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Nonperturbative propagators in quantum chromodynamics
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Leading nonperturbative corrections to the quark and gluon propagators are derived following the
assumptiou that the nonperturbative QCD vacuum can be described in terms of nonvamshing vac-
uum expectation values for the composite operators [gf] and [G„].The nonperturbative quark
propagator can be described in terms of a running gauge-dependent quark mass and a running nor-
malization function. The nonperturbative gluon propagator can be described in terms of a running
gauge parameter and a running normalization function.

I. INTRODUCTION

In this article we study quark and gluon propagation in
the presence of quark and gluon condensates. The basic
assumption underlying our analysis is that the nonpertur-
bative QCD vacuum can be described in terms of nonvan-
ishing vacuum expectation values (VEV's) of gauge-
invariant composite operators such as the quark conden-
sate [gP] and the gluon condensate [6&„]. This hy-
pothesis has been used extensively in successful attempts
to account for nonperturbative phenomena. It is the key
assumption in the so-called QCD sum rules' which have
been used to study (among other subjects) charmonium
decays, SU(3)-symmetry-breaking effects, and hadron
wave functions. Another application of the same as-
sumption is a recent analysis of the MIT bag model
where it is found that the existence of quark and gluon
condensates allows for the possibility of having a small
strong coupling constant inside the bag.

Mueller has recently shown that it is possible to define
the nonperturbative condensates in a consistent way.
Fukuda and Kazama have demonstrated condensation of
[6&„]by constructing the effective potential through the
trace-anomaly equation. However, we feel that this latter
derivation remains somewhat ambiguous since it is not
based on a rigorous definition of the gluon condensate.

In the following analysis, the composite operators will
appear in the operator-product expansion (OPE) of the
quark and gluon propagators, respectively. The operators
in this expansion must carry vacuum quantum numbers,
and from general grounds one may conclude that they
must be gauge singlets. The operators in the OPE are
furthermore characterized by their dimension. The con-
tribution from an operator with a higher dimension falls
off more rapidly with momentum than a lower-dimension
operator.

Apart from the unit operator, the operators [gP] (di-
mension 3) and [Gz„] (dimension 4) are the gauge-
independent operators of lowest dimension in QCD. In
the following we neglect higher-dimension operators. It
should be mentioned that if higher-dimension operators
acquire nonzero VEV's, their influence can be neglected
only for large momenta. We also note that the OPE can
be taken seriously only for hard momenta in the propaga-
tor to be expanded.

In Refs. 1 and 2 the following phenomenological values
for the VEV's of [Pg] and [6„„]are given:

( n
I
[uu]

I
n) = ( n

I
[dd]

I
n ) = 1.3(n

I
[ss]

I
n )

—(0.25 GeV)

n
I [«] I

n&=&n
I
[bb]

I
n&=&n

I
[Tt]

I
n&=o,

The authors of Ref. 1 use a value close to 1 for o,„corre-
sponding to Q =0.2 GeV and AQCD —0.1 GeV.

The effect of the quark condensate on the quark propa-
gator was analyzed in 1976 by Politzer and the analysis
was later revised by Pascual and de Rafael who pointed
out some numerical errors in Politzer's paper. Politzer's
main interest was in the derivation of the so-called non-
perturbative quark mass, obtained through the nonpertur-
bative quark propagator. Here we revise the analysis in
Refs. 7 and 8 and we extend it to include the gluon-
condensate contribution to the quark propagator. The
nonperturbative quark propagator can be described in
terms of a running (momentum-dependent) normalization
function and a nonperturbative quark mass. We derive
these quantities and compare the results to those of Refs.
7 and 8.

We evaluate the nonperturbative corrections to the
gluon propagator in a general covariant gauge. The
corrected propagator can be described in terms of a run-
ning normalization function and a running gauge parame-
ter.

The ghost propagator is not influenced by [gf] or
[6&, ]. In the following our analysis will be done at the
tree level and all the calculations are done in Euclidean
space.

II. THE NONPERTURBATIVE QUARK
PROPAGATOR

The operator-product expansion of the inverse quark
propagator in the presence of nonvanishing VEV's for the
operators [Pg] and [6&„]is

'=."pc'(-p) I.+."etc(«)(p) & n
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The coefficients carry the spinor and color quantum num-
bers as indicated by the indices a,P (spinor) and a, b
(quark color). The coefficients are calculated perturba-
tively. Here they will be calculated to first order in a, .
't)C (p), the coefficient associated with the unit operator,
is equal to the perturbative inverse quark propagator. In
Euclidean space we hence have

attC (p)=i5' (p(+I) . (3)

In order to calculate at)C[~(](p), we will follow the stan-
dard recipe in the literature. The coefficient is obtained
by equating a (2 + n )-point, one-particle irreducible
Green's function —where two of the external legs have
hard momentum and the remaining n external legs are as-
signed zero momentum —with the coefficient times an n
point Green's function with an insertion of the operator
under study at zero momentum. The number n corre-
sponds to the number of elementary fields contained in
the composite operator.

