sources in 2n-dimensional
curves space:

S()II,V;V,A)= f d "xg'~ (x)%7%, (2.1)

where
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g(+,4;VA) g(%,4;VA)+ f dx Trt —(a„a)J"+a([v",J„]+[A„,J~z„+i]))10(a ) .

Similarly, under the general axial-vector transformation

%(x)~Qi„+i(P)%'(x), %(x)~%(x)Qi„+i(P),
where

Q2„+i(P) =exp[@2„+iP(x)],
the Lagrangian transforms into

S(+,0;V,A) S(%,%;V,A)+ f dx TrI(ag)J",„ i+p( —[V„,Jf„ i)+[»,J„])I+0(p') .

(2.5)

(2.6)

(2.7)

Z(iF)= f dp(%, %')exp —f dx% (2.10)

Here dp, (%,%) is the fermionic functional measure. A
straightforward evaluation of

—[5/5a(x)]Z[Q( —a)iWQ(a)]
~

using Eq. (2.5) generates the vacuum expectation value of
the left-hand side (LHS) of Eq. (2.8). On the other hand,

Z [Q( a)i)FQ(—a) ]

p %,%' exp — dr%' 0 —a i Q a

= f dp(+Q(a), Q( —a}%)exp —f dx@iV+

= f dp(%, %)J(—a)exp —f dx%'iV+

J(—a) is the Jacobian of the inverse of the transforma-
tion given in Eq. (2.4). Equation (2.8) is replaced by

(a„[g'"(x)J~]+g'"(x)([V~,J„]+[A„,Jg„„])}
= —[5/5a(x)]J( —a)

~ ~ p=G(V(x), A(x)) . (2.11)
l

Using Eq. (2.3), Eqs. (2.5) and (2.7) imply the identities

a„[g'"(x)J~]+g'"(x}([V~,J„]+[A„,Jg„„])=0,
(2.8)

a„[g' (x)J"„,]+g' (x)([V„,J"„,) [A",—J„]}=0.
(2.9)

Classically, the vector and the axial-vector currents are
covariantly conserved.

The breakdown of the classical identities (2.8) and (2.9)
at the quantum level is due to the noninvariance of the
functional measure under the transformations associated
with these currents. This was first demonstrated by
Fujikawa in the evaluation of the isoscalar axial-vector
anomaly of Dirac fermions coupled to vector gauge bo-
sons. The generating functional Z (i 7) in Euclidean
SPQQc 18

G(V(x), A(x}) is the vector current anomaly. Similarly,
evaluating

[5/5P(x)]Z[Qz. + i(P)& &Q2 + i(P)] I p=p

in two different ways leads to the quantum version of Eq.
(2.9):

&a„[g' (»J5.+i]+a'"(x)([Vi »P. +i]—[A" Ji ])&

=[5/5P(x)]J2 +i( &) I p p

=—Gi„+i ( V(x),A (x)), (2.12)

where

deaf'PQza+i( —P)~Q2. +i( —»P]=de(q' 'P)Jim+i( —» .

[The relative minus sign between the vector and axial-
vector anomalies can be traced to Eqs. (2.5) and (2.7).] If
either G+0 or Gi„+i+0 then some of the classical iden-
tities are violated at the quantum level. The correspond-
ing Ward-Takahashi identities are said to be anomalous.

Before proeseding to derive a more explicit form of G
and G2„+i, it is worth considering what we can say about
them on general grounds. Following Wess and Zumino, i I
introduce the generators of infinitesimal gauge transfor-
mationS:

a M(x) = Ii [a&a(x)]+i[V„(x),a(x)] I5/5V&fx)

+i [A„(x),a(x)]5/5A„(x),
(2.13)

P N(x) = t i [a+(—x)] i [ V„(x—},P(x)]]5/5A&(x)

+i [A„(x),P(x)]5/5'(x) .

These obey the following commutation relations:

[a M(x),P M(y).]=i [a(x),P(y)] M(x)5(x —y). ,

[a.M(x),P N(y)]=i[a(x},P(y)] N(x)5(x —y), (2.14)

[a N(x), P.N(y)] = —i[a(x),P(y)].M(x)5(x —y) .

Acting on the generating functional, these operators gen-
erate the anomalies:

f dx a M(x)Z(i JF).= —f dp(%', %)exp —f dx%)PV f dx Tr[ —(a„a)J"+a([v",J&]+[A&,Jg„+1])]
I.

= —f dx Tr[a(x)G(x}],

f dx P N(x)Z(iW)= f dx Tr[P(x)62„+i(x)] .
(2.15)
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III. CONSTRUCTING THE PUNCTIONAI MEASURE
AND THE ANOMALY

A standard means of defining the functional integral
involves expanding %(x}and %(x) in terms of a complete
set of eigenfunctions of some Hermitian operator ho
which acts on spinors. Let I/i, (x}I be one such complete
set:

hopi, (x)=g 1/i, (x),

QQI, (x)QI, (y)=&'"(» —y)g ' '(x)g ' '(y), (3.1)
k

f dx p~(x)f (x)=5q

A priori, since %(x) and 4'(x) are independent, it is possi-
ble to expand them in terms of different complete sets.
For the sake of generality, I will introduce a second basis
Igq(»)I which satisfies the above equations with ho and
Q„replaced by hi and A, &, . %(k) and 4'(x) can then be

cxpsQdcd Ls

%(x}=gaI, QI, (x), %'(x)= ggl, (x)bi, .
k k

{3.2)

ai, and bl, are the generators of the infinite-dimensional
Grassman algebra. The fr~ion functional meN~ure is
then defined as

These equations, combined with Eq. (2.14), imply that the
anomalies must satisfy the consistency conditions

f dx dy Ia.M(x )Tr[PG(y)] —P N(x)Tr[aG (y)] I

= f dx Tr(i[a,P]G(x)), (2.16)

f dx dyta M(x)Tr[PG,„~,(y)]+P N(x)Tr[aG(yj]I

= f dx Tr(i[a(x),P(x)]Gi„+i(x)), (2.17)

3' ' & & + 2m+13' —+' & & 2m+) 3'

=+ T iax, x x . 218

[The unconventional choice of signs in Eq. (2.17) can be
traced to Eqs. (2.11) and (2.12).] Since the anomaly is re-
lated to the functional measure, one can interpret these re-
lations as restricting the allowed definition of the func-
tional m~~ure.

