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Internal symmetries of non-Abelian gauge field configurations
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In a topologically riontrivial gauge theory not all gauge transformations are symmetries (as de-
fined by Forgacs and Manton and by Schwarz) of a given field configuration: first, there may be an
obstruction to implement gauge transformations on the fields; next, even those transformations
which can be implemented may fail to be symmetries. For a test particle in such a background field,
those gauge transformations which are symmetries generate ordinarily conserved Noether currents,
one of which is the usual electric current. These results shed a new light on the problem of "global
color" in monopole theory and explain why the electric charge of a nucleon is not in general con-
served in the non-Abelian Aharonov-Bohm experiment of Wu and Yang.

I. INTRODUCTION

In non-Abelian gauge theories, the word "symmetry"
has two meanings: on the one hand, it means a transfor-
mation which changes the Lagrangian to an equivalent
one. This is what we call a symmetry of the theory. On
the other hand, this same word is used to refer to a
transformation which leaves a specific field configuration
invariant. Typical examples are provided by space-time
symmetries. ' Here we extend this analysis to internal
transformations. More exactly, we are concerned with the
following question: Which gauge transformation are sym-
rnetries for a given non-Abelian field configuration? This
problem is closely related to that of "global color" in
monopole theory: ' the first step in defining a symme-
try of a given field configuration is, in fact, the implemen-
tation of this transformation. However, a topological ob-
struction may prevent us from doing so. Next, an imple-
mentable transformation may fail to be a symmetry.
Those which are symmetries form a (generally proper)
subgroup H of the gauge group, which we shall call an
internal-symmetry group, since its action on space-time is
trivial.

The physical importance of internal symmetries is un-
derstood by noting that, for a test particle moving in a
non-Abelian background field, the internal-symmetry
group of a given configuration becomes a symmetry for
the particle Lagrangian. So, by the Noether theorem, a
conserved current is associated to each symmetry genera-
tor. In particular, we can get conserved electric charge.
So internal symmetries generate electric charge in the
same way rotations generate angular momentum.

The main application of our theory is to the "color
problem" ' in monopole theory. We show first that a
subgroup IC of G is implementable if and only if the stan-
dard transition function'" ' l(t)= exp(4mgt), 0 &t & 1,
where Q is the "non-Abelian charge" of Goddard, Nuyts,
and Olive, ' is homotopic to a loop in

ZG (E)= [g H G
~
gk =kg, Vk E IC'I,

the centralizer of E in G. In particular, G itself is imple-

mentable if and only if h(t) is homotopic to a loop in
Z(G), the center of G. ' Translated to terms of g, this
latter condition is expressed as

exp[4mz(g)] = 1, (1.2)

where z:S—+Z( g ) is the projection onto the center
Z(9') of the Lie algebra S of G. Equation (1.2) is,
despite its form, a constraint on the Higgs charge (see Sec.
VI). Next, K is a symmetry if and only if it is a subgroup
of

Z, (g)=Ig~G ~g-'gg=g],

II. IMPLEMENTABILITV OF GAUGE
TRANS FORMATIONS

Let G denote a compact and connected Lie group and
let us consider a gauge theory with gauge group G over
(possibly a portion of) space-time M. Let us choose a cov-
ering of M by contractible open sets V . In each V~ the
Yang-Mills fieM is given by a gauge potential 3&, which
satisfies, with the transition functions h~p. V~ A Vp~G,
the consistency relation

the centralizer of the non-Abelian charge Q. The whole
G is a symmetry if and only if Q belongs to the center.

In each topological sector, there is only one stable
monopole. ' ' ' We show that, for the unique stable
monopole of a given topologicaI sector, G is implement-
able exactly when G is an internal symmetry (for a sub-
group K of G the situation is more complicated).

A second illustration is provided by the non-Abelian
Aharonov-Bohm experiment proposed by Wu and
Yang. ' ' No topological obstruction arises in this case
for implementing SU(2)-gauge transformations. There is
however an ambiguity: SU(2) admits two inequivalent
implementations, and, for a given field configuration,
none of the implementations is a symmetry in general.
This explains why the electric charge of a nucleon is not
in general conserved.
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A„(x)=(h p) '(x)AP(x)h p{x)

+(h~p) '(x )Bqh~p(x ) (2.1)

@ (x)=h p(x) CP(x) (2.2)

Let K be a group and consider a fixed field configuration
(A„,4). Let us assume that (i) K acts on M, x~k x; (ii)
in each V~ a 6-valued function ~k is associated to each
k EK such that

for all x H V A Vp. Similarly, a matter field 4 is speci-
fied by giving, in each V~, a local representative @
which transforms according to a unitary representation
@~g N of G. The @ 's satisfy the consistency relation

We study first implementability. Following the pattern in
monopole theory, we show that a topological obstruction
may prevent us from implementing E. ' Indeed, let us
assume that K is implementable, and let xp E'M be an ar-
bitrary reference point. There is no loss of generality in
assuming rk(xo) =k since this can always be achieved by
replacing v~ ~

(x ) by v~ ~
(x ) [7~ ~

(x0 ) ] '. H(x ) belongs
then, for each x, to (Rut 6)0, the connected component of
the group of automorphisms of G. (Aut 6)0 is known,
however, to consist of inner automorphisms for any com-
pact and connected G. ' It follows that, for each
x H V, there exists an h~(x ) C G such that

vk(x)=h~(x)kh '(x) .

