
PHYSICAL REVIEW D VOLUME 33, NM6)ER 4

Feyntrtan path integral and the interaction picture

15 FEBRUARY 1986

Robert E. Pugh
Department ofPhysics, Uniuersityof Toronto, Toronto, Canada MSSIA7

(Received 16 September 1985)

The role of interaction-picture fields in the construction of coherent states and in the derivation of
the Feynman path integral for interacting scalar quantum fields is examined. Special attention is
paid to the dependence of the integrand on the intermediate times and it is shorn that the Feynman
rules are valid prior to taking the limit wherein the number of intermediate times goes to infinity;
thus, this number does not act as a cutoff in divergent amplitudes. Specific normalization factors
are determined.

I. INTRODUCTION

Ever since Feynman put Dirac's conjecture' on the role
of the action in quantum mechanics on a firm footing,

&f
~

i & g eis/ti (1)
paths

surprisingly little work has been done towards deriving
the Feynman path integral (a'PI) for quantum field theory
from elementary Hamiltonian quantum mechanics even
though the FPI approach is now the basis of much of
modern field-theory work. Polkinghorne showed for
field operators possessing eigenketss

j(x,t)
~

P', t & =P'(x, t)
~

P', t &

and satisfying the FPI postulate (or definition)

In this paper we try to take the simplest route to the
FPI principle using coherent states that are interaction-
picture states at t=0. This allows us to discuss the
dynamical evolution of coherent states in the Heisenberg
picture and the simplicity of the equations allows us to ex-
amine in some detail the following.

(1) The derivation of the FPI postulate Eq. (4).
(2) The derivation of the Feynman rules before the limit

e-+0 is taken just in case the inverse of the time interval
e ' acts as a cutoff in divergent amplitudes. (It does not. )

(3) The derivation of some intermediate forms of the
FPI that are possibly more suitable for actual calculations.

(4) The modification of the wave functions of the initial
and final states. The extension of these results to the
complex scalar field is trivial; the special problems associ-
ated with the photon will form the subject of a subsequent
paper.

(3)

the equations of motion and equal-time commutators of
conventional field theory follow. For free canonical
fields Eq. (2) has no solution; we show below that its
derivation from (3) involves an unjustified interchange of
limits. Mathews and Salam7 postulated the FPI equations

II. COHERENT STATES

A coherent state may be defined bys

[X&=—ea "-(0&,

where the "scalar product" is shorthand for

atX=+a X (6)

&P-t-~(q(x, )".q(x„)),~Pt &

=N ' p(x ) (p(x )e (s') "5p

and derived propagators as functional integrals over the
c-number fields y(x). In the case of Fermi fields one had
to assume the c-number fields anticommute.

The 1960, IQauder invented the coherent states to
serve as eigenstates for the positive-frequency part of the
quantum field operator, i.e., the destruction-operator part,
and derived the FPI for the Schrodinger one-particle field
theory. In 1978, Hammer, Shrauner, and DeFacio used
coherent states with arbitrary time dependence and associ-
ated interpolating fields satisfying the I.ehmann-
Symanzik-Zimmermann weak asymptotic condition' to
derive the FPI from the S matrix. Swanson, " in 1981,
used similar time-dependent coherent states to discuss the
scalar and electromagnetic fields.

a iX&=X )X&,

and the scalar product of two such states is

x'x&X'ir&=e- '-.
They form an overcoinplete set,

J ~X ~X&&~
~

=1,

(8)

(9)

(10)

with the sum extending over the denumerable normal
modes of the system. The creation and destruction opera-
tors for these modes satisfy

[a,ap~]=5 tt, fa,att]=0. (7)

The parameters X, are arbitrary complex numbers. The
coherent state is constructed to be an eigenstate of the de-
struction operator,
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with the measure in
( a, t&, =e '~'~a, o&, (21)

&X=+ e
a

uniquely determined by (10). Here d X =—d9FXN d&X .
The following useful integral can be established by ele-

mentary methods

f &Xe- -e- 5('=e& '~f. X I (12}

with

p'+'(x)
~
X)=X(x)

~
X) (14)

X(x)—=p'-'t(x) X

and is equivalent to (10).
A free real scalar field is defined by

y(x)=—at p' '(x)+p' —'t(x) a, (13)

where y'+'(x}—=y' "(x)—=p' ' (x) and y' '(x} are
positive- and negative-energy solutions of the Klein-
Gordon equation for the mode a which are normalized in
the usual way. The coherent state is an eigenstate of the
destruction-operator part of q&:

as the meaning of the t dependence is quite different in
the two pictures.

A direct consequence of (20} is that the Heisenberg-
picture states satisfy a completeness relationship of the
orm

X Xf HH Xt =1 . (22)

In the following the only t-dependent states will be
Heisenberg states and the t-independent states will be the
IP states. Thus we can drop the subscripts H on the state
vectors without ambiguity.