As mentioned at the beginning of this section, there is
some ambiguity in continuing a theory with yq„ i cou-
plings to Euclidean space. Fujikawa and others~ let A„
remain A„. This has the advantage that the combined
axial-vector and vector transformations form the compact
group UL, (N, C)XUa(N, C), instead of the noncompact
group GL(N, C), as is the case with us. This has the
disadvantage that the i V is not Hermitian. All of the re-
sults of this section can be transcribed to this case by re-
placing the axial-vector source A„by iA„,—and the
axial-vector gauge parameter P by iP In pa. rticular, the
anomalies continue to be related to the Jacobisiis of vector
and axial-vector transformations. They are also related to
the generators of gauge transformations. Since these
transformations generate an algebra, the anomalies must
satisfy certain consistency equations.

ai(4, e)= gdb, gd „.
k k

(3.3)

The functional measure implicitly depends on the basis
one chooses, and hence on the Hermitian operator ho.

Following Fujikawa, we compute the Jacobian of the
vector and axial-vector transformations. Under the in-
verse of the vector transformation of Eq. (2A) %(x)
traniiforms as

ip'(x) =exp[ —ia(x)]ql(x) = y 0jr/~/, (x) .
k

(3.4)

The us are related to the ai, by a unitary transformation

&I =JUL, &
k

Uk~ —— X k XeXP —iaX X
(3.5)

0 contributes a similar factor, but with g replaced by P
and an opposite sign for a. The total Jacobian of the in-
verse vector transformation is

J(—a}=exp i f dx +pl, (x)a{x)fl,(x)

—4 i, {x}a(x){{ji,(x) (3.6)

Therefore, from Eq. (2.11), the vector anomaly is

Tr[a(x)G(x)]

i y [yg, (x—)a(x)yg(x) —{{ji,(x)a(x)yi, (x)) . (3.7)
k

Similarly, the Jacobian of the inverse axial-vector
trsnsformations is

Jz„+i(—p) =exp f dx g QI, (»)p(x)yi„+i/I, (x)

+%I,(x)P(x )7'z. +i' (x) {3.8)

which, via Eq. (2.12), leads to the axial-vector anomaly

Tr[P(x)62„+i(x)]=g [Pq(x)P(»)yi„+if'(x)

+/I, (x)P(x)yi, + &/I, {x)]. (3.9)

The change in 4 contributes the following factor to the
Jacobian:

Q da' =detU ' g day .
k k

From Eq. (3.1) it is easy to show that

(lnU)g = i f—dx i/ii, (x)a(x)tt (x)

which holds for arbitrary a(x). It follows from this that

detU '=exp( —TrlnU)
T 'I

=eXP i kXQ, X kX
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The computation of the anomalies redues to the evalua-

tion of these infinite sums.
A naive application of the completeness relations, Eq.

(3.1), would lead to the conclusion that the vector current
had no anomaly. However, the sums appearing in Eqs.
(3.8) and (3.9) are divergent (or at best, conditionally con-
vergent) and must be regulated to be rendered meaningful.
I will return to this momentarily. By choosing

=(P&I we can ensure that the vector current has no
anomaly. The axial-vector anomaly is then twice the first
sum appearing on the RHS of Eq. (3.9}.

Following Fujikawa, '7 I regularize the infinite sums by
inserting a function f (A, t ) and employ point splitting:

Tr[P(x)Gi„+ i (x)]

=2lim Tr p(x)gy2„+if(teak }pk(x)gs(y), (3.10)
P~Z kf~O

here t has the appropriate dimensions to make tkdim, en-
sionless. The function f obeys the following conditions:

f(0)=1 f(oo)=f'(oo)=f"(oo)= =0.

Strictly speaking, to ensure that all steps in the above ar-
gument are well defined, one would have to impose addi-
tional assumptions to ensure convergence at every step
along the vray. In any case, the t-independent terms ob-
tained using Fujikawa's and my regulating function
should yield the same answer.

Customarily one chooses

+=i/' . (3.14)

It is for this reason that we demanded that the Euclidean
dirac operator be Hermitian. This ensures convergence of
Eq. (3.10) with either my choice of regulating function or
exp( —tA, ). In the case of a non-Hermitian dirac opera-
tor, some workers" have used exp( —tk.A, ~), which leads to
an anomaly which is gauge covariant, but does not satisfy
the Wess-Zumino conditions. [One can prove Eq. (3.10)
with my regulating function would converge even if A,

were not real; as the magnitude of A, becomes large, the
imaginary part of A, becomes small with respect to the real
part. ]

With my choice of regulating function, the anomaly is

The effect of including f is to cut off the contribution to
the sum from the large eigenvalues. Replacing A,k by 50,
and using the completeness relations, Eq. (3.1), the RHS
of Eq. (3.10) becomes

Tr[p(x)Gz„+i(x)]=2 lim Tr[p(x)y2„+i(1 —tp'z) ']
t-+0

X 5'"(x —y) [g (x)g (y) ] (3.15)

lim(1+tho )
t~O

(3.13)

2lim TrIp(x}yz„+if(tbo )5 "(x —y)[g(x}g(y)] '/
j .

g~Z
t~O

(3.11)

The usual choice for the regulating function f(A,zt) is
exp( —tA, }. ' [If the eigenvalues of Q are positive, one
can take exp( —tA, } as the regulating function. ] I find it
more convenient to use (1+tA, ) '. Formally, both func-
tions should yield the same results, since

lim exp( tho )—= I dse 'limexp( steno —) (3.12}
t~O 0 t~O

interchanging the integral and the limit, and doing the in-
tegration, one obtains

This can be further simplified. Since the trace of an odd
number of y matrices vanishes, one has

Tr[P(x)y2„+ i(1 t}F ) '—]
=Tr[p(x)y, „+,(1—v t p')(1 —t7')
= Tr[ p(x)y „2+(1 +v t 7) '] . (3.16)