+k k {x) &k (k2 x)&k (x)

subject to the consistency condition

~k(x)=[h~p(k x)] 'Hk(x)h~p(x) .

(2.3)

(2.4)

The h 's can be chosen to be smooth since the V 's are
contractible by assumption. The h~ define hence a gauge
transformation in each V . In the new gauge (we still
denote it by a) the action (2.5) of k becomes rigid, i.e., po-
sition independent:

Equations (2.3) and (2.4) imply that K is implementable:
for each x H V

(k Ap) {x)=kAq(x)k

(2.7)
( k A&) (x ) =~k(x )k&(x )A (x)[~k(x )]

d„~„(x—)[~„(x) ]

(k N) (x)=v (x)@ (x)

(2.5)
(k.4) (x)=k.4 (x) .

The consistency condition (2.4) requires now

k 'h p(x)k=h p(x), b'k&K, xCV 0 Vp, (2.&)

[where k& (x ) is the matrix of the linear map on
T„M~Tk.„M induced by x —+k x] have the correct
transformation rules (2.1) and (2.2). Furthermore,
k ~k A& (and k ~k 4 ) is a group action.

(iii) Following Schwarz' K is called a symmetry group
for the configuration (A&, 4) with respect to this im-
plementation if, in addition,

Ap(k. x)=(k A)p(x),

4 (k.x)=(k C) (x) .
(2.6)

We want to apply this general definition to a subgroup K
of 6, acting trivially on M: x~k x =x,Vk EK. Notice
that the conditions above are trivially satisfied by
~k(x)=1Va, k,x. This is, however, a trivial action. To
have a sensible theory, some regularity condition has to be
imposed. In this paper we make the usual require-
ment: ' ' for each x, ~~ ~

(x) is the restriction to K of an
automorphism of G. (This is automatic for symmetries,
see Sec. III.) So KC6 implementable means now the ex-
istence of a family of 6 automorphisms v (x ) such that

where the h~p are the new transition functions between
the rigid gauges in V and Vp. By reversing the argu-
ment we see that, by (2.8), K is implementable if and only
if there exist gauges such that all transition functions
h p(x ) take their values in

Zg(K) = Ig EG
I g kg =k Vk EK] (2.9)

III. INTERNAL SYMMETRIES

the centralizer of K in G. In particular, 6 itself is imple-
mentable if and only if there is a gauge where all transi-
tion functions belong to the center of G.

Geometrically, this condition means that the principal
6-bundle P which carries the gauge structure reduces to a
Zg(K) bundle. This reduction is defined by a section
~—whose local representatives are the H's above —of the
associated bundle

P && g I (AutG )0
~

K I P &( g I IntG
~

K I

=PXgtG/Zg(K)I=P!Zg(K) .
(2.10)

wk k (x)=~k, (x)~k,(x),

satisfying the consistency condition

~k(x ) = [h p(x )] 'Hg(x )h p(x ) .

This action is an internal symmetry if, in addition,

A„(x)=v„(x )A„(x )[r„(x)] ' —B„~„(x)[~„(x)]

(2.3')

(2.4')

(2.6')

Let X be a connected Lie group with Lie algebra A,
and assume that K is implementable. Let its internal ac-
tionbe given by a family ~ . Set

co„(x ) = ~{,„p(,„))(x), scHM, x H V~ . (3.1)
dt t=0

The infinitesimal action of aEM corresponding to the
considered internal action of K C:6 is given by

@ (x)=r (x) N (x) (a.A~) =D~co„and (a"@)=co„.C& (3.2)
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(to keep the notation simple, we dropped the index a).
Equation (2.4') implies that co„(x ) is a "Higgs" field of the
adjoint type. The property (2.3) requires now

~[»» l(x ) = [co» (x ),co» (x )], I&i,K2'EM, x HM .