III. TRANSITION AMPLITUDES

The amplitude to go from the state
~
at, ) to the state

~ bts ) is &bts
~
at, ). We can use the completeness of the

Heisenberg states to write this as

& be I
a4 & = f &X.~Xb &btb

I
Xbtb) &Xb41Xutu &

X &X,t,
~

at, )

=f &X,~Xt+t, (Xg)&Xt tt, ~X, t, )(X,), (23)

which is also a positive-frequency solution of the Klein-
Gordon equation.

We identify the coherent state as an interaction-picture
state at t =0:

where the wave function of the state a is defined as

'Il, (X)=—&X
~
a) =—&Xt.

~
at, )

and is normalized in the sense that

(24)

iX,O),p—= iX) . (16) (25)

The IP state at other times is determined by the usual
time-development operator

but it is important to note that it is not an eigenstate of
y'+'(x, t). Time-dependent coherent interaction-picture
states can be defined '" but they are an unnecessary com-
plication.

The Heisenberg picture

The Heisenberg-picture fields are defined by

q&'tt-'(x, t) =e' p (x,O)e (18)

[note that the eigenvalue is X(x,O) not X(x,t)] so it is re-
lated to the IP state by

~X,t)tt=e'~'~X) . (20)

{Note that no eigenket of hatt =—p It+'+y tt
' exists. ) Equa-

tion (20) gives us the dependence of the Heisenberg state
on the parameter t; this should be contrasted with the
Schrodinger-picture time development

They are not necessarily positive- and negative-frequency
components. One defines the Heisenberg state

~
Xt )tt to

be an eigenstate of y ~+'(x, t )

q H+'(x, t) ~X,t)H =X(x,O) ~X,t)tt

These wave functions are closely related to the usual
harmonic-oscillator wave functions. [See Eq. (76) below. ]

Now we concentrate on the kernel &Xbtb ~X,t, ). In the
usual fashion' breakup the interval T=tb t, into N +—1

equal parts of length e and label the intermediate points
by tk ——t, +ke. Also let X, =Xo and Xi, ——Xz+, . Insert a
complete set at each intermediate point:

&X ~X. .&= f +~X, g &X, „~X,, &. (26)
j=O

A typical matrix element is then from (20}

&X, +it, +i ~XJt; ) =&X,+i (e '+ '
~X, )

=&X,.+) ~e "~~X, )

=&X,.
~

"
~X, ) . (27)

In the last step we used H =Hip(0) which follows from

(18). The matrix elements of Hip(0) are easily calculated

but the matrix elements of higher powers of Hip(0) are
messy. Fortunately, these higher powers are not needed
because of the following lemma:

N

j=0

&X;+, ~H,p(0) ~X, &

XJ+i ~XJ. exp ie-
; 0

' '
&X, +i~X, &

(28)
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which is exact in the liinited e~O, Ne= T'. This is easily
checked by direct calculation by noting that terms like

~ ~

e and k are eN and are mite awhile terms like

j are N and vanish in the limit. %e discuss the
possibility that the correction 0 N might contribute in
divergent amplitudes later on.

The interaction-picture Hamiltonian for real scalar
fields is

H~= X 2.'p X '+ 2': gX

&Xbtb I Q'tt(xi } 0'tt(x. }]+I X.t. &

= y q(~i) q(x„)g &XJg &Xj~itj+i IXJtJ &,
1 0

(34)

where we have put yb(x, O) =y(x, tb) for simplicity. This
result obviously will lead to the FPI equations [Eq. (4)].

U. NORMAL MODES

+—':[y(x)]':+:V(p(x):I .

In evaluating the matrix elements of Hip, special care

must be given in the y term; this is trivial when the fields
are expressed in their normal-mode form.

Collecting together these results one gets

Since XJ(x,t }satisfies the KG equation

8
(V m—)XJ(x,t)= z XJ(x,t)t'

and is positive energy, me can put

1(„(x)XJ.„e™~
XJ(x,t) =

n 2ton

with f„(x}a real function satisfying

(35)

(36)

j=0

&X,„IH(0)IX, &

Xexp ie—
(V —m )p„(x)= —co„1t,(x),

I d'xP„(x)g (x)=5,

g tt„(x)f„(y)=&(x-y) .

(37)

(38)

(30)

Note there is no explicit dependence of the integrand on
the intermediate times t~. These times will reappear in
the FPI when one defines a differentiable function X~(t}
which has values XJ at times tj but which is otherwise
arbitrary.