Using the plane-wave representation of the 5 function:

5 "(x —y}=(2m) "J d2"k exp[ik"(x —y)„], (3.17)

commuting exp[ik. (x —y)] through the differential
operators, and taking the limit y~x, the I.HS of Eq.
(3.15}becomes

21im Tr P(x)yz„+i[g(x)] '/ (2n) "Id "k 1
g (x)—i/4

0 [1+~t(W+ig)] (3.18)

Although the term appearing in large parentheses looks
like a differential operator, it is in fact not, since

J d "kf(W+il} exp(ip x)
r

=exp(ip x) J d "k. f(7+iIi, +ip)

=exp(ip x) f d "k.f(P'+if)
(3.19)

After shifting the integration variable, one finds that
exp(ip x) commute. s with the integral. Since exp(ip x)

form a complete set locally, it follows that the integral is a
c-number valued matrix. Therefore, the total anomaly is

Tr[P(x)62„+i (x)]

=2(2n ) "[g(x)]

)& f d "k lim Tr Py2„+i
o

"+ 1+ t (/+i')

(3.20}
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In previous derivations of the anomaly within the
path-integral framework one had to wait until the very
end of the calculations to verify that the final results satis-
fied the Wess-Zumino consistency conditions. An advan-

tage of our choice of regulating function is that one can
verify at the very beginning that the anomahes satisfy the
%ess-Zumj. no conditions. One can then proceed with

xoMx y = y iay (3.21)

hence,

confidence to the arduous task of actually calculating
them. Since the vector anomalies are zero, Eq. (2.16) is
trivially satisfied. Under a vector gauge transformation

28

I 1+ t [T(x)+ig] j

d'"kTr Pyz„+)
1 . 1ia, ~~V

I+~&(W+N ) I+i t (7+8 )

Tr y2„+
zn

l 0'. —kQ
1

1+~~(T+N) 1++7(r+S)
~

~

1d'"k T«fa Ply»+i 1+ t (7+M)
In going from the third to the fourth line I have used the reasoning following Eq. (3.19) to justify neglecting terms which
vanish on integration over k. Comparison with Eq. (2.17}shows that the second consistency equation is satisfied. Under
an axial-vector transformation,

xa.& x f = 7 iay yen+ (3.22)

t

x a.N x 2"k Tr y2„+~ 1+ t (F+ilt )

= —f d'"kTr Pyz. +i - . Ii t&b»taWyz. +i}
1 1

1+~t (W+N) "' 1+ t (W+N)

d kTr iPyz„+i
1

1+v t (7+if) " 1++ t (P'+i/)

d kTr iPyz„+i2ll 1
2ayzn +1

1

1+~i(7+iIi) 1+~~(W+N)

d k Tr (ayz„+i,Pyz„+, )
2N 1

1+ t (P+ig)

+ d "kTr Pyz„+i (2ayz„+&)I+~t(%+I) 1+~&(W+N)

I have used Eq. (3.19) to justify going from the second to third line. After simplification, the consistency equation (2.18)
becomes

2 x Tf —
'

cx
z„ 1 1 —Tr o. - I

(P)
1

1+v t(P+ijt) 1+v t(/+i') (+~i()F+ig) 1+Wc(/+i')

Using the formal identity

f dx f d "kTr[a(7+i' Yp(F+ijt) ]= f dx f dz"k Tr[p(W +if) a(JF+ikY]

which can be proved by repeated integration by parts, the first term in Eq. (3.23}cancels the second.

(3.23)

IV. Rzaua&RIZING THa WNOM&r. V

In the previous section I obtained a closed form for the anomaly as a limit of function [see Eq. (3.20)]:

Tr[P(x)Gz„+,(x)]=lim Tr[P(x)Gz„+,(x, t)] .
t~O
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The RHS of this satisfies the Wess-Zumino consistency conditions before taking the limit t~O. Unfortunately, the
RHS diverges in this limit. To render the LHS meatiingful, the RHS must be further regularized. In this section I will

address this problem and propose several solutions. I will also make some brief comments on the structure of the anoma-

ly in curves spaces.
The function appearing on the RHS of Eq. (4.1) is

Tr[P(x)62„+](x,t)]=2(2m ) "[g(x)] '~ I d k Tr P(x)yz„+ [
1

1+ t (If+@)
(4.2)

There is an alternative form of this which will prove more useful in calculations. Namely,

TrIPyz„+][1+M&(W+ig)] 'J =Tr Pyz„+[[1 v t —(j+iP)]
[1+ t(}1'+if)]x[1— t(/+i')]

1=Tr Pyi„+[[1 v —t (P+iP)]
1 t(F+—+i')'P+ t(W —+if)'P —2vt iAy, „+[

where I have introduced the notation

7=8+V—iy,„+[A=y'+P++7 P

P'+ ——++A+, A+ ——V+iA, Pp ———,(I+yi„+i) .

To simplify the denominator of the Eq. (4.3) expression, define

(4.3)

(4.4)

X+ ——1 t(W++—ig} =1 t[(V+—+ik)&(V++ik)i'+F+ o+r/4) . (4.&)

Here r is the scalar curvature and E+ is the gauge field associated with A+ in the representation of the fermions. (See
Appendix A for more details. ) Note that the X s involve an even number of y matrices. Equation (4.3) becomes

1Tr Pyz„+][1— t ()F+P++g P +ig)]
X+P++X P +2v tiyz„~]

Using Eq. (B5), one has

[X+P++X P +2&riy, „+]A] [= 1+-v ti2A P
X+ X t2A(X+) ]—2A

1 — V ti2& P+
1 1

X X+ t2&(X )-—]2&

Using this, the LHS of Eq. (4.2) becomes
'P

(4.7)

2(2n) "[g(x)] '~~ J d "kTr. P(~„~, 1 —it(/++ N ) 2A P1 1

X —t2A (X+ ) '2A

1+it(F +it ) 2& P+
1 1

X+ —t2JI(X ) '2&
(4.8)

where I have discarded terms involving an odd number of
y matrices.