(3.3)

So, taking into account our regularity and normalization
conditions, a~co„(x) is, for each x, the restriction to M
of a Lie algebra automorphism of S satisfying co (xp) =K.
If IC acts by internal symmetries, then, by (3.2),

Let us assume that K is a connected group of internal
symmetries for the given background YMH configuration
(A&, 4&), implemented by ~(x)H AutG ~E (restriction of
an automorphism of G to K; the superscript a is dropped
again). E acts on g as (k.g)(x)=U(rk(x))g(x); the in-
finitesimal action reads (~ P)(x ) = (co„(x) }g(x). It is
straightforward to show that this implementation leaves
invariant the Lagrangian (4.1). Hence the internal sym-
metry of the background field becomes a Noether symme-
try for the test particle. Consequently, for each ~HA",
the current

-Deco„=0 and co„@=0. (3.4)

Conversely, any normalized solution of (3.4) provides us
with an internal action of k= exp( 2n.a).—Indeed, (3.4)
is solved by parallel transport,

(~ 0)=Mr"~..4
5

s(a„y)

is conserved, Bzj"„=0(Ref. 24).
Let us consider the non-Abelian current

(4.2)

co,(x ) =g(x )~g '(x ), (3.5) Jl'=Py&r, f, a=i, . . . , dim,

where g(x ) is the nonintegrable phase factor
X

g(x ) =P exp — A dx"
xo

(3.6)

Equation (3.6) is in general path dependent. Let a.HA" be
such that (3.5) is nevertheless path independent, and as-
sume co„4=0 'is also satisfied [this is automatic if
Dz@=0, since in this case C&(x)=g(x)Cog(x) ' and so

co„(x ) @(x) =g(x )~g(x ) 'g(x )Cog(x)

=a.4p ——0,
since a H M C S]. k = exp( —2m'�) is now implement-
able: rk(x)= exp[ —co (x)] admits, as one proves easily,
the properties (2.3') and (2.4'). The corresponding action
of k on the fields is plainly a symmetry: it satisfies (2.7 )
and (2.8'). Those gH9 for which (3.5) is path indepen-
dent and co„.&5=0 is also satisfied generate a connected
subgroup H of G. [By (3.5) the group property (3.3) is
now automatic. ] Some differential geometry shows that
H is the centralizer of the holonomy algebra of the
Yang-Mills potential. '

H is the maximal internal-symmetry group of the
Yang-Mills-Higgs (YMH) configuration we consider: any
subgroup IC of G which is a symmetry group is plainly a
subgroup of H.

Observe that a~co„(x ) given by (3.5) is always an auto-
morphism, justifying a posteriori our regularity assump-
tion in Sec. II.

where the w, 's are a basis of the Lie algebra. The gauge
invariance of the Lagrangian (4.1) implies that J, is co-
variantly conserved, D&J,"=0. However, the m, com-
ponent

j"„=Tr(cog") (4.3)

DqF""=0, Dq(e" I' Fp )/2=0 (4.4)

and identify the electromagnetic field as the ~ com-
ponent of F&,.

w p (x)=(1/e) Tr(F, ~ /
~

~
I

) (4.5)

where e is a coupling constant. Equation (4.4) implies
that ~» satisfies the vacuum Maxwell equations

a„~~ =0, a„(W~ ~,.)/2=0.

Let us define the electric charge operator by

(4.6)

is already ordinarily conserved since D&co =0 by assump-
tion. It is straightforward to verify that (4.3) is just (4.2),
as anticipated by the notation. Interestingly, this expres-
sion has been proposed previously to define conserved
electric charge. Now we understand its origin: it is the
current associated to an internal-symmetry generator.
This sheds a new light on the role of internal symmetries.
It is instructive to pursue this direction. Let us assume in
fact that D&4=0 and so the YM field satisfies the vacu-
um field equations

IV. CONSERVED CHARGES Q, (x)=et' (x)/
~
co„(x)

~

(4.7)

Consider now a test particle g moving in a background
YMH field ( A„,@). For the sake of simplicity we consid-
er only a spin- —, Dirac particle, with Lagrangian

W=P(y "D„+cC&+m )—P, (4.1)

where c is a group-independent constant, and g is as-
sumed to transform according to a unitary representation
U of G. f is just another matter field, so, in each V, it is
described by a local representative P~. The consistency
condition (2.2) becomes now P (x)= U(h~p)g~(x),
xEV AVp.

As demonstrated in Refs. 26 and 27, the eigenvalues of
(4.7) are quantized if and only if v generates a U(1) (rather
then merely a torus) subgroup of G. If so, all electric
charges are integer multiples of

dmin =e/
~
+0 I

(4.&)

where ~o is a "minimal" U(1) generator [i.e., such that
exp(2nxt ) = 1 the first time for t = 1] parallel to sc.
Indeed, let us assume that g is an eigenstate of Q, with
eigenvalue nq;„. The particle's electric charge is hence
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q = f,j„(x)d 3x = f, 17 y co„g

+qmin (4.9)
p(c ) =p(&[@])=2z(Q) . (5.4)

Equation (5.3) is the transition function between the U
gauges over V~ and V2. So

V. ASYMPTOTIC PROPERTIES OF
MONOPOLE CONFIGURATIONS

p([y]) = f z(g 'dg) EZ(9 ), (5.1)

In this section we review briefly those properties of
non-Abelian monopoles we need in the sequel. (For re-
views see, e.g., Refs. 14—16.)

