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Gauge Potts model with generalized action: A Monte Carlo analysis
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Results of a Monte Carlo calculation on the q-state gauge Potts model in d dimensions with a

generalized action involving planar 1&&1, plaquette, and 2)& 1, fenetre, 1oop interactions are report-
ed. For d =3 and q =2, first- and second-order phase transitions are detected. The phase diagram
for q =3 presents only first-order phase transitions. For d =2, a comparison with analytical results
is made. Here also, the behavior of the numerical simulation in the vicinity of a second-order transi-
tion is analyzed.

I. INTRODUCTION

Recently, there has been an increasing interest in the
study of different generalizations of standard lattice gauge
theories. In particular, the inclusion of larger interaction
loops in the action seems to be very appealing because it
could probably improve the continuum limit of the model
without destroying universality. In order to investigate
the effects of these generalizations in simple gauge
models, we have taken a q-state gauge Potts model, Pq,
whose fundamental properties are well known. ' Then we
have considered the most simple addition to the standard
plaquette action: An interaction term including a 2)&1
loop usually called fenetre.

We report here the most interesting results coming
from a Monte Carlo analysis of the plaquette plus fenetre
gauge Potts model. We have chosen to present the partic-
ular cases q =2, 3, 4, 5 for d =2 dimensions and q =2, 3,
for d=3.

There exists a previous study of the Pz =—Zz model with
both plaquette and fenetre interactions in four dimen-

sions, and with only fenetre action for d=3 and 4. We
have reobtained these results for checking purposes.

In Sec. II we present the model under consideration, the
magnitudes used in the calculations, and the results ob-
tained. Section III contains some concluding remarks.

II. MODEL AND RESULTS

The generalized q-state Potts model here considered is
defined through the action

S =P)S(+PpSp

with

Si= g&t, , i Sz= gfUf. i

plaq fen

where plaq denotes a primitive square, or plaquette, fen
stands for a rectangular plaquette of 2)& 1 links, or
fenetre, and U& ——U& UzU3U4 and Uf ——U& UQU3U4U5U6
are the ordered products of link variables around pla-
quettes and fenetres, respectively. Each link variable can
take the value exp(i 2k' lq), @=0,1,2, . . . , q —1; q )2.

5 is the standatd Kronecker symbol and p& and pz are the
corresponding coupling parameters. The sums indicated
in (2) run over all plaquettes and fenetres of an % hyper-
cubical lattice with periodic boundary conditions.

The magnitudes used in our Monte Carlo calculations
are the average plaquette action

(Si )
(3)

Xz being the number of plaquettes on the lattice, the aver-
age fenetre action

(4)
Xp

and the plaquette and fenetre contributions to the specific
heat, given by

(&)
P

and

Cp ——

respectively. Notice that 0(E& ( l and 0 (Ez (2.
We have used in the computations the "heat bath" algo-

rithm, and we have analyzed several lattice sizes in order
to control eventual size dependences. When periodic
boundary conditions are used and the region pq & 0 is ex-

plored, the number of sites in each direction is required to
be a multiple of 4. It is not sufficient to take an even
number of sites to ensure the boundary conditions be-
cause an antiferromagneticlike configuration presents a
link periodicity 4 (see, for example, the figure in footnote
1 of Ref. 2).

Two dimensions

In this case one can expect at least a second-order phase
transition for p& ——0. This is due to the fact that a simple
extension of an argument by Turban allows us to show
that the two-dimensional model under consideration is
equivalent to a two-dimensional spin Potts model in an
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TABLE I. Transition data for the two-dimensional model
considered. The computations were made using lattices of size
322

Order of
transition

0.5-

1.07+0.13
1.18+0.13
1.26+0.21

Second
Second
First

0.5

FIG. 1. Specific heat Cz versus parameter /3z for the two-

dimensional Pz model with P&
——0, for different lattice sizes. No

error bars are presented for simplicity. The lines traced should

be regarded as qualitative guides.

external field. In fact, the parameter /3, plays the role of
the magnetic field and /3z works as the coupling constant
between neighbor spins. The exact solution of the spin P2
model with /3&

——0 gives a second-order phase transition at
/3z

——+0.881 where the + sign appears because for /3& ——0
the model presents a symmetry Pz~ —/3z. For q&2
there are no exact solutions for the spin model. However,
it can be analytically shown that phase transitions are
present only in the case /3&

——0, being of second order for
q &4 and of first order otherwise. Notice that the phase
diagrams of this model are sections of high-dimensional
phase diagrams of conveniently generalized models, and
for that reason, it may happen that isolated first-order
phase transitions show up.