One can evaluate Eq. (4.8) by scaling the momentum
variable, k= ql~t, expanding the trace in powers of v t
and doing the q integration. Upon using symmetric in-
tegration all half-integral powers of t vanish. All integer
powers of t & ncontribute to the—anomaly

2(2~) '" J d'"k TrIPy, „+][1+~&(W+N)]'I-
=t "A „+t' "A, „+. A, +8,+O(t). (4.9)

Here the A's which do not contain the totally antisym-
metric e symbol, are the so-called "normal parity naive

anomalies" [Hu, Young, and Mcl( ay (Ref. 8}]. These
same terms appear when one calculates the anomalies per-
turbatively. In perturbative calculations they can be re-
moved by the addition of counterterms of the Lagrangian.
These counterterms can be chosen in such a way that the
vector Ward identities are preserved. 80, which depends
on the e symbol, cannot be removed by the addition of lo-
cal counterterms which preserve the vector Ward identi-
ties. Because of this, 80 is called the "minimal'* anomaly.

Because of the presence of A „.. A ], Eq. (4.9)
diverges upon taking the t~O limit. Therefore, these
terms must be regulated away in some manner. One pos-
sibility is to use a Pauli-Villars regularization, in which
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lim f(tb02)~ lim QC,f(t, hoi) .
c~O t —+o

(4.10)

The C's and t's satisfy the subsidiary conditions

the single variable t and its associated limit is replaced by
the set of n variables IC, ] and [t, ) [Hu, Young, and
McKay (Ref. 8)]. In Eq. (3.10) we make the replacement

can be removed by adding a counterterm to the Lagrang-
ian, as was done by Balachandran et a/. in four dimen-
sions.

I prefer to use a different method to regulate the anom-
aly. Namely, taking a hint from the procedure used by
Hu, Young, and McKay in four dimensions, I make the
replacement

Tr[Py~„+i[1+v t(V+ig)] 'I

,' Tr(—Py.+ I [I+~~(W+N)]

(4.12)
By construction, this procedure removes the first n terms
on the RHS of Eq. (4.9). The anomaly then becomes the
sum of Ao and Bo, which is the result one obtains using
g-function regularization. The normal parity anomaly Ao

I

Note that with this replacement the "new" axial-vector
anomaly will still satisfy the consistency conditions.
Equation (4.8) is replaced by

Tr[P(x)62„+i(x,t}]=(2m) "[g(x)] ' J d "kTr Pyp„+i 1 it(7++—ig ) 2&
1 1

X+ X —t 2A(X+) '2A

+ 1+it(g +if) 2&
1 1

X+ t 2A (—X ) '2A
(4.13)

In expanding, this one obtains only "abnormal parity" contributions, i.e., terms involving the e symbol. I will now prove
directly that this is finite in the limit t~0.

Equation (4.13) can be rewritten in the schematic form

Tr[P( x) G„i+(ixt)]= Tr[P {x) y„q+iB( V„+, V~F+ a,F o,A, r;t)]

+Tr[p( )yx+2,y B (V+„,V' F+ o,F o, A, r;t)] . (4.14)

~p v [V—jk&V —v] 2 pv+F —pv (4.15)

W„„=—[V,„,V „]=-,'R„„+[a„+A,„,a„+A „].
Furthermore, for any matrix or tensor E, define

[V+~,E ]=E q, [V',E ]=E
where. . . denotes indices. Of particular interest are

(4.16)

The functions B and Be are polynomials in their argu-
ments. Now, as emphasized following Eq. (3.19), the
RHS of the above equation is not a differential operator.
This restricts the possible polynomials that can appear.
In particular, the V's must appear in the form of commu-
tators among themselves and with the A' s, r's, and F o's.
I,et

1Wq„= [V+„,V+„]= ,R„„+F+q„—,

analysis, the terms of dimension 2j in the fields must car-
ry a power of t J " To surv. ive the trace over y matrices
a term must involve at least 2n y matrices. A11 such
terms have at least dimension 2n in the fields, and are
therefore finite in the limit t~O. Therefore, the LHS of
Eq. (4.14) is well defined in this limit.

Actually, we can say a bit more about the structure of
the anomaly. After taking the limit t~O, the only terms
which contribute to Eq. (4.14}have exactly 2n y matrices
and dimension 2n in the fields. This implies that
B(t =0) is a polynomial in W's with two indices and A' s
and F tr with none. Similarly, B (t =0) is a polynomial
in 8"s with two indices, and A's and F's with none with
the exception of a single three-index 8' or one-index A or
I'. Note that in both cases one can make the substitutions

(4.18)
[V+&,r]=r&, [V &,r J=r&, . . . ,

[V+„,A]=A„, [V „,A]=A„, . . . ,

[V+~,F~o]=(F+ o)„, .
(4.17)

since the gauge field terms vanish upon taking the trace.
Many of the terms allowed on dimensional grounds turn
out to vanish when one uses the symmetry properties of
the Riemann curvature tensor R„

[V (F~ o)„)=(F+ o)„„, .
etc., as well as terms with F . The RHS of Eq. (4.14)
can be expressed as a polynomial in terms of the 8"s,
F o's, A' s, and r's defined above. Gz„+i(x,t) has dimen-
sion M ", while t has dimension M . By dimensional

R~(~ti}=0—+Tr(yq„+iy . . W„. . )=0,
R„( p}.„O~Tr(y——i„+iy W„.. )=0,
Ri („tt.~}=O~Tr(y,„~iy W„~. )=0.

{4.19}
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The first of these iinplies that in any term with a single
index A or F, this index must contract with the external y
matrix. If it does not, the external y matrix contracts
with a two-index 8' and the trace vanishes. The next two
equations imply that any term involving a three-index W
vanishes upon taking the trace.

Effectively, we can suminarize these considerations
with the following set of rules:

All three and higher index 8"s vanish.
Any term whose dimension is higher than the number

of y's it contains vanishes.
No direct coupling between gauge and curvature terms.
One consequence of the above rules is that the anomaly

can be written as a sum

QTr[Py 2„+&Pt,(F+ o,F o,A)Qi, (R„„)],
k

yI gt O e ~ ~

p, v

r=0,
All two and higher index F o's and A's vanish.

