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Higher-derivative operators and DeWitt's WKB ansatz
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%'e investigate the short-distance behaviors of the higher-derivative operators appearing in some
field theories which attracted much interest recently, for instance, higher-derivative quantum gravi-

ty. This study is important to find the short-distance structures of the related propagators and the
one-loop divergences. %e develop an algorithm which can be used to find asymptotic expansions of
the heat kernels for higher-derivative operators. Our method is applicable both to flat —and to
curved —space-time cases.

I. INTRODUCTION

In any quantum field theory, knowing one-loop diver-
gences is important. In particular, whether a given theory
is asymptotically free or not is usually determined from
the one-loop counterterms. The proper-tine method in-
troduced by Schwinger' and developed further by DeWitt2
has proven its power in calculating one-loop divergences
of various models. According to this method, the
one-loop effective Lagrangian is determined by the
short-distance behaviors of the heat kernel, i

(x
i

exp( —rM )
i
x'), where the operator M is found from

the kinetic term of the Lagrangian in the presence of suit-
able background fields. The one-loop divergences can be
found by computing the first few terms in a power-series
expansion of the heat kernel with respect to r, which is
usually called an "asymptotic expansion. " So far the al-
gorithm used to calculate this series is restricted to the
cases of second-order operators.

Recently, the interest in higher-derivative field theories
has increased. The difficulties in renormalizing Einstein
gravity led many physicists to consider quantum gravity
with a quadratic Lagrangian. After some effort, this
modified gravity turned out to possess several good
reasons to be regarded as a promising candidate for a
gravity theory. This model is renormalizable and exhib-
its asymptotic freedom. Moreover it seems to reproduce
Einstein gravity at the low-energy limit. The main obsta-
cle to construct consistent quantum gravity from this
model is the lack of a manifest unitarity, which is com-
mon to all higher-derivative field theories. Some authors
argue that the Lee-Wick mechanism can be used to over-
come this problem. Conformal supergravity, the dipole
gluon model, ' and a few other theories" are the other ex-
amples.

In this paper we shall generalize the algorithm of find-
ing asymptotic series to the cases where the operator M
has a higher order. For the theories mentioned in the
preceding paragraph, M is a fourth-order elliptic differen-
tial operator. Our method can be used to compute the
asymptotic series for an operator with any differential or-
der and works both in flat and in curved space-time. If

the operator can be written as a product of second-order
operators, the original De%itt algorithm may be used to
find the one-loop divergences, as was done in Ref. 12. Re-
cently, some authors developed a reduction scheme' with
which the functional determinant of a higher-order opera-
tor can be expressed in terms of the Green's functions of a
second-order operator and, combining this with the origi-
nal Schwinger-DHVitt technique, the one-loop divergences
can be obtained. In contrast with these works, with our
method, one can compute the asymptotic expansion
directly which contains much more information than the
one-loop divergences. As will be seen in Sec. III, in some
cases our results disagree with the previous one' in the
boundary terms which have been neglected in Ref. 13.

Although we can calculate the one-loop divergences of
the theories mentioned just before, using our elegant
method, we do not because our aim is just to generalize
the algorithm for the asymptotic expansions. In the next
section, we derive a generalized algorithm in flat space-
time. In Sec. III the generalization to curved space-time
is given. The final section contains the conclusions.

II. FLAT SPACE-TIME

First we describe the proper-time method briefly. 'i
Throughout the paper we work in Euclidean space-time
with metric signature (+++ + ). The Minkowski—
space-time cases can be obtained by an analytic continua-
tion to imaginary time. For a positive operator I, the
logarithm of the determinant is given by the formal ex-
pression

ln(detM )= —I Tr[exp( —rM )],
where g denotes the proper-time cutoff. Typical examples
of second-order operator M are

—D„DI', —D 5„„+2iFp„,

where D& denotes the covariant derivative associated with
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the Yang-Mills field A„=A„'T' with group generators
T', F„„its field tensor, and rr&„——,'r—'[y&,y„] .Next we

list some fourth-order operators:

M'(x~
i
x') = — (x~ i

x'),
(12)

( —8')', ( —D )',
( D—5q„+2iF~ ) +2X.D6q„4X—„D„,

(3)

where Xi = i [—D&,F»] and the third example appears in
the dipole gluon model. '

In general, one may consider arbitrary 2dth-order
operators where d is a positive integer. Suppose that M is
any 2dth-order operator such that, when the background
fields vanish, it reduces to

Mo ——( —8 )

Mo(xr~x )p ——— («~~I«)p.