It is very interesting to study Monte Carlo results for
the gauge model with action (1) in order to investigate the
behavior of these kinds of models in the vicinity of a
second-order phase transition. For that reason we have
analyzed the behavior of the specific heat Cz in the q=2
case for different values of P~ and particularly for /3& 0. ——
In Fig. 1 we have plotted our results for P~ ——0 and for
three different lattice sizes. We can certainly speak of a
second-order phase transition due to the presence of a neat

sharpening of the curves and the corresponding displace-
ment of their maximum when N, the number of lattice
points considered, grows. Notice also that the larger the
lattice size, the smaller the distance between the max-
imum of the curve and the exact transition point. It is
important to contrast this behavior with the case P~&0.
To do this we present in Fig. 2 the graphs of Cz versus Pz
for P~ ——1 and /3~

——2. It is clear that the maximum value
of the specific heat Cz decreases when /3& grows. For
larger values of /3~ the Cz values become vanishingly
smaller.

In Table I we have summarized the results of a similar
study, now for q=3, 4, and 5. As indicated there, a single
phase transition for /3~

——0, /3z & 0 was found in each case.

Three dimensions

For this case we present results corresponding to the
models P2 and P3.

The Pz model has first-order phase transitions at the
points /3~

——0, Pz ——+(0.46+0.04) and a second-order one
at P~ ——1.400+0.025, Pz ——0. The complete phase dia-
gram, obtained by using the E2 thermal cycle method, is
shown in Fig. 3. These cycles, in the vicinity of the
dashed line of this figure, do not show definite hysteresis
phenomena as to ensure first-order transitions. However,

Pz

0.5-

24x 24

k "-1 2,0 2,5 30

1 0--

-0.5-

0.5--

1.0 1.5

FICx. 2. The same as Fig. 1, but for two nonzero values of P~.
Observe the vanishing tendency of Cz with increasing P&.

FICx. 3. Phase diagram for I'q, d=3. Solid lines represent
first-order phase transitions. The P&Pz plane is divided in three
different regions corresponding to a "ferromagnetic" (I),
"paramagnetic" (II), and "antiferromagnetic" (III) phase.
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FIG. 4. The same as Fig. 3, but for P3 model where only
first-order phase transitions were detected.

FIG. 6. Same as Fig. 5, but for q =3.

III. CONCLUSIONS AND REMARKS

a clear signal for transitions exists in that region. On the
other hand, due to computer-time restrictions, it is not
possible for us to do an exhaustive analysis of the
specific-heat behavior in order to confirm the second-
order character of these transitions. It is worth noticing
that if this would be the case the point P&

——1.4, Pz ——0
would be a tricritical one.

The corresponding phase diagram for the P3 model is
presented in Fig. 4. It was obtained in a similar way as
above and only first-order phase transitions were detected.

We have studied also the latent heats L ~, plaquette con-
tribution, and L2, fenetre contribution, along the transi-
tion between phases I and II (see Figs. 3 and 4) in the
cases presented above. The results are summarized in
Figs. 5 and 6, respectively. They were obtained from
direct measurements on the E1 and E2 thermal cycles and
should be regarded as rough estimations. The P2
(tri-)critical point can be seen in Fig. 5.

d=3
q=2

0.8-

The results presented in this paper complete, in a cer-
tain way, those of Edgar and Bhanot et al. , because
two- and three-dimensional lattices as well as several
values of q were considered.

The two-dimensional model is nontrivial. Therefore, a
generalization of the theorem which states that Wilson
actions do not produce phase transitions in two dimen-
sions is not possible. However, it would be very interest-
ing to search for other models with a richer phase struc-
ture in two dimensions. Work is in progress in that direc-
tion.

Only first-order phase transitions were detected for the
P2 model in four dimensions. Due to this fact we dis-
carded the study of the four-dimensional model for q&2
because no qualitative different phase transitions were to
be found. For the same reason, we did not consider q& 3
in three dimensions.

Finally, we want to make some remarks concerning the
numerical work. Much care is to be taken with Monte
Carlo calculations on models with competitive interac-
tions. The presence of metastable states makes difficult
the identification of phase transitions in the thermal cy-
cles. In the present model, these problems appear when
It3I &0 and P2 &0, especially for large values of

~
13&

~

and

~ P2 ~. For instance, the P2(d=2) thermal cycles showed
hysteresis effects for pI&0, marking the existence of two,
and sometimes more, phase transitions for a single value
of 13&. Of course, no discontinuities in both E& and E2
were detected when long runs with mixed initial configu-
rations were used to evaluate the specific-heat behavior.
These metastable states can also be interpreted as a
remainder of the three-dimensional phase structure, in a
similar way as it is done in Ref. 9.
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FIG. 5. Latent heat corresponding to I—II transition in Fig.
3 versus pI for the P2 model in three dimensions. The squares
and circles represent the plaquette and fenetre contributions,
respectively.
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