(4.20)
where Pt, and Qt, are polynomials in their arguments.
After taking the trace, the only coupling between gauge
and gravitational effects comes about through the e sym-
bol. This "factorizability" becomes important in comput-
ing the anomaly in curved space.

V. EVALUATING THE ANOMALY IN FLAT SPACE

In this section I will derive the general formula for the axial-vector anomaly in fiat space and look at several special
cases. From Eqs. (4.2) and (4.12), the regularized anomaly is

Tr[P(x)62„+i(x)]= lim (2m )
"f d "k Tr Py2„+ i . +

i 0 " 1+ t(7+iIi, ) 1+ t(g+ g)
(5.1)

I will concentrate on evaluating the first term in the integral. An alternative form of this term is given in Eq. (4.3):

Tr yp~+ I 1 — t +1
1 t(P++g—)'P+ t(JF +if)'P— 2~ii—Ay, „+,

(5.2)

Now, the only terms which will contribute to the trace after taking the t~0 limit involve 2n y matrices and have di-
mension 2n in the gauge fields and their derivatives. Bearing this in mind, Eq. (5.2) becomes

Tr yz +I 1 — t
2 + t t2

1+tk' X —1+tk' X 1+—tk' X— (5.3)

X=t(F+ oP++F .O'P )+v ti2Ayi„+i (5.4)

and I have dropped terms which do not survive the trace/limit combination. Using symmetric integration in k, and let-
ting tk =q, Eq. (5.3) becomes

Q qq" 't "Tr y2„+I 1 — t + t y" V'I
0 "+' 1+q —X n 1+q —X "1+q —X (5.5)

The integral over angular variables gives

f dQ=2m /(n —1)! .

Integrating the first term in Eq. (5.5) by parts, one gets

, f dqq"t "Tr Py,„+, (1 v tW)—, + Vt jCO 1 1 — 1

n! o (1+q -X) 1+q X 1+q —X (5.6)

where

X=t(F+ .oP +F oP+ ) +~ti 2A y 2„+i

and I have neglected terms which vanish upon performing the trace/limit. I need the identities

(9X)=X(F igy, „+,+1/—v t ) (Pity—,„+,' —+1/V t )X+ .

(9X)=X(F+iAy,„, '1/~t ) (P—'+i/ y,„—, 1/~t )X+— (5.8)
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By . I mean terms which contain fewer y s than their dimension, e.g., B„cFA. Such terms do not contribute to the
trace in the t~0 limit and hence can be neglected. Using the first af these identities, Eq. (5.6) takes the particularly sim-
ple form

T

j d n~ —nT 1 1

fq qq t r ~yzn+iJp 1+q —X +9— {5.9)

The second term in Eq. (5.1) contributes a similar factor with X and X interchanged. Gathering all the intermediate re-
sults, the anomaly in flat space is

1 „1 1 1 1
Tr[P(x)62„+i{x}]=lim „dqq"t "Tr Py2, +i +

o n!(4n }" I+q -»+q -X 1+q -X 1+q-X (5.10)

One can verify explicitly and laboriously that this satisfies the Wess-Zumino consistency conditions. We shall not do so.
Expanding Eq. (5.10) in powers of (1+q) and doing the q integral, Eq. (5.10) can be written as

n

(5.11)

X=t(F+ oP++F ~P )+v t 2&y,„+, ,

X=t(F+ trP +F oP+)+v t2gy, „+, .

The two- and four-dimensional anomalies are of particular interest. The anomaly in two dimensions is

Tr[P(x)Gi„~,(x)]= lim —g ', g Try2„+i(X'X "+X'X") .
o t" m=o n+~+ J+k=n+m

The limits on the sums arise since one needs at least n factors of X and X to survive the trace over y matrices, while
terms with more than 2n do not survive the t~0 limit. The second sum is over all positive values ofj and k such that
j+k= m +n. After rotating to Euclidian space

Tr(PG3 ) =—Tr[P(Bq V„+V„V„—AqA
„)et'"] .1

(5.12)

In four dimensions the anomaly is

Tr(PGs) = i TrIPd' "[V~p V~„+—,
'
A~pA~„——', (A~ApV~„A~+A~ Vtt„A„+ V~pA~A„}+ —"

, A~ApA~A„]I, (5.13)
(4ir)i

where

V„„=-,' [(F+)„,+(F )„,], &„,=-,' [(F+)„„—(F )„].

This agrees with the perturbative calculations of Ref. 2.
In arbitrary dimensions there are two eases which are of special interest. If A =0, corresponding to pure vector cou-

pling, then

X=X=tI'.o .

Only the m =0 term in (5.11}survives. The sum can be dane to yield

Tr[P(x)62/+i(x)] = „Tr[Py2, +i(F.tr)"]
n!(4n )"

(5.14)

which agrees with the results of Refs. 9 and 14.
The second case of special interest corresponds to pure chiral coupling. Suppose A = —V, which corresponds to pure

left-handed coupling. Then

X=tF.oP ~sly, „+„X=tF.crP+ v t gy, „—+, , (5.15)

2& =E, Fq„d„L„BQ„+[Lp,L„——] . —

1 1 1

1+q tF{q).cr 1+q —1+q tF(q) cr—1 12Tr A'2m+i 1+q 1+q tF(q).o—Using Eqs. (88) and (89), the trace in Eq. (5.10) can be written as

1 1

1+q tF(q} a 1+q—1 1

1+q tF(q) cr 1+q— {5.16)
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where

F(q)„„=d„L„B—Q„+q/(1+q)[L„,L„] .