In our present case, we chose to study the quark-
antiquark, one-gluon-exchange, four-point function. The
operator-product expansion of the four-point function is
illustrated in Fig. 1. It reads

pcd abed I (2+2)(,0,0) =at' C[(I(b]( )

XPyb ysl'[py(o)](0) ~ (4)

In this equation, the one-particle irreducible Green s func-
tion at)ybl"( + '(P,P, O, O) is the diagram on the left-hand
side in Fig. 1. The role of the contraction operator Pyb is
to ensure that the collective quantum numbers of the soft
legs are those of the vacuum. It also effectuates the neces-
sary summation over color and spinor indices. In this
case Pyb is simply. equal to 5'd5ys. Note that [([[f] is de-
fined as [1T'P'].

The t channel does not contribute to the left-hand side
in Fig. 1 since it is identical to zero when the two lower
legs are assigned zero momentum. The fact that only the
s channel enters the calculation implies that only conden-
sates with the same flavor as the quark with hard momen-
tum (the propagating quark) contribute. The diagram on
the left-hand side of Fig. 1 is gauge dependent due to the
gauge dependence in the gluon propagator. We evaluate
this diagram in a general covariant gauge. When con-
tracted in spinor and color space, the diagram on the left-
hand side in Fig. 1 yields

Pyb t) sl ( + )(p p 0,0) =
3 (3+ag)g 5 5 t)

p
2

An insertion of [fP], at zero momentum in the inverse
quark propagator, I'2'(0), is obtained by differentiation
with respect to minus the quark mass:

I Igp(o)](0)= I' '(0) .

After contraction with Pyb we have

cd cd (2)
Pyb ybl [~o)](0)=12

Combining (4), (5), and (7) we now obtain

(3+ag )ab C[ijhp]( )
g

i 25ab5

(7)

The contraction operator, I'&„~, plays the same role here
as in the previous case. It ensures that the collective
quantum numbers of the soft gluon legs are those of vac-
uum and it effectuates the summation over gluon color
and sgace-time indices compatible with that requirement.
P&„~ is identical to the contraction operator in the four-
gluon vertex:

pABCD fABEfCDE(5 5~

+fCBEfADE(5 5~ 5 5 )

(10)

I' + ' is a one-particle irreducible six-point function and

&(o)] is the gluon four-point vertex with an insertion
PV

of [6& ] at zero momentum. Such an insertion in a
one-particle irreducible Green s function is obtained
through the following formula

ns
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+

Here, ng is the number of external gluon legs and ag is
the gauge parameters. In our case ng

——4. With

In order to obtain at)C "" in (2), we study the expansiongb |G „'].
of a six-point function with two hard quark legs and four
soft gluon legs. The OPE expansion of this diagram is il-
lustrated in Fig. 2, and it reads
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FKJ. 1. graphical illustration of Eq. (4). The bars on the
lower legs indicate that the corresponding propagator is assigned
zero momentum. The upper diagram in the middle part of the
equation is defined to be the graphical representation of the
coefficient 'pC~&"j(p).

A p, B v C,p D (T

C, p D, cr

FICx. 2. Cxraphical representation of Eq. (9). Notations are
the same as in Fig. 1.
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ABCDp(4) 2p ABCD
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(12) and
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Ppzp+ pzp~ I
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ABCDp(4) 4 2p ABCD
I p tG '(o)] 4g ~I p The left-hand side of (9) is evaluated to be

P&~~ ~p&„&~ I + (p p, 0,0,0,0)=36ig 5 2 (2p p+3mp +3m 2p+4m 3)~~ .
(p 2+ m 2)3

From (9), (14), and (15) we now get

]
'AC "" (p)= g 5'

2 2 3 ( p p+3mp +3m p+4m ) p.

We are now in a position to obtain the nonperturbative inverse quark propagator. From (2), (3), (8), and (16) we get

(16)

'pS„~'=i5's(p+m) p+ ig 5' 5 p (Q
I [fg] I
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Q) .2 ab

864 (p +m )

In Fig. 3 we give a diagrammatic interpretation of this equation. The nonperturbative inverse propagator can be ex-
pressed in terms of a running normalization function, N~(p ), and a running mass, M (p ), in the following way:

~pS„q i5'
2

—[—p+M(p )]~p.
&~(p 2)

This corresponds to Politzer's definition of the nonperturbative mass. We have

(18)

&q(p2)= 1+ g 3 (2p +3m )(Q
I [Gpv ] I

Q)
864 (p2+ m 2)3

(19)

and

m+ g 2&QI[A']IQ&+ 64g 23(3mp +4m
9 p2 864 (p2+m 2)3

Inverting (18) we obtain the nonperturbative quark
propagator

operators. The only. region where we can feel confident
about our results is in the asymptotic region where our re-
sult coincides with that of Politzer.