IU. GREEN'S FUNCTIONS

Now consider the expectation value of the Heisenberg
field (Xbtb I yH(x, t)

I X,t, ) for tb & t & t, . We write

+H =iP~ ++~ (31)

via (13) and (18). We break up the time interval as above
and put in the N complete sets of intermediate states;
identify t with one of the intermediate times, tb, say.
Then sandwich Q sr+ '(x, tb ) between (Xb+ itb+ ~ I

and

I Xbtb & and sandwich q tt '(x, tb ) between &Xbtb I
and

IXb itb &). In the first case the eigenvalue Xb(x,O) is
produced and in the second case Xb(x,O). Defining

qk(~ )=Xb(~)+Xb(x)

one has the result

(Xbtb I pre(x, t) IX,t, )

=J,(,0) g NX, ff (X, ,t, , I X,t, )
1 0

which is just what one would have obtained if hatt(x, t)
had the eigenvalue yb(x, O). (Note that tb & t & t, is neces-
sary for the separate values of qr'+' and p' ', if t =t, or
tb the above proof does not go through. Therefore one
must take the limit t~t, or tb after the limits implied in
the functional integrations. ) In a similar fashion one
dcrlvcs

For example, normalizing in a cube of side L gives
' 3/2

2
g (x)= I.

The free field expansion is then

t im„ij(x,t)=g (a„e " +a„e ")
n 2ton

and the free-particle Hamiltonian takes the usual forin

HO=+ tonanan .

The total Hamiltonian in the interaction picture,

Hip(0), has matrix elements

(Xj+) I Hip(0)
I Xg )

&X,„IX,&

=+co„XJ'+i„XJ„+f d'x V[XJ'+i(x)+X&(x)] . (43)

The dependence of the transition amplitude on the inter-
mediate times comes from its dependence on the index j
not from the t dependence of p(x, t).

UI. FREE-PARTICLE KERNEL

When V=O one has immediately from (43), (30}, and
(9)

j=0 n

%+1=g ey„Xb„X.„,
where
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ys = & —&&~l ~ (45) 1 0 0 0

In the last step in {44) we used (12) repeatedly. Now take
the limit N~ ce and get the result

y 1

M '= y y
y' y'

0 0 0 ~ ~

0 n n ~

~ n ~

(56)

(Xbtb IX tu &0=exp QXbnXune

VB. FREE-PARTICLE PROPAGATOR

One can write the free kernel in (44) in the form

(x t Ix t &
ei ui +ixbi g ie xtbtx-x '+x ' ~ dX

j

(46)

(47)

for j)k one has

M 'ik ——yi, M 'bi ——0.
The index j is determined by

fj—f~ f) —f~j= = (%+1}
T

(t~ -t& )(N +1)/T -Iu(t& -ti )

y =y ~e as a~0.

(58)

(59)

Here X MX is a matrix product in the space of the sub-
script j; the normal-mode dependence is suppressed as it
plays no role here:

X (XoyXi i ~ ~ ~ iXN+i) y (48)

0 0 ~ ~ ~

0 0 ~ ~ ~

—y 1 0
0 y $ ~ ~ ~

(49)

Define

&X,t, IX.t. &,

~~. i + ~~b I ~j -x'~x+x~g+
7T

(50)

and identify

(51)

(54)

and one gets

&Xbtb I Xutu &g=(Xbtb I Xutu &W (S3}

Now examine (Xbtb I [Qtt(x, tl)hatt(y, tb)]+ IX,t &~.

From (34) and (53) one son that the operation of pter(x, ti )
is equivalent to

Thus, we have

(Xbtb 1[eH(x,ti)iptt(y, tk)]+ I X.t, &

1(„(x)1(„(y) ; „ig t, i

82'
—= —id, (x y, ti —tk—) . (60)

Note that the only place where terms of order e were
dropped was in taking the limit in (59).

In the calculation of transition amplitudes via perturba-
tion methods, the matrix element of V that enters is

V[Xi+i+Xi] rather than V[Xi+XJ] so the propagator
that replaces (55} is proportional to M 'ki+M '1+i b+ i
instead of M 'ki+M 'ib. Because of the form (56) of
M ' these are identical so the Feynman rules are exact
prior to taking the limit to e~0. Thus e ' cannot act as a
cutoff for the integrations over intermediate energies. At
this point, we can also appreciate that corrections to (28)
or order e N cannot contribute even in divergent ampli-
tudes because they essentially involve e Vs[Xi'+ i+Xi] and
will be connected in the amplitude to other vertices via the
exact propagator discussed above.

VIII. FORMAL DERIVATION OF THE FPI

Once it is appreciated that e is not a cutoff in diver-
gent amplitudes the limit e-+0 can be taken without ap-
prehension. Because we are dealing with the real scalar
field the interaction in (29} is a function only of 9FXJn in
the limit and the intergration over &Xi„canbe carried
out explicitly. {For a complex scalar field one has two
sets of complex parameters like Xj„andtwo sets of inter-
grations can be carried out at this stage. } The complete
expression for the kernel is

&Xbtb I Xuto &

on (50) and hence on (S3). Specifically one has

&X.t, I [y (x,~, )p (y, t, )], IX.t. &.