Expanding Eq. (5.16) in inverse powers of (1+q), we obtain

n —1

2t"(1+q) " Tr pyq„+i[F(q) a]"— — g {E[F(q).a]"E[F(q) a]" " '+[F(q).a] E[F(q) o]" 'E j(1+q) k=o

(5.17)

+ O(t" +') . (5.18)

Substituting this trace in Eq. (5.10), and changing the integration variable from q to s =q/(1+q ) we obtain
I

1 n —1

Tr[P(x)Gq„+i(x)]= f dss" Tr Pyz„+i[F(s) q]"—(1—s) g IE[F(s) o] g[F(s) a]"
n!(4n )" k=0

+ [F(s).a]"E[F(s).o]" " 'E
) (5.19)

Up to an overall normalization factor, this is identical to the anomaly in the left-handed current due to purely left-
handed coupling as calculated in Ref. (16). The difference arises since we regulate differently. I regulate so that the vec-
tor current has no anomaly, while the regulate so that the right-handed current has no anomaly.

Kawai and Tye, ' and Lott give a form for the axial-vector anomaly in arbitrary even dimensions which differs from
mine given in Eq. (5.10). In my notation, their formula is

1 n —1

Tr[P(x)62„+&(x)]= f ds Tr Pyz„+~[F(s) a]"—s(1—s) g [E[F(s) cr] g[F(s) a]"
n!(4n )" k=0

+[F(s) cr] E[F(s) a]" 'g J, (5.20)

where

F(s)= [sF+ + (1 s)F —s (1—s)—(2A)(2A)] .

This reproduces Eq. (5.19) in the case of chiral coupling. One can verify that this satisfies the Wess-Zumino consistency
conditions. Kawai and Tye, following Zumino, Wu, and Zee, derive the anomaly by starting with the "Abelian" anoma-
ly in 2n +2 dimensions. Lott derives the anomaly using cohomology.

As mentioned in the Introduction, the solution to the Wess-Zumino consistency conditions with given boundary condi-
tions is unique. Comparing Eqs. (5.10) and (5.20) it is clear that the terms of highest order in F+ and F differ. My
terms are identical to what one would obtain in perturbation theory if one treated all vertices symmetrically. The formu-
la given in Eq. (5.10) can be transformed into Eq. (5.20) if one totally symmetrizes the trace. Lott claims that this is
essentially Bose symmetrization. However, this is not the case, since in both the ordinary perturbative calculations and
in my path-integral derivation, Bose symmetry is guaranteed by the formalism.

VI. EVALUATION OF THE ANOMALY IN CURVED SPACE

In this section I will derive the general formula for the anomaly in curved space. The regularized anomaly is

Tr[p(x)62„+&(x)]= lim(2n) "g '~ (x) f d "kTrfpy2„+i[1+v t(/+i')] '+()F~j)) .
g~o

I will concentrate on evaluating the first term in the integral, an alternative form of which is given in Eq. (4.3):

(6.1)

f d "k Tr pyi„+, [1 v t(W+ik)]—
1 t (V'++ik)'P+ t—(V +ik)'P 2—&tigy, „+—,

The denominator of this can be written as

1 t(D+ik+A+P++A —P )' [it(F+.oP++—F aP ) 2v tiAy2„+, ]+ tr/4—.

(6.2)

The last term contributes nothing to the trace in the t +0 limit and wi—ll be dropped. The third term is defined as X in
Eq. (5.4). With these observations, the denominator of Eq. (6.2) effectively becomes

1 t(D+ik+A+P++A P )—' —X .

Introducing an auxiliary variable u, Eq. (6.2) can be rewritten as

(6.3)
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u exp —u " Tr y2„+~ 1 — t +i exp ut a+i +A+I'++A I' +uX

The k integration can be rewritten in the form

f d "k Tr( . )=f d "k TrIpy2„+[[1 ~t(V+ig)E[(k)E2(k)]I

(6.4)

Here

=Tr Py2„+[[1—~ t(F+iQ")]Ei(cP) f d "kexp(k y)Ei(k) a

y=0 (6 S)

Ei(k)=exp[ut(D+ik+A+P++A P ) +uX]exp[ ut(—D+ik) ],
E2(k) =exp[ut(D+ik) ] .

(6.6}

The first of these incorporates the gauge effects, while the second incorporates the effects of gravity.
By shifting the origin in k space, one can move the y dependence of the k integral in (6.S}outside the integral. Letting

k ~k+z, and using Eq. (C10}from Appendix C, we find

exp ut D+& D+t exp y.
I

exp —utz r sinh(Rut ) . z 1 —exp( Ru—t )s+2iuts (D+ik)+y (k+z) exp[ut(D+ik) (D+ik}]
Rut Rut

(6.7)

The demand that the first term be independent of k is equivalent to

1 Rz=—
2 1 —exp(Rut)

where we have used the antisymmetry of R&„. Making this substitution, Eq. (6.7) becomes

f d "k exp[ut(D+ik}2]exp(y k)
I

=exp —,'y + y+iy D f d "k exp[ut(D+ik) (D+ik)]
1 —exp Rut 1 —exp Rut—

exp —,yy)( cat=h y+iy D f dt"keep[et(D+ik) (D+ik)] .1 Rut
2

[In going from the second to the third line I have used y re = —,'yr(A +2 r)y and the antisymmetry of R.]
The term multiplying the integral will occur so often that it is useful to give it its own symbol

(6.8)

(6.9)

Z(y) =exp TyrR coth y+iy D1 Rut
2

We have the following identities:

R„„Z-'a„Z =D„—~
""y"

(6.10)

(6.11)

e

Z '0„"Z=cY„+—R coth +R y "+iD„.
pv

The first of these follows from

(6.12)

e Be =B+—[A, B]+—[A, [A, B]]+ (6.13)

valid for any matrices A, B. The second follows from

(B&U)= f dqee" (B„lnU)e e" U .

%'e are now in a position to evaluate

6 (u) = f d "k exp[ut(D +ik) (D +ik)] .