Let us consider a YMH theory with a compact, con-
nected and simply connected (and hence semisimple) "uni-
fying" gauge group G. At some energy scale ( —10'~

CxeV) the 6 symmetry is spontaneously broken to a sub-

group G of 6 by the vacuum expectation value (VEV) of
the Higgs field 4&. Consequentl'y, the asymptotic values of
the Higgs field provide us with a map 4:S ~G @0
=G /G. Magnetic monopoles are everywhere-regular,
static, finite-energy, purely magnetic solutions to the
YMH equations, satisfying also the "finite-energy" condi-
tion D&C =0 on S . N provides us with the fundamental
topological invariant [4]&m2( 6/6) we call the Higgs
charge. The injective homomorphism 5:m2( 6/6)
~m &(6) is now an isomorphism since G is assumed to be
simply connected.

We have shown in a previous paper, that, for any
compact and connected Lie group 6, m&(G)=~&(6)t„,
+m&(G„) (direct sum). m&(6)t«, =Z~, where p is the di-
mension of the center Z( S ) of the Lie algebra of 6, and
6„ is the subgroup of 6 generated by [8,9' ]. 6„ is
semisimple, so m &(6„) is a finite Abelian group. The iso-
morphism m~(6)t„,=Z~ is established explicitly as fol-
lows: let I =[/&9

~

exp(2m/)=l] denote the unit lattice
of G, and consider the image z(I ) of I under the projec-
tion map z:Ã~Z(S). z(I") is a p-dimensional lattice in
z(l ), and, as we have shown in Ref. 28,

Let us decompose Q as Q=z(Q)+Q', where Q' belongs
to the derived algebra. The result of Brandt and Neri'
tells us that the monopole is stable if and only if, for any
root a of the semisimple Lie algebra [S,S], 2a(Q') =0
or 1 for any root a of [S,S], cf. Ref. 19. In each topo-
logical sector there exists hence exactly. one stable mono-
pole. '

VI. THE PROBLEM OF GLOBAL COLOR
FOR MONOPOLES

Let us now consider a non-Abelian monopole (Az, @),
and let 6 denote the little group of the Higgs field at in-
finity. Let K be a subgroup of G. According to the gen-
eral theory of Sec. II, K is implementable if and only if, in

V~ (a=1,2), there exist G automorphisms H(x) which
satisfy the consistency condition (2.4') with the transition
function (5.3). Both V, and V2 are contractible, so we
can go to rigid gauges so that the consistency condition
reads kh(x)=h(x)k, 0k&K, x E: V& A U2, where h is the
transition function for the new (rigid) gauges. The homo-
topy class of the transition function is however indepen-
dent of the choice of a gauge, so this condition holds if
and only if any transition function —in particular (5.3)—is
homotopic to one in

ZG(K) = [geG
~

gkg-"=k, vk ~K],
the centralizer in 6 of K. The full "residual" group 6 is
implementable if and only if (5.3) is homotopic to a loop
in the center of 6 (Ref. 13).

. Requiring the implementability of a subgroup K is a to-
pological constraint on the Higgs charge. ' Indeed, (5.3)
homotopic to a curve in ZG(K) means exactly that

where y is a loop in 6, is an isomorphism between
7r&(G)t„, and z(I ). Any loop in 6 is known to be homo-
topic to one of the form y(t)= exp(2mgt), JEST, for
which p(y)=z(g). If g&, . . . , gz is a Z-basis for the lat-
tice z(I ), then p([y]) =z(g) =g mjgj; [y]~(m ~, . . . ,
mz ) is the aforementioned isomorphism.

On S the YMH equations decouple and we are left
with a pure G-valued Yang-Mills theory with field equa-
tion DJF~"=0. The general solution of this equation has
been found in Ref. 17: let us cover S with the contracti-
ble open sets V& ——S X [ south pole] and V2 ——S X

t north pole). There exist gauges over V~ 2—the so-called
U gauge —such that N =No and the solution is

5[&]= [h (t )]E Imi, , (6.2)

&g' ——0, A j' ——+Q(1~ cos8) . (5.2)

h(t ) = exp(4~Qt ), 0 & t & 1 . (5.3)

Q—the non-Abelian charge —is a constant vector in the
Lie algebra. Q can be chosen, with no loss of generality,
in any given Cartan subalgebra. To have a well-defined
theory, Q must be quantized, exp(4n. Q)=1. A loop in
5[@]representing the Higgs charge is then expressed as

lg Ad~

0—+n )(Z(6))~m )(6)~n )( IntG) ~ . (6.3)

so (6.2) implies that [h]=i [y] for a y in Z(6), and
hence [Adh ]=Ad4, [h ]= (Ado i )~ [y]=0. Conversely, if
AQ[h]=0, then [h]=i, [y] for a y in the center, yield-
ing (6.3). Alternatively, this statement follows from the
triviality of (2.10) which is now a principal IntG bundle,
having transition function Adh.