&Xbtb IXutu &0

=g (M 'bi+ M iib ) . (55)
„(x)„(y)

s 8

«g ~nX—i+ inXJn

N

ieg f d—x Vi{x)
0

(61)
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Vj(x) =—V[X,'+1(x)+X,(x)]

First one finds

N

+ 2 g (Xj+lnXjs XjsXJ +In) ~

0

When time derivations are defined by

(63)

QXJ'+1„X,„—g I Xj„I'
0 1

N
=

1 IXbn I'+ i IX' I' —1 Q IXJ+in XP I—'
0

e
—IX~ )

~/2 —)X
~

2/2 —Ay ~ —y~~~)n os e os cN

where

X&Xbtb IX.t. &=f ~q~"', (7l)

and pjn —Mjn.
Now consider the modification of, for example, the ini-

+ I~. I'/2
tial wave function by the factors e ' and e '" '"
and by the integration over WX,„—=y,„.Specifically con-
sider

Xj+1„=—X„(tq+1)
3 e —(x2+y2)/2eix (73)

N

11=exP —g[ z (Xj+1Xj XjXj+1) iet0
j=0

Io X1

I2= I1 y2

etc. One easily finds

(65)

X/2

exp (xJ ~1—xJ 1) 1'Ecox/—
4ECO

&exp( 'ere
I
X—a I +iy,x 1 iybxN } . —

==X„(tj+e)

=X„(t,)+eX„(tj)+ —=X,„+eX,„(64)
and third term in (63) is O(e ) and the last O(e) while the
first two terms relate to the norms of the initial and final
states.

To lowest order in e, V is a function of SPX so we per-
form the WX integrations: Let X„j=x„j+tyj„anddefine
for each mode

l.et ilI, be the wave function of some general state such as

t k„
(74k„!

(X+ )kn

+,(X)—= &X I
tt & =g (75)

then define %'(X) as the wave function of a specific mode,
i.e. %(X)—=(X') /v k!. We need the formula

e~~
I

I

k

e ~ ~ ~y ~~ ~ ~ I

~~

j
dy (x iy)" &,

—2+ 11/2 &k(v 2x)e
~i~ (2k-'~k1)'" ' (76)

where Hk is the Hermite polynomial. With the normali-
zation

f dyUk

we have

where k„=0,1,2,. . . is the occupation number of the nth
mode:

(66)

The first exponent corresponds to a simple harmonic os-
cillator with coordinate (2jco„)'/xj„.The second is so that

—P/4 (77)
2

'

t(y, x, ybxb)+O(—e) (67)

(68)

so that

and will modify the initial- and final-state wave functions
as wiB be shown in Eq. (76).

By reversing the normal-mode decomposition procedure
one finds directly with p(x, tj )

—=XJ (x)+X/(x)
)2( j xin +xj—1n) 1 4dxj (x),

J,N 8

g e~„xq„,f d x——[rn qP(x}+(Vq&) ], (69)

23/4~ —1/4 Uk

Thus we finally get

( b &

0'as tbn
U

tand df + (2 )1/4 (2 )1/4

XUI

J" eis[q )

1 (4~i@m„)'/
(79)

S[q)]=f d x [ ,
' j) —,

' (V'y) ——,
'

m —p ——V(y)) (70)

is the exponent in (66):

At this point we have derived the FPI in its usual form
(79) with all the normalization constants explicitly shown.
For practical purposes the transition amplitude is some-
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times more conveniently expressed in terms of the com-
plex parameters Xl„than the real parameters pl„.Com-
pare, for example, the harmonic-oscillator wave functions
in complex form Q')" with the real form

Hk(tpl&2co)e e' ~ . Thus the kernel in the form of Eq.
(61) may be more useful than the form (79).

IX. DISCUSSION

The purpose of this work has been to relate the FPI for-
mulation of relativistic quantum field theory to elementa-

ry canonical field theory. No attempt is made at this
point to treat either theory with more than the conven-

tional minimum level of rigor although some discussion
of divergent amplitudes setmned appropriate. Also, no dis-
cussion of renormalization was attempted since the prob-
lems seem to be the same in the two theories and are not
relevant to the relationship between them.

The formulation of the FPI for fermions has not ben
addressed here. It is clear that a relationship of fermion
transition amplitudes to some form of path-integral prin-
ciple with commuting c-number fields must exist and its
form for free fields is easily derived by following the pro-
cedure of this paper with the appropriate modification of
the basis states

~
X) to take into account Fermi statistics.

The form of the path-integral action principle for in-
teracting fermions is not self-evident.
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