(6.14}
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Now, note that

= f d~"k[t(D+ik) (D+ik)]exp[ut(D+ik) (D+ik)]
dQ

=t(D+i&") (D+i@')f d2"ke~ e'xp[ut(D+ik) ~ (D+ik)] ~y 0

=t(D+i b").(D+i 8")Z(y)
~ „oG(u),

where I have used (6.9) and (6.10) to go from the second to the third line. Using (6.10) and (6.11),we find

(6.15)

dG t
R h

Rut
du 4 2

(Note that R~ =0.) Using

DetA =DetA Tr A

Q du

G(u) . (6.16)

(6.17}

valid for any matrix A, it follows that
—1/2

G(u)=Det sinh
Rut

2
X const . (6.18)

On dimensional grounds the constant is proportional to DetR '~2. The constant of proportionality can be determined by
looking at the R ~0 limit of G(u)

G (y;R =0)= f d 2"k exp( utk ) =-
ut

It follows that
N

2 sinh(Rut/2)

We are now in a position to evaluate the gauge contribution to the anomaly. From (6.5)—(6.10), this piece is

[1 ~t(7+i&")]E)(B")Z(y)~y 0.
Making repeated use of (6.11) and (6.12), this can be rewritten as

(6.19)

(6.20)

(1—v t [i(/q+Cq„y")y&+A+P++A P ])
)&exp( —ut[8"+Cy —i(A+P++A P )+i[y D,A+P++A P ]I —uX+i[y.D,uX])

Xexp[ut(8"+Cy) ] ~y 0, (6.21)

Cq„———R coth
Rut

The terms involving [y.D, A "+P+ + A" P ] in Eq. (6.21) do not contribute to the trace and will be set equal to 0.
Equation (6.21) btmomes

[1 v t (i9~+A+—P++A P }]expI ut[cP+Cy —i(A+P+—+A P }]+uX —i[y D, uX] Iexp[ ut(&" +Cy) ] . (6.22}

We shall now evaluate the product of the exponentials appearing in Eq. (6.22). Note that this product can be written

exp[+ (Ho+ H ~ )]exp( —Ho ), (6.23)

Ho ut(cP+ Cy)~, ———

H, =+2ut(cP+Cy) i(A+P++A P )+uX —i[y-D, uX] .
(6.24)
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If we define

then
I

e ' e o=I+ f ds W(s)+ f ds f ds'W(s')W(s}+ f ds f ds' f ds" W(s")W(s')W(s)+

N0%', Using the identity

[8~+C~„y",B~+C~tiy ]= —,' R—~~

and Eq. (6.13) one can prove that

exp[ su—t(&"+Cy) ](8„"+C„„y")exp[sut(cP+Cy) ]=[exp(Rsut)]„„(B"„+C~ )

(6.25)

(6.26)

(6.27)

(6.28)

exp[ su—t(P+Cy) ]y exp[sut(8"+Cy) ]=y —2sut2 2 = exp(Rsut) —1
IJ) Rsut

(8„+C~') . (6.29)

With these two identities the evaluation of W(s) is immediate. Note that by Eq. (4.20) it is sufficient to use the R ~0
limit of W(s}. In this limit, C„„(ut)=(1/2ut)5& and

lim W(s) =i(2u&'+y) ~ (A+P++A P )+uX i [(—y(l s) 2s—utdi—') D, uX] . (6.30)
R -+0

From Eq. (6.21), we only need to keep the terms linear in y in the evaluation of Eq. (6.26). Keeping these terms one finds

(uX)y (A+P++A P )(uX)0 i e 0 eux+i
(j+m +1)!

m=0

(uX)I[y D,uX](uX) (m +1}
(j+m +2)!

m=0

(6.31)

Substitute this expression into (6.22), one finds for the gauge contribution

(uX }1(A+P+ +A P )(uX)
[1 ~t(A+P++A P )]exp(uX)+i/t

(j+m +1)!
(uX)J[P,uX](uX)~(m +1)

(j+m+2)!

Using the identity

[g,X]=X A~P++A P — —A~P++A P — X,1 j.

(6.32)

(6.33)

where we have neglected terms which vanish on taking the trace. The last sum can be evaluated:

~t g .
' (uX) (m+1)= —A+P++A P — exp(uX)

(uX)1[+,uX] 1

(j+m+2)! + + v t

(uX)I(A+P++ A P —1/v t )(uX)+ t
j~0 (j+m +1)!

Therefore, the gauge contribution of Eq. (6.21) is

(uX)1(uX}

o (j+m+1)!

(6.34)

(6.35)

Gathering all the intermediate results, the total anomaly, taking into account both gauge and gravitational effects and
both terms in Eq. (6.1), is

Tr[P(x)62„+i(X)]=limg '~ (x) f du exp( —u)I~0 (4ir)" ut

Rut /2
sinh(Rut /2) ,=~ o (I+m+1}'
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In the limit of vanishing curvature, R p
—0, this reduces

to Eq. (5.11). This satisfies the Wess-Zumino consistency
condition since each term in the sum does.

VII. CONCLUSIONS

In this paper I have derived the general formula for the
non-Abelian anomaly of fermions coupled to vector and
axial-vector fields in 2n-dimensional curved spaces. Spe-
cial cases of the general formula agree with all previously
published results. The anomalies are due to the nonin-
variance of the functional measure under the linear
transformations which generate the "naively" conserved
currents. By general arguments, the anomalies must satis-
fy the Wess-Zumino consistency conditions. Coupling
these two statements together puts constraints on the al-
lowed definition of the function determinant. In particu-
lar, if one expands the measure in terms of eigenfunctions
of the complete Dirac operator, one obtains anomalies
which satisfy the consistency conditions. Other defini-
tions of the functional measure give rise to incorrect re-
sults.
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N

y2n +1 ~ yly2~ ~ ~ ~ y2n (As)

[D, r.]=0 (A13)

which can be used as the definition of D„. The commuta-
tor of two D's generates the Riemann curvature tensor:

where the y's on the RHS are the flat space y's. By con-
struction

2= +
Iyin+1&ra I 0~ (y2n+I) 1 i r2n+ 1 y2n+ I

(A9)

y2„+ &
obeys the trace identities

Tr[y2g+iy~ y~, . . . , y~, I =0 for j +25

2 g (x)6p p p

for j=2n,
(A10)

where g(x ) is the determinant of the metric.
In the absence of gauge fields the Dirac equation for a

massless particle is

y„DI'4'=0 .