To translate (6,2) to more down-to-earth terms, let us
study first the case K=G. i, m&( Z( 6)) lies in the free
part, so

(i) if 6 is implementable, 5[@]&m,(6)t«, .

This implies at once that if n.~(G) is finite (as it happens
in some grand unified theories (GUT's), see Sec. VIII)

where i, is the homomorphism i~: n&(ZG(K))~vr&(6)
induced by the inclusion map i:ZG(K)~6 In particul. ar,
6 itself is implementable if and only if Adh is contracti-
ble in AutGO- IntG. Indeed, the exact sequence
Z(6)~6~ IntG of groups yields, using m2(6) =0,
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72lj nj Mj ) J lp ~ ~ ~ p p o (6.4)

The physically most interesting situation is when Z(S ) is
one dimensional. In this case (6.4) is simply

(6.5)

where M labels the homotopy class of the central U(1).
This generalizes the results in Refs. 8 and 9.

The condition of implementability has a nice expression
in terms of the non-Abelian charge Q. Indeed, if
Z(9')&0, (6.2) is equivalent to

exp(4~Q't ), 0 & t & 1,
is contractible in G„and

exp[4'(Q) ]= 1 .

(6.6)

(6.7)

Indeed, (6.6) is exactly (i) above. On the other hand, (5.3)
homotopic to a curve y(t) in Z(G) means that (5.3) and
y(t) have the same image under p. But a y(t) in Z(G) is
homotopic to a loop of the form y(t)= exp(2m/i), with

g H Z( S ), whose image under p is g itself. Hence
p(y(t)) =2z(Q) =g. However, exp(2m/) = 1, proving (6.7).
Conversely, if (6.6) and (6.7) are satisfied, then (5.3) is
homotopic to y(t) = exp[4mz(Q)t] C:Z(G) since they have
the same image under p. If (5.3) has no center, Z(G) is a
discrete subgroup of G and thus m &(G) is finite, so that
the constraint (6.2) is violated.

Similar, although slightly more complicated results
hold for a general K. Let us assume, for simplicity, that
mt(G) is free, Z . (This happens, for example, if 4& is in
the adjoint representation. ) p[i, (~&(ZG(K))] is a sublat-
tice in z(I ), so it is generated by elements

gz CZ($),j= 1, . . . , r &p. There is no loss of generality
in assuming that each g~ is parallel to a suitable g~,

gz
——cjgz. The coefficient cj here is an integer, since the

gk's form a Z basis in z(I ). Denote LJ the least common
multiple LJ [cJ,MJ),j = 1——, . . . , r with MJ as above, and
let M be the least common multiple of the LJ /cj's. K
implementable means now the quantization condition

exp[4nMz(Q)] = 1 . (6.8)

Alternatively, the implementability condition (6.2) is also
expressed as

cjn~ for some integer nj,j= 1, . . . , r
E7)l

0 for j=r+1, . . . , p . (6.9)

then 6 is never implementable for topologically nontrivial
Higgs fields.

Let g~, . . . , g» be a Z basis of z(I ). For each
j= 1, . . . , p there exists a least positive integer Mj such
that exp(2m/&MJ. )=1. The loops yj(t)= exp(2mgJMJt),
j=1, . . . , p generate vr&(Z(G)), and thus also its image
under i„. [yj.]En&(G)r„,=Z» has "quantum" numbers
(0, . . . , Mi, . . . , 0). The parameter space of Imi, con-
sists hence of integer combinations of these p-tuples.
Equation (6.2) means thus that

(ii) there exist integers n „.. . , n»

such that [@]=(m~, . . . , m») satisfies

For IC=G, cj =MJ so M= 1 and (6.8) reduces to (6.7).
Having settled the problem of implementability, let us

ask if K is a symmetry group. Using the infinitesimal ap-
proach of Sec. III we see that this happens if and only if
(3.5) is path independent for each generator x of E (since
D&4=0 and thus co„@=0 is automatically satisfied).
This is a gauge-invariant condition so we can work in the
U gauge (5.2), where co„=~ in V~ and in Vz, so path in-
dependence means simply

(6.10)

Vfe conclude that any symmetry group X must belong to
the centralizer of Q in G. Notice that Z(S ) is always in
(6.10). In particular, the whole of G is a symmetry with
respect to the internal action defined by (3.2) if and only if
Q is in the center of the Lie algebra.