(1+—'z Cl)1= —'d( —C3 ) 1 (13)

Denoting

(xv
~

x ) = («T
~

x )pH(x, x, 'r),

we can prove, using rule (11},that

(14)

Applying rule (11) to the second equation of Eq. (12), we
obtain the following differential equation for 4:

Here possible mass parameters are regarded as one kind of
background field. The operators listed in Eqs. (2) and (3)
satisfy this condition.

For the trivial operator Mp, the heat kernel can be writ-
ten in the form

H(x, x', r) = exp[ —M(D+ CI)] exp[ —(Q+ Q)2]"1

= exp[ M(D+—Cl)]exp( —Cl ) 1

= exp( —m )I, (15)

& «
~

x'&o—= &x
~

exp( —~Mo)
~

«'
&

cf@( z2) (5) [Dq, CI„]=0 and [CI~,CI„]=0. (16)

with m =M(D+0) —( —2 ) and M =rM Here. we
have used

where z„=(x—x')z/i'~ and 4 is a C" function at
z =0 with an integral expression

@(—,'z )= f dpp f ds(1 sz)'—~e'r e i' . (6)
4n

When d = 1, 4(x )=(1/16m ) exp( —2 'x ). For d )2, 4
is not integrable and is available only in series expansion.
For example, when d =2,

Note also that

[Cl„,z„]=5» . (17)

Now we return to Eq. (1). For the operators given in
Eqs. (2} and (3},Eq. (1) gives the proper-time representa-
tion of the one-loop effective actions provided the overall
factors are adjusted. From Eqs. (7) and (14), we can write
the one-loop effective action as

4( —,z )= z~+ o ~ ~

32m2
(7)

dr I (1+2/d )dx trH x,«, 7 (18)

We will see that the detailed form of 4 is not relevant for
our purpose.

Next, let us consider the heat kernel for general M.
Without loss of generality, M is assumed to be expressed
in terms of the covariant derivative D& =8„iA„and th—e
other background fields P, i.e., M=M(D„,P). Then it
follows that

(«r
~

x'& = (x
~

exp( rM)
~

x')—
= [exp( —~M") exp(rMo)](xr

~

x')p . (8)

where tr means the trace over the internal indices. It is
obvious from Eq. (18) that for the ultraviolet divergences
we need only the terms in H(x, x,r) with order up to
o(H").

In calculating H using Eq. (15), H is expanded by r'~
and z„rather than ~ and (x —x')„. For the d =1 case
where 4= ——,, 0 can be also expanded by v. and
(x —x')„, however, which are not appropriate as expan-
sion parameters when d )2. Now we illustrate our
method when M = —D and d =1. In this case,

Every time D& and r}& pass through (x~
~

x')p, they are
replaced, respectively, by and

m=M(D+0)+Q = D —2D 0— (19)

D„"+~ '~ (8„+z„+) and r}'„+r '~ (B„+z„+) (9)

with B„=B/Bz"and %=4 'O'. Here we have used Eq.
(5} for («~ ~x')p. %' is also C" at z=0. Introducing the
operator

H= g (D +2D Cl)"1 .
n=O ".t (20)

Since [D„,CI„]=0, we may evaluate each term by com-
puting strings of 0's and D's separately. Since

U„=B„+z„+(—,z ),
we can rewrite the substitution rule (9) as

"D~ D p+ Up and v'~
imp

—+8p+ Cl~,

where D„=~'/ D~ and B~——~'~ B~.
The heat kernels satisfy the Schrodinger equation

(10) D =rD, D„=~~D„,

o„= +v ~„,1

QyP

with y"=(x —x')i', we conclude that

(21)
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m =r(D +yD)+D„» g

Ricci tensor and scalar curvature are defined by

R~„——R ~„and R =R~" . (30)

+—[I(CI D)' D ))+o DD'o D]

+ (o D)'+O(H")

F»&» +O(r'),pv

where we have used the following identities, for z =0:
1

CI» —0, CI»Cl„——,5»„,

(23)

