
PHYSICAL REVIE%' D VOLUME 32, NUMBER 4 15 AUGUST 1985

Impossibility of supersymmetry restoration in quantum-mechanical systems
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%'e show that supersymmetry restoration is not possible for a large class of 0 Raifeartaigh-type
quantum-mechanical models. The vacuum energy is bound from below by its classical value. An
exception is discussed.

I. INTRODUCTION

Supersymmetry, in particular, local supersymmetry, is a
very beautiful mathematical construct; it contains in it
some very suggestive solutions to phenomenological ques-
tions such as the hierarchy problem. The possibility that
it may lead to a well-defined theory of quantum gravity is
actively studied. Whatever awaits us at shorter distances,
supersymmetry is definitely broken at an energy scale
below a few GeV. The breaking of supersymmetry may
be parametrized by considering softly broken theories of
supergravity. A considerable amount of effort, however,
was devoted to construct a realistic model in which global
supersymmetry is spontaneously broken at a variety of
scales. In some of these models the existence of symmetry
breaking is identified at the tree level; the classical poten-
tial turns out to be positive definite. In this paper we
wish to investigate the possibility that, although it may
seem by inspection of the classical potential that super-
symmetry is broken, the exact ground state has zero ener-
gy. This would maintain a zero Witten index. If this
occurs, it would be the property of the exact solution and
not of a small perturbation. In the absence of supersym-
metry in nature our interest in restoring it requires some
explanation. For compact bosonic symmetries it is the
case that nonperturbative effects may restore a broken
symmetry these phenomena are associated with nontrivi-
al topological properties of the manifold. They result
with the formation of a singlet ground state whose energy,
in the semiclassical approximation, deviates only slightly
from the perturbative energy.

In the case of supersymmetry the return to a singlet
ground state requires a finite change in the ground-state
energy. It is for supersymmetry breaking that it suffices
that the vacuum energy change by a very small amount.
The question is whether or not the flat potentials em-
ployed to break supersyrnrnetry spontaneously are unsta-
ble against an expansion in h. We will try to use the ad-
vantage that some exact statements can be made in
quantum-mechanical supersymmetry. For bosonic
models, quantum-mechanical systems are the most ag-
gressive in restoring symmetry. It was suggested in the
past that supersymmetry is restored in the Wess-Zumino
model. A more careful theoretical analysis found no evi-
dence for this; a Monte Carlo study of two-dimensional
supersymmetrical systems with one real scalar field also
did not detect supersymmetry restoration