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The construction of an overcomplete set of states for both the physical and artificial modes of the
photon is examined in a representation with an indefinite metric. The Feynman path integral is
then easily derived and the usual Green's functions, kernels, propagators, and Feynman rules follow

immediately.

I. INTRODUCTION

[a,tt t]=—1,
ata )n)=n (n),
at

(
n ) =&n+1

( n+1),

a (n)= vn (n——1),

(3)

[n)= /0) .

The unit operator in this space has the decomposition

In the preceding paper' we studied the connection be-
tween canonical quantum field theory and the Feynman-
path-integral (FPI) formulation for scalar fields. In this
paper we address the special problems associated with the
photon field in proving the connection between these two
formulations of field theory. Quantum electrodynamics
(QED) is encumbered with many subtleties relating to the
long range of the Coulomb interaction and the infrared
divergences which necessitate much care being taken in
formulating asymptotic states. These problems have been
thoroughly studiedz and we shall not elaborate on them
further. It seems, however, that a simpler problem per-
sists: that of defining suitable coherent states in the
Feynman-Gupta-Bleuler form of QED and using them to
derive the ~'l'I for the photon aspects of the theory.

Let us begin by reviewing coherent states in a space of
negative metric. The negative metric gives rise to the
minus signs in the following, otherwise standard, equa-
tions:

The scalar product of two such coherent states is

(z'~z) =e *' * (9)

with the minus sign coming from (1). The functional
completeness relation for coherent states is'

es'~zes~z" ez'~s (10)

where

z z —z =1

as the completeness relation for coherent negative-metric
states. Specifically Eq. (10) is

z —z' z —z z" = —z' z" . 14

II. PHOTONS

We now apply the above results to describe photons in a
representation with indefinite metric.

Physical (transverse) photon states are created by opera-
tors a, (k), s=1,2. The corresponding polarization vec-
tors are e„'(k), p, =1,2,3,0. For example, with k in the z
direction one might take

d z=d9Fzd&z .

The measure in (11) is uniquely determined by (10). It is
then obvious that (9) and (10) translate into6

1=y ( n)( —1)"(n
(

.
e„(k)= ( l,i,0,0),

2
(15}

One may choose to define a coherent state by
R(k) 1

(1, i,0,0) . —

a iz)=z iz) (7} The initial and final states are of the form

tn
i0) .

n!

Again the negative metric is responsib1e for the minus
sign in (8).

(a )'
Ia) = lni nz (17)

~here i = l,2, . . . , oo correspond to the denumerable set
(s,k„) in box normalization.

The interaction will involve the photon field operators
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a„(x) that satisfy, in the interaction picture in the Feyn-
man gauge,

[a&(x),a„(y)]= —ig&~ (x —y) (18)

with g„„=diag(1, 1,1,—1).
When we come to inserting a complete set of inter-xriedi-

ate states in a traiisition-amplitude calculation, this set
must contain the unphysical polarizations

~~-=rr (29)
+S

Note that the bra, &$1, is just &$1 with go replaced by
—g'&& so that

(30)

eq(k}=(0,0, 1,0),
e~ (k)=(0,0,0, 1)

(19) aild

for the reason that the set of states must be complete in
the space sparmed by the four components of a„. Note
that

e"' e =g (21)

S,S

S S SS'
e& e„g =g&„.

(23}

where, with box normalization,

k; =k„=n;n I—L (i =1,2,3),
k, =(k')'"=~„
a= fs, n, ,nz, nil, s =1,2, 3,0,
n;=0, +1,+2, . . . ,

[a~g,a,.]=g~ 8„, ,(i„,~,8„, , (24)

The negative-metric states correspond to the s=O scalar
photons.

III. COHERENT STATES

Coherent states are defined to satisfy

a- I 4& =414& .

Noting the effect of the negative metric [Eq. (8)] the solu-
tion is

I g) =exp(g a g ) 10), (26)

where a summation over repeated indices s,s' and n is
called for. The results of Sec. I can now be generalized to

f ~~I ~&&~I =1,
where

&jI =&01exp(a,g' )

(27)

(28)
l

In the Feynman gauge the IP field is given in tei~s of
creation and destruction operators by

I ikX I —IkX

a„(x)=g a " +at " I.-'"
260 2co

IV. TRANSITION AMPLITUDES

To calculate the trimsition amplitude &btb I at, ) one
proceeds in the usual way: break up the interval
T =tb —t, into N+ 1 equal pica@ of length e and label
the times tt t, +j——e. Insert a complete set of states

1= = E E 2

for times tb and t, . Here
I gt) is the Heisenberg state re-

lated to
I g) by'

I gt) iHtI g) (33)

One easily gets

& b&&
I
«. &= f &t&~t.« I t& &&K&&& I t.&. &&K. I

~ &

%b b bib Nio %

(34)

where the wave functions entering are

Note that g can be replaced by g in the initial- and final-
state wave functions since these states contain only trans-
verse photons [Eq. (17)].