I:j»CIA) CI.= 4 (5»A.+ ' ' ' »
and so on, which can be proved from Eq. (13). Using Eqs.
(20) and (22), we can find H(x, x', r =0)

H(x, x', r=0)= $ y„y„D ' D '1( —1)"

n=O
Is

x
=P exp i ds„A»(s)

x
(25)

For general d, when r, z», and x» are regarded as in-
dependent variables, m is O(r' ) There.fore Eq. (15)
may be used to find H in power series of ri~ and z„.
Now we illustrate our method for the d =2 case. We con-
sider here the simplest one M=(D ) . Let us first find
m =(D+CI)"—(CI )~,

and therefore H can be expanded by r and y" as well.
Keeping the terms in the series (20) with order up to

O(r ), we have

H(x, x,r)=l+D + —,[(D ) +4(CI.D) ]

In curved space-time, instead of D»=d» iA—», we
must use

V» 8»——iA—»+ I »(i)
(~)

%vhere the indices within parentheses show the matrix na-
ture of I». Then operator M is expressed by V„, i.e.,
M=M{V»,P}. For examples, we may consider

V»—V», —V2+4R, (V2)2

(32)
V +C»„V»V"+D»V»+E,

where the second term operates on spinors and R denotes
the curvature matrix with isospin and spinor indices. The
last example in Eq. (32}appears in higher-derivative quan-
tum gravity.

The heat kernel &xr
I

x'& = &x
I

exp{ rM) —
I

x'& satis-
fies the Schrodinger equation (12) and the boundary con-
dition

&xr
~

x'} = 5(x —x'),
+0+ g- (33)

where g = det(g»„}.
Analogous to the fiat space-time cases, let us assume

that &xr
~

x'} can be written in the form
T

&xr ~x') =r '~"C,
~d H(x, x', r), (34)

for some function H. Here o is a biscalar a(x,x'), half
the square of geodesic length from x to x', which is a
generalization of (x —x') /2 in flat space-time. Similarly,
we introduce

m =(D ')'+2I CI D,D ']+4(CI D)'

+2C3 D +4C3 C].D

Inserting this into Eq. (15), we find

(26)
o„=g„„(x)a"+z„q, (35)

where z„=r' o—„and 8"=8/Bz„denotes the partial
derivative by z„at fixed x. To be precise, we write

H(x, z =O,r)=I —F»+»„+O—(r ~2),
IJ}

where we have used, for d =2 and z =0,

CI =1, CI =2, F12 (28)

and so on. In conclusion, we have shown that, for any
higher-order operator, our method gives a simple rule to
calculate the asymptotic series of the heat kernel.

8»
Qz»

Note that biscalar o is also defined by2

2o'=o»o"" and o(x,x')=o(x', x),
together with the boundary conditions

a=o „=0 and cr „„=g„„for x =x' .

{36)

(3&)

III. CURVED SPACE-TIME

The algorithm developed in the preceding section is
easily generalized to curved space-time. Before doing this,
let us be precise about the notation. %e use a metric ten-
sor g „(x) with signature (++++). A curvature tensor
is de ined by

R~ '=~ ',~ —~~ ',-+~ '"~p' —~~'~~' (29)

where I»P denotes the torsion-free affine connection
preserving the metric g„„(Ref. 14). We use a comma for
ordinary derivative and a period for covariant derivative.

Hereafter we shall use the form o» ——o» and a»„——a»„.
The substitution rule (9) can be generalized to curved

space-time by a slight modification. Operating V„on Eq.
(34), we find that

r"~V„@=@(r"~V„+z„q)

=N( V»+ a»~"),
where V „=r'~~V» a»P" and we—have used

{40)

Then similar to Eqs. (16) and (17), we can find
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[V„,CI„]=0=[V„,z„] (41) V„=O(i"~) ~d Cl„=o(r') . (46)

[CI„,CI„]=0, [CI~,z„]=g~„(x} . (42}

Derivation of Eq. (41) is not simple and left to readers as
an exercise.