b 2
—i5

p+M(p )
(21) III. THE NONPERTURBATIVE GLUON

PROPAGATOR

If we let both m and (Q
I [G„„]I

Q) be zero, we see
that this expression agrees with that of Ref. 8. We note
that for large p the mass is identical to Politzer's mass
(up to a constant factor, see Ref. 8). For low momenta,
where the gluon condensate is important, our mass goes
like p, differing drastically from Politzer's mass which
goes like I/p for all momenta. However we want to
stress that for low momenta the nonperturbative quark
mass might get large contributions from higher-dimension

A, p, 8 ~ JLL A, fL 8,p.

pob
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The QPE for the inverse gluon propagator is
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FIG. 3. Graphical interpretation of Eq. (17).
FIG. 4. Graphical representation of Eq. (24). Notations are

the same as in Fig. 1.
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Vfe evaluate this expression in a general covariant gauge
where we have the perturbative inverse propagator:

P' ' I ' + '(p p 0 0)=—12ig 5 5»""p'+m'

ABC 1(p ) 5ABp 2 (23)

Combining with (7) and (23) we have

(2S)

Here uG is the gauge parameter and the notation is such
that aG ——1 corresponds to the Feynman gauge. The coef-
ficient, „„C[+](p)is obtained from the following equation,
graphically represented in Fig. 4:

AB( [(Itb]( ) 25AB5 (26}

Pab AB,abI (2+2)(p p Q Q)

ABQ[](p)PababP(2)(0)(24)

Here I' + ' is the sum of the two diagrams on the left-
hand side in Fig. 4. The contraction operator I"p is the
same as the one we used in the derivation of the quark-
condensate contributions to the quark propagator. After
contraction with I'~~ we have

In order to obtain the contribution from the gluon con-
densate, we study the following equation, graphically
represented in Fig. 5:
PCDEF AB, CDEFI (2+4)( 0 0 0 0}pcT1 A, nfl v, pQ'pA,

AB I.Gpv i CDEF CDEF (4)» P pork posh [G 2(p)] (27)

Here I' + ' is the sum of the five diagrams on the left-
hand side in Fig. S. The left-hand side in (27) is evaluat-
ed" to be (in a general covariant gauge, Euclidean space)

T
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From (14) and (23) we get
r

AB( [ p ]( ) 5AB 2 ppp (1 + )2 31p~p (P 2304 g 6 2 &G . 2 ~G
P . P P
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We now get the nonperturbative inverse gluon propagator from (22), (23), (26), and (29):
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FICx. 5. Graphical representation of Eq. (27). Notations are
the same as in Figs. l and 2. The small squares in the diagram
represent four-gluon couplings and the triangles three-gluon
coupling s. FIG. 6. Graphical interpretation of Eq. (30).
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A diagrammatic representation of this equation is given in Fig. 6. In analogy with the inverse quark propagator, we
write the inverse gluon propagator in the following form:

(Dtsv, AB) 1 — gAB 2
g Ng(p2)

"" Ag(p2)
pppv

p
(31)

g (Qi [6„,] iQ)+ [13—(1—ag) +28(1—cog)]
2304p

where we have introduced a running normalization function

Ng(p )= 1+ g mq(Q i [qq] ( Q)

q=d, u, s, c,t, t p (p +mq )
(32)
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1 +np
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Q)

2 2 2
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5~B pI p
2 l 2

(33)

IV. DISCUSSION

Our main results are the expressions for the nonpertur-
bative quark and gluon propagators, Eqs. (21) and (33).
For low values of momenta, these expressions will have to
be corrected by contributions from any operators of
higher dimension than four that acquire nonzero VEV's,
and from multiple insertions of [Pg] and [Gu„]. We
suggest (quite arbitrarily and probably very conservative-

and a running gauge parameter, A (p ). The expression
for the running gauge parameter is rather complicated in
a general covariant gauge. The gauge in which the phys-
ics is most transparent is the Landau gauge where
ag ——Ag(p ) =—0. In this gauge all the nonperturbative ef-
fects are contained in the running normalization function
and the expression for the nonperturbative gluon propaga-
tor reads

I

ly) that as long as the nonperturbative corrections that we
have calculated here are one order of magnitude smaller
than the regular propagator, further nonperturbative
corrections can probably safely be neglected. With the
phenomenological values of the VEV's of [$1I(] and

[G&, ] in (1), we thus estimate that the nonperturbative
corrections that we have calculated here can be taken seri-
ously for ( —p )'i &0.60 GeV in the case of the gluon
propagator and ( —p )' &0.80 GeV in the case of the
quark propagator. One way to lower the limit of validity
of the nonperturbative analysis is of course to calculate, or
at least estimate, the contribution from higher-dimension
operators and from multiple-operator insertions.
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