Now insert a complete set at each intermediate time to
get with to=ta& if+1 tb k f&»tv+i fb&

N

14.&= f II &f

We use (32) to write this in the form

N N

Ih. &= f g~C fI&C
1 0

with H =Hip(0).
With the transition amplitude in the form (37) it is easy

to see why the repreientation of the unit operator (32)
must involve a sum over both physical and artificial
modes of the photon: while I

a ) is a vector in the physi-

cal subspace, the ket e "
I
a ) has components in all of

the photon modes, physical and artificial.
Finally, one can see that in the limit e~O, Ne +T,the-

transition amplitude is exactly

IC'. &= f ff~4, II&4 14 & p[ — &4, IH (0)14,&~&4q14 &']. '

1 0
(38}



PEYNMAN PATH INTEGEAL AND THE PHOTON

It is then straightforward to derive the Feynman-path-
integral expression for the transition amplitude; we are in-
terested primarily in the dependence of (38) on the expec-
tation value of the photon field opcxntor a„(x}. This
dependence will be investigated in the following sections.

and identify

g =g'(~-'}tM

and one has

V. FREE-PHOTON KERNEL

The free-photon Hamiltonian in normal-mode form is
&4tb I 4t. &g= &kbtb lht. &oe

Hip(0)= gt0„a a g (39)
=&g, t, lg. t. &,ge- (50)

so, remembering (30)

&CJ +(I&'i(p0) ltd&=X. k +ik &%+ilk&
N, S

Therefore, using (31), the free particle kernel is

N I

(r»it. .). fn=~t, rr *P X.t, .b.
j=1 j=o NS

VII. GREEN'S FUNCTION

Equation (21) gives us the interaction-picture field in
terms of destruction and creation operators:

a(x) =a '+'(x)+a ' '(x) . (51)

According to (25) and (30}their eigenvalues with coherent
states are

aq+)(x) lg&=L 3~ gg eq(k„)(e " /+2coH) lg& (52)
n, S

p~ = 1 —/E'N~ .

&&btb I CHtH &0= ff exp(/bing. ~e

Using (10) repeatedly, one easily obtains the result
—IIQE T)

(42)

(43)
and

&ala„'

kp(x}—I 0& (53)

VI. EXTERNAL SOURCES

We write the free kernel in the form

(t g (t ) ."'""='f

(45)

O 0 A ~ ~

0 A P

—y 1
(46}

Now define the free kernel mth external sources

(fbtb I kate &f,

Nj —g bt(P+g g+g (47}
d 2p'.

]

Set

The dependence on normal-mode indices n, s is suppressed
as we have seen in (43) so that all modes contribute equal-
ly. Here

A «'+'(x, t)
I g, t &=g~(x,O)

I g, t &,

( j,t
I

A H' )(x,t)=(g, t IP(x,O) .
A. 8

Now consider the ba matrix element of A „:
& gbtb I

A H(x, t)
I g.t, &

(56)

(57)

for t, &t &t . As above we can break up the interval
( tb, t, ) into intermediate times and insert a complete set
of Heisenberg states at each time. Make sure that
A„'+'(x, tk) is between (/k+) I

and lgktk& and that
A„' '(x, tk) is between (gktk I

and Igk (tz, &. Then
we have

(g t lbA"b„(Ht, x) Ig.t. &

jM~ x 0 j+)tg+) jt~, 58

where

tl, S,S

—:(P g„(x) . (54)

Note that, of course, g& is not the complex conjugate of f&
because (g I

is not the Hermitian conjugate of
I
g'&. The

eigenvalues of the Heisenberg fields

A H(+)(x f) eiHta~(+)(x 0)e iHt— (55)

with the Heisenberg states (33) are accordingly given by

(48} Jst'~(x, O) —=g~(x, O)+ g~(x, 0) . (59)
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Repeating the above steps gives us the following expres-
sion for the Green's function:

(64)

where x, ={x,,rb;).

x g &gg+, r, +, I g, ti&,
0

&gbtb I [A ~ (x, ) . A ~ (x„)]+I g, t, &

N k)
XI ' Af X~

1

(60)

Then one easily finds with (22)

&4th Il~ p"(»rb)~ (y rI)j+ Ik. r. &o

ik„(x—y) —ice„/ tk —tI J

&kbrb I hr. &o

= —ig„+,(x—y, tk tl )—& gbtb I
'g, t, &o (65)

VIII. FREE-PHOTON PROPAGATORS

I -3/2 e'„(k„}e

ng e' '(k„}e
V'2oi. ~Pa

(61)

on (51). Then since

1 0 0 0

We can use (60) and (51) to evaluate the propagator in
the well-known fashion. Briefly the operation of
A &(x,tb) on the left of (60) is equivalent to the operation

as one should hope.
These calculations are, of course, elementary; the reason

we show them is to demonstrate that the usual Feyninan
rules follow from the formalism of Sec. III without fur-
ther ado. There is no need to impose the subsidiary condi-
tion on the intermediate states as suggested in Ref. 3. In
conventional QED current conservation in the Heisenberg
picture prevents the generation of the artificial modes
(briefly, the subsidiary condition prohibits the 3 —0 com-
bination of modes from the initial and final states and
current conservation prevents the combination 3 + 0 from
coupling); it also does the job in the FPI formalism. A bit
of care is required, however, because the current appear-
ing in (38) via

(pi+i I
H Ip'(0)

I gi & =ie f d'x &gj+i I
a„(x)j "(x)

I gj &

i.e., the current

y
M '= y

y'

1 0 0

y ] 0 e ~ ~

y'y1

one has

M 'ki=yb I if k )I,
M 'b1=0 if k (I,

(62)

(63)

J"(x,tj ) = & gj+ ) I j"(x)
I gJ &

(with the kets now including the charged-particle states) is
not conserved simply because the parameters gz may be
arbitrarily chosen. On the other hand, once the integra-
tions over all the gi's have been performed the free-
particle time dependence is restored via the charged-
particle equivalent of Eq. (64) and the current to which
a&(x) couples is again conserved.
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