Analogous to Eq. (15) H defined in Eq. (34) is given by

H = exp[ —M(V &+n&+")]exp( —Clz)~1 . (43)

This can be proved by showing that H in Eq. (43) satisfies
the Schrodinger equation (12) and the boundary condition
(33). Here we omit the detailed proof. With Eq. (43), H
is expanded by ~'~~ and z„. Of course, this implies that
H is C" at r=z„=O with respect to the variables r'~~
and z&. When d = 1, H can be also expanded by r and cr&.

Hereafter, we regard H as a function of r, z„, and x".
For this, let us define

TA, 8, =8($2 —si)A. ia.2+8($2 —$1)8.2A. i

Then Eq. (47) and m, have the series expansions
1 1

T exp f ( m, —}ds =1+f ds( —m, )

1 $1

+ $1 $zms ms

(4&)

I.et m =M —Mp where M =M(V„+cr„) and

Mp ——( —CI ) . Since M(CI„)=Mp for vanishing back-
ground fields and V„+cr& C——I„+O(r' ), it is obvious
that m =O{r'~). We calculate the series expansion in
Eq. (43), using the formula

1

exp( —M) exp(M p)= T exp f ( —m, )ds, (47)
I

where m, = exp( —Mps}m exp(M ps) and T denotes the
anti-"time"-ordering operator defined by

H(x, z, r) =H(x, x', r) . (44}

Similarly, we can view o&„as a function of x, z, and ~.
For later convenience, let us define

cT
i&
—=0'i&»CI

o'i&. i,=[Vi,&o'i&) &

+ ~ ~ ~

m, =m+( —$)[M p, m)

+—( —s) [Mp, [Mp, m]]+ (SO}

o p 7„=[CIi.&&. 1&) &

and so on. Then it is clear that o &i,i, . . . &
——O(d ) at

least.
Now we prove that, in calculating H to a given power

of r, we need only finite terms in Eq. {43}. Noting that
CI„ is not a differential operator when operated on a func-
tion of x, we permute V„'s and CI„'s in each term of Eq.
(43) so that CI„'s are on the left-hand side of V„'s. With
this form, we can evaluate the strings of V „'s and those of
CI„'s separately, since strings of V„'s evaluated on 1 de-

pend only on x. In this sense, we may write

= —(V +2o qV "+cr„"+(r CI ), — (51)

Equations (43), (47), (49), and (50) form a main frame
of our algorithm for the asymptotic expansion. We illus-
trate our method by calculating the coincidence limit of
H, i.e., H(x,x,~)=H(x,z=O, ~) up to O(r ) for opera-
tors —V and ( —Vz}z. To do this, let us first find m.
After a little bit of calculations, we have

m = —(V+o) +CI

m =(V+cr) —CI =V +2CI~[V",V j+2o zV +4crl'o "VqV„+2(ICI 3 j+o „+2C}qo„"+[cr~'o j)V"

+2CI+ "+o ' + I CI', hj+2C}„o +o'—CI'+O(r'"), (52)

]/gf A.[o ~,cr „]—cr I„„}=r R~„i~ CI {53)

where 5=o& ". Inserting these expansions into Eqs. (43),

(47), {49),and (50), we can evaluate H.
In order to calculate various quantities involving 0.

& s,
we need more techniques. %e want to expand cr

& by z&'s.
This can be done by using the identity

N

~k ~1 ~k-1~k+1 ~N
0 . . . . . . =0.

R~l

From Eq. (55) we have, for z=O,

A0'
I 1'I 2 I a g ~ ~I 1 ~kjI 2 ~k —1I k+1 ~ak~2

(SS)

(56)

with o(„»I=cr~»—cr»~ From crq=o "o ~& we also"
have

z G=z o. (54)

Differentiating Eq. (54) with C)„s, we easily find that,
when z=0, 1/dt7

( -1=[0'i&,cT ] cT [i& 1
—7 Ri& i—+ CI (57)

Denoting r7& ——o „—Ci„, Eq. (53} can be rewritten in the
orm
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From Eqs. (56) and (57), we can compute the series ex-
pansion of o „,recursively. First it is obvious that

For M=( —V ), our result is

H(z=0)=1+r'/2b, +rhea+ .
0"~=0 and CT ~=0 ~ (58)

with

cr „-„g———,
' r' (R„ i +R„i )CI',i/d

P/2d
o „vga= (R&i,z „+ permuted terms)C3i',

P/d
12 p1pC. A&+ 9 RA+TO'R \pCC~p, .vX+p

=

+ permuted terms}CI

for z =0. These results may be used to find

~1/d /2d

g~~+ ~ ~ ~~ ~+ 12
/(lent

+ z z~z "z ( ~R~y„rs —3R~—p R~rs„)

(59)

in the coincidence limit. %hen n =3, 4, and S, we have
bi ————,0 R and bz ——2az .