What is the difference between implementability and
symmetry? Observe that 6 is simultaneously implement-
able or not implementable for an entire topological sector.
Let us assume [C&] satisfies (6.6) and (6.7) and thus G is
implementable for all monopoles in this homotopy class.
In particular, [4] belongs to the free part of m2(G/G).
There is exactly one stable monopole in this homotopy
sector—the one with Q'=0. So, for the unique stable
monopole, symmetry and implementability are the same.
For the other (unstable) monopoles the two statements are
different. The general situation EC:»G is more 'compli-
cated and the conclusion is different. (Here C:» is the
proper subset. ) Again, the full topological sector is simul-
taneously implementable or not. The non-Abelian charge
of the unique stable monopole of our homotopy class may
however not belong to Z~(M), and thus X may fail to be
a symmetry for the stable monopole. If, on the other
hand, we choose Q in Z~(A ), K is a symmetry, but the
corresponding monopole is generally unstable (see Sec.
VIII).

If we work with the unifying group G, there are no
transition functions. How does our obstruction manifest
itself in this picture? The problem is now to associate an
element g„ in G„(the stability subgroup of the Higgs field
at x) in a smooth way. As explained in Refs. 8 and 9,
G„=u(x)G„u(x) '. The map x~g~ =u(x)gu(x) ' be-

comes, however, singular somewhere, except when our
condition is satisfied. Alternatively, u(x) can be used to
gauge G„(g„) to G (g) in a contractible subset. But, to
cover the two-sphere, we need at least two such subsets,
and we reintroduce thus transition functions just like be-
fore.

VII. CONSERVED CHARGES AND
ELECTROMAGNETIC PROPERTIES

IN THE FIELD OF A MONOPOLE

Let us consider now a spin- —,
' Dirac field g coupled to a

background monopole field (AJ, @). As explained in Sec.
IV, to any symmetry generator q, i.e., to any g which
commutes with the non-Abelian charge vector Q, is asso-
ciated a conserved current. In the U gauge this current is
simply

(7.1)
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In particular, a generator g of the center is an internal
symmetry direction for all monopoles created when the
symmetry is spontaneously broken to G. In other words,
g is an admissible electromagnetic direction for all mono-
poles in the theory. [This is the choice made in Ref.
28—the generalization of the standard approach valid
when @ is in the adjoint representation and Z(9') is one-
dimensional. ] For a fixed monopole configuration we
have slightly more freedom: any vector which commutes
with the non-Abelian charge is admissible.

Monopoles carry also a magnetic charge. This is de-
fined by the flux integral

1g= 4' s' (7.2)

where the electromagnetic field ~„„is defined by (4.5).
In the U gauge (7.2) is calculated at once:

g= Tr(Qri) .
1

(7.3)

Observe, that the magnetic charge is quantized: indeed,
Q=(n/2)Qp for some integer n, where Qp is a minimal
U(1) generator parallel to Q. So g is an integer multiple
of

VIII. EXAMPLE: GRAND UNIFIED MONOPOLES

= [SU(3), X SU(2) p X U(1)r]/Z6 . (8.1)

Z(S) is generated by C&p itself, and m&(G)=Z. The
"quantum number" [4]=m is calculated by
m = Tr3( p(4))/i =2 TrQ/i (trace on the upper 3 X 3
block, cf. Refs. 27 and 28. The generating loop
exp(2ngot) = exp(2m'4p/vt) of the center of G has quan-
tum number M=6, so, according to (6.5), G is imple-
mentable if and only if m is an integer multiple of
6,m =6n. ' ' This is seen alternatively from (6.7), ob-
serving that z(Q)=(m/6)M. G contains the color sub-
group

SU(3), = A ESU(3) (8.2)

As a first illustration, we consider monopoles in the
G =SU(5) GUT (Refs. 29 and 30). Following the general
pattern, let us assume &5 is in the 24 (adjoint) representa-
tion; the choice No vi——diag(2, 2, 2, —3, —3) yields the lit-
tle group

G=S[U{3)XU(2)]

1
gmm = Tr(Qogp),

2e Idol
(7.4)

whose centralizer is

(det8) '13

Tr(ZQ rip)
2gminR =

I no I

' (7.5)

where qp is a minimal U(1) generator parallel to g. The
comparison of (7.4) with (4.8) shows that the electric and
magnetic charges, respectively, satisfy the generalized
Dirac condition

ZG(SU(3), ) =U(2)ws=

n ~{U(2)ws)=Z is generated, e.g., by

1

BCU(2) .