Dz is the generalization of the covariant (spatial) deriva-
tive appropriate for spinors:

D„=d„+co„=B„+(I~+g pe'p„ep, )cr ". (A12)

D„obeys the important identity

APPENDIX A: SPINORS IN CURVED SPACE

I work in a 2n-dimensional curved Euclidean space.
Both greek and latin indices run from 1 to 2n In terms.
of the vielbeins e&' the metric g„„is

[DpyD~] —TRpvlxpo 2 Rpv
eP

From the above identities it follows that

(A14)

(A15)

a bg,fpv=&p ep, ~ab (A 1) where r is the scalar curvature.
The Dirac equation in the presence of gauge fields is

Let y, be the (space-time-independent) generators of the
Clifford algebra:

I r. rb] =2~.b (A2)

a
yp, ep, yo

These satisfy

The y, can always be chosen to be Hermitian. In terms
of these we can define the generalization of the Dirac ma-
trices appropriate for curved space:

yqV"4 =y~(D" +iAp~TJ )4=0, (A16)

y'=g„„V~V"+ ,' r+F„„a "—, (A17)

where F„„is the gauge field strength tensor in the repre-
sentation of the fermions:

where TJ are the Hermitian generators of the gauge group
in the representation of the fermions and A„~ is Hermi-
tian. We then have

Iyi r I=2gi. .

Related to y& are

(A4)

aild

Fq„[d„+A„,d„+A—J ]=iF„„JTJ

(A18)

which form a representation of the rotation group:

[~ap ~ ] ~avg py+~ppgav ~aug pv ~pvg ap

The commutator of o with y is also useful:

In analogy with ys in four dimensions, define

(A6)

(A7)

APPENDIX 8: USEFUL FORMULAS

Let C and D be two operators involving an even num-
ber of y matrices, and E an operator involving an odd
number of y matrices. Consider
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1

1 —CP+ —DP

x (1 C—P+ DP—+Ey2„+) )

1=1—CP+ —DP +E E .
1 —CP+ —DP

Hence, one can conclude that

(81)

(1 C—P+ D—P +Ey2„ii)

1 — E P+ 1 —C+E E1 1

1 —D 1 —D

1+ E P 1 —D+E E1 1

1 —C

(85)

(1 CP—+ DP—+Eye„+))
T

There are alternative forms of Eqs. (84}and (85) which
are useful. I need the preliminary identities

1 —C+E- E1

1
X 1—E'V2n+],

1 +

Making repeated use of

(1 CP+ —DP )-—'=(1—C)-'P++(1 —D)-'P

and similar identities, one finds

(1 CP+ D—P +E—y2„+ ) )

(82)

(83)

E 1 —D+E E1 1 1

1 —C 1 —C 1 —C

1

1 —D

1

1 —C

(86)

1 —C+E E1

1 —D
P+ 1+E 1

1 1E 1 —D+E E (87)

1 —D+E E1 P 1 E—. (84)
1

A similar analysis leads to the identity

which can be proved directly or by expanding the I.HS in
powers of (1—C) ', and the RHS in powers of (1—D)
Using these identities, Eq. (84}can be rewritten as

(1 CP+ DP —+Ey2„+—))
T

= 1-C+E E1

1 —D P+ — E 1 —C+E E1 1

1 —D 1 —D
P+

P — E 1 —C+E E1 1 1

Similarly, Eq. (85) becomes

(1 CP+ DP +—Ey2„+ i )—

E P + 1 —C+E E1 1

1 —D
E P1

(88)

1 1 1=P+ —P+ E 1 —D+E E E +P+ E 1 —D+E E1 1 1

+P 1 —D+E E1 1

1 —C
(89)

APPENDIX C: SOME MORE USEFUL FORMULAS

In this appendix we prove that if ID~] are any family
of operators such that

[D~,Dp] = ,' R~p, —

[D~,Rq„]=0,

exp[s(D+iZ) (D+iZ }]~

T sinh(Rs )=exp s —Z
Rs

L

1 —exp( —Rs ) z)
Rs

Note that (Cl) implies
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[Z A (R )D,Z B(R )D]= —,
' Z A (R )RB( —R )Z

= ——,Z A( —R)RB(R)Z

for any matrices A(R ) and 8(R ).
To prove (C2), let

U(s)= exp[s(D+iZ) ~ (D+iZ)] exp( sD—) . (C4)

Using Eq. (Cl) and the Baker-Campbell-Hausdorf formu-
la, this can be written as

U(s ) = exp[sB&„(Rs)Z"Z"+sC&„(Rs)Z"D"], (C5)

where 8 and C are functions of sR„„. These can be deter-
mined by brute force, or by solving the differential equa-
tion

U '= —Z2+ expt +[s(D+iZ) ] I2iZ D expI [s(D—+iZ) ]Ids

=Z[1 2—exp( Rs )]—Z+2iZ exp( Rs)D—

with the boundary condition U(0) = 1. In this expression

(exp( Rs))t'—„=P'„—sR"„/1!+s2R" R „/2. . . .

Using the identity

1

U
—1 d qlnUd(lnU)/ds e

—qlnU

ds

and the form for U(s ) given in Eq. (6.10), we find

U '=Z[d(Bs)lds]Z+Z[d(Cs)lds]D+ ,
' [Z(Cs)D—,Z[d(Cs)lds]D I$

=Z([dB(Rs)]lds+ —„' IC(Rs)sd[C( —Rs)s]/dsI )Z+ZId[C(Rs)s)ldsID .

(C6)

(C7)

(C8)

In going from the first to the second lines I have used Eq.
(C3). Comparing Eqs. (C6) and (C8), we conclude

8(Rs ) = —sinh(Rs )l(Rs ),
C(Rs ) =2i [1—exp( Rs)]l(R—s ) .

This proves Eq. (C2). Note that if D is replaced by
(D+ik) on both sides of Eq. (C2) the equation remains
valid since the new operators [(D+ik) ] satisfy Eq. (Cl).
It is this translated version which is used in the text:

expIs[D+i(Z+k)] I

Z r sinh(Rs )=exp s —Z
Rs

1 —exp( —Rs )

Rs

X exp[s(D+ik)t] . (C10)
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