Note that CI = Vn—when z=O. The relation b2 ——2a2
was expected to hold, even before the calculations because
ln[det( —V ) ]=21n[det( —Vz)].

Next, let us consider a more general d =2 case

M =V' +C„„V"V"+D„V"+E, (65)

where C&„, D&, and E denote arbitrary matrix fields with
additional space-time and internal space indices. Then we
should add to m given in Eq. (52) the term

imam

=~r(Cq„V "V"+C(q„)CPV "+Cq„o "cr "}

+r / (DqV" +D„CP)+rE,
with

+ ~ ~ ~ (60) «~~ &=C~ +&~ (66}

Note also that, when z =0,

o "=—2' ' ~~= —Re . T aP y Y .a

0 &~&=O
aP. 'P

Now the calculations are not difficult because
km =O(~~) Follo.wing the similar steps to the previous
cases, we have

hb] ————'C Cl

b b2 ,'iC~pF——~~—~,
' D~'+ ——,

' C~~ i'll'

——,', C(„„)'""—E+ ~ (C } + —,', C pC'

+—„(RC~ —R~gC '~~'} . (67)
In Eq. (49), we frequently meet (&„),. For complete-

ness, let us now write (cr„), in the coincidence limit for
d = 1,2. Using Eq. (50), we can find, for d = 1

This result agrees with that given in Ref. 12 except for
the coefficients of C ~ J and Ci~~~'~~. These terms have
no physical relevance when the boundary effects are ig-
nored. Furthermore we can include the term
B~p„V V~V" in M. Calculation in this case is straightfor-
ward, but not pursued here.

(o q)g ——Clq+R~O ( ——,s)+o'„a yCI~2s

+& a 1) gs +0' a PpCltl 2$ + '''
whereas for d =2

(cr~)g ——Cl~+R~CP( —', s)+ 0'„a yQ~( —4s+ Ss 0"}

+cr&a 1) ( —s+2s I:I }

+& C3 tl"CI (24s —16s CI )+ .
va 87

IV. CONCLUSIONS

Schwinger's proper-time method combined with
DeWitt's algorithm for asymptotic expansion of heat ker-
nels is ideal for investigating the short-distance behavior
of various Green's functions, especially to find the one-
loop divergences of various field theories. We generalized
DeWitt s algorithm, so far limited to second-order dif-
ferential operators, to higher-derivative operators of any
order. Straightforward generalization of DeWitt's algo-
rithm is not possible. Indeed, the heat kernel
(x

~
exp( rM)

~

x') cannot b—e expanded by (x —x')„and
r when M is a higher-derivative orator. Instead, it
should be expanded by (x —x')„r ' and r'/~, which
has been shown in Sec. II. %'e invented a method which
is elegant and produces the asymptotic series automatical-
ly. Our algorithm works both in flat and in curved
space-time. Therefore our algorithm will be useful to
higher-derivative quantum gravity. There we already
discovered slight discrepancies between our result and the

Now we can evaluate H(x, z=O, r) up to O(r /d) by
direct calculations using Eqs. (43), (49), (50), (61), and
(62). These calculations are relatively simple when
M = —V, whereas it requires some labor when
M = (V ) . Here we omit the detailed calculations and re-
port only the final results. For M = —V2, our result is in
complete agreement with that obtained by DeVAtt

H(z =0)= 1+ra i

+diaz+

with

(63)
1 a 1 g 1 gkV~2 —30 ~.a + 72 ~ 180 ~@+~

—,' R p„sRrs+ —,', F„+"".

(61)
p gQ ~ mpv aIld

,', (R:+-,'R.—~R—i'+R.~,R»s) .
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one obtained using a different method in Sec. III. Al-

though we restricted ourselves to torsion-free affine con-
nections, our method is easily generalized to general affine
connections and then will be applicable to conformal su-

pergravity.
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