(8.3)

Notice that the value of (7.5) depends in general on Q and
not only on the Higgs charge. In other words, it is not a
topological invariant. If, however, g is in the center,
g EZ(9' ), then the right-hand side of (7.5) satisfies

y(t)= exp 2m.i
—3

0

t, 0 & t & 1, (8.4)

Tr(2Qg) = Tr(2z(Q)g) = Tr( p(C&)g),

so (7.5) becomes rather

Tr( p(C )qo)
29ming =

2
I no I

'

(7.6)

(7.7)
SU(2) g —— ~ (13ESU(2)) (8.5)

whose homotopy class is labeled by c =3. Hence, by (6.9),
SU(3), is implementable if and only if m =3n. [Alterna-
tively, this follows from (6.8) noting that M=2 now. ]
Similarly, consider

13

which is already a topological invariant: it depends only
on p(4), the free part of the Higgs charge (cf. Ref. 28).
In the particular case when rl.~(G) =rr~(G)r„,=Z, let
[4]=m; (7.7) is simply U(3) = A EU(3) (8.6)

the subgroup of weak interactions. ZG(SU{2)~) is just

2q;„g=m/M,

where the integer M labels the homotopy class of the cen-
tral U(1). On the other hand, G implementable means
now that m=nM [cf. (6.5)]. We conclude that, in this
special case, G is implementable exactly when the general-
ized Dirac condition (7.7) reduces to the original (integer)
Dirac condition. [If Z($) is not one-dimensional, this
conclusion is, however, false; see the SO(10) example
below. ]

Q=(/2=i diag(1, 1, 1,——,', ——', ) . (8.7)

SU(3), is a symmetry if and only if QCU(2)ws. This is
realized by two different charge-3 monopoles:

n&{U(3))=Z is generated, e.g., by

y(t) = exp[2n. it diag( —2,0,0, 1, 1)],
whose class in n. &(G) is c=2. Thus SU(2)~ is implement-
able if and only if m=2n Gis an inter. nal-symmetry
group only for the stable charge-6 monopole3' given by
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Q, =(i/2) diag(1, 1, 1,0, —3) (8.8) 0

Q2 ——(i/2) diag(1, 1, 1, —1, —2) . (8.9)
0

Only (8.9) satisfies the Brandt-Neri (BN) condition and is
thus stable. ' SU(3), is hence a symmetry group simul-
taneously for a stable and an unstable monopole. Similar-
ly, SU(2))) is a symmetry if and only if Q EU(3) in (8.6).
This condition is met by two charge-2 monopoles:

0

0

(8.16)

and

Q) (i——/2) diag(2, 0,0, —1, —1) (8.10) 0
0

Qz ——(i/2) diag(1, 1,0, —1,—1) . (8.11)

Both monopoles are SU(2))) symmetric, but only (8.11) is
stable. For the "elementary" monopole we have
2Q =i diag(1, 0,0,0, —1), so the maximal symmetry group
1s

—E

0
0

Q.
—3l

0

U(1)
U(2),

(8.12)

All these generators are internal symmetries for
considered as a test particle in the field of an SU(5) GUT
monopole. Q, is the standard choice for the electromag-
netic direction; the corresponding electric charge is quan-
tized in units of

At much lower ener'gies ( —100 GeV) the symmetry is fur-
ther broken to G =U(3) =[SU(3),XU(1), ]/Z3 by a
Higgs 5. 7r)(U(3))=Z, and the quantum number m is
calculated by the same formula. Z(U(3)) is generated
by

q;„=e/2v 3=q/3 . (8.17)

The electromagnetic current is thus expressed as

j", =qi ,'(dBy"dB+—dBy"dB+dgy"dg) ey"e . (8.18—)

Q, =i diag(1, 1, 1,—3,0) (8.13)
Equation (8.18) is conserved in all background monopole
fields, but only for the elementary one. The four other
currents

(a minimal generator) ~ Equation (8.13) is the standard
choice for the electromagnetic direction. The central U(1)
has quantum number 3, so G =U(3) is implementable for
the U(3) monopole if and only if m =3n. ' This is seen
alternatively from (6.6) since 2z(Q)=mQ, /3 in this
case. The color subgroup SU(3), belongs to U(3); its cen-
tralizer in U(3) is

j ~() ci [(dBy——"dB+dgy"dg ) —2ey&e],

J") ci ( dB y"dg +——dg y"dB ),
J2 c( dBy dG+dGY dB),

J 3 c l (dB'Y "dB —dg——'Y"dg )

(8.19a)

(8.19b)

(8.19c)

(8.19d)

U(3) e ) em ( )center ~ (8.14)

~'=U(2), XU(1), (8.15)

since U(2)ws is broken to U(1), in this process.
Let us consider the SU(5) 5-piet p=(dB, dB, dg,e,v, )I, where R, 8, G refer to the quark colors. Equa-

tion (8.15) is generated by

so SU(3), is implementable if and only if m =3n [alterna-
tively, M= 1 in (6.8)]. 6=U(3) is an internal symmetry
if and only if QEZ(U(3)), i.e., if Q=(m/2)Q, I. But
this is simultaneously the centralizer for SU(3)„so they
are simultaneously symmetries or not. The charge-3
monopole given by 2Q=Q, is stable by the BN condi-
tion, and is thus U(3) symmetric. The elementary
S(U(3XU(2)) monopole survives the "phase transition"
S(U(3)XU(2))~U(3). The maximal symmetry group
(8.12) is reduced however to

(where c =e/W2) are however conserved only for the ele-
mentary monopole. The corresponding "magnetic"
charges defined as the flux integral of the corresponding
"electromagnetic" fields are

g' =1/2q, go ——1/6c, g'=g =g =0,
so the generalized Dirac conditions read

29 mirS 3 ~ 29 min@ 3 ~ 29 mirS 0~

(8.20)

(8.21)

As a second example, consider G= Spin10 [the double
covering of SO(10)] broken to G=[Spin6X Spin4]/Z2
by a Higgs 54 (10X10 symmetric matrices) with base
point

4O ——diag(2, 2, 2,2, 2,2, —3, —3, —3, —3) .

7r)(G)=Z2. The Lie algebra 9' = so(6) Xso(4) has trivial
center so 6 is never implementable. Let us consider the
(stable) elementary monopole given by Q=(J56 —J7s)/2,
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q;„=e/
~ Q

~

=e/2, g =
~ Q ~

/2e = 1/e, (8.22)

so the original (integer) Dirac condition is satisfied. Im-
plementability and integer Dirac condition are hence dif-
ferent in this case.

where the J,b are the usual rotation generators [antisym-
metric, imaginary, 10&& 10 matrices (J,b ),z —— —i(5„5.

b&

5,J—5b;)]j. The only vectors in 8 which commute with

Q are the rnultiples of Q, so the maximal symmetry alge-
bra is the one generated by Q. This is the only choice of
electromagnetic direction. Electric and magnetic charges
are quantized in units

and

co„'=g, re& su(2)

911

exp( —iy)g„
exp(ig)g, z

(9.4)

gH su(2) . (9.5)

To be an internal symmetry, cuz must be covariantly con-
stant. However,

where x =(r, 8,$) and g =(g~ ) a matrix.
Are these implementations symmetries? The corre-

sponding local expressions read

IX. THE NON-ABELIAN
AHARONOV-BOHM EXPERIMENT

and

o; 1
Dco„'(x ) = —.[o3,q j= —.

0
(9.6)

Another tricky example is provided by the non-Abelian
Aharonov-Bohm experiment proposed by Wu and Yang
in their celebrated paper on the nonintegrable phase fac-
tor. They suggest in fact to set up an SU(2)-gauge field
confined to a cylinder. If a nucleon beam is scattered
around this flux line, a nontrivial interference would
prove the existence of Yang-Mills fields.

It is not difficult to show ' that there exists a
gauge —analogous to the U gauge (5.2) for monopoles-
where the gauge field with F~J

——0 in M=R & Icylinderj
is simply

A„=O, Ae ——0, A~ ——ao 3 /i . (9.1)

a here is a real parameter, defined modulo integers.
Let us try to implement G =SU(2) by an AutGo-valued

"Higgs" field r~ ~(x) on M. As explained in Sec. III, we
can gauge any such rg(x ) to identically g simultaneously
ln

Vi ——I(r, 8,$) ~0&P&m+ej

rg'(x) =g (9.2)

or

exp(iP/2) 0
0 exp( iP/2)—

since both V1 and V2 are contractible. The price to pay
for this is that we introduce a transition function h-
which is now just a constant element of SU(2). Consisten-
cy requires now gh =hg, h must be in the center of SU(2).
So we have two solutions: h =1 or h = —1. We conclude
that, although there is no obstruction to implement
G=SU(2), there is an ambiguity. In the U gauge (9.1)
the two implementations are found explicitly as either

0 (2a —1)g)2

0 (9.7)

REMARKS

Using the same technique as for monopoles, one can
show that, for an SU(2) instanton, 6=SU(2) is never
implementable. The physical consequences of this fact
are not entirely clear however.

The theory outlined in this paper admits a nice fiber-
bundle interpretation. This is explained in a companion
paper.
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0
exp(iP/2)

811

exp( —i4»)g»

exp( ~ 4' )g 12

exp( —iP/2)
Xg 0

(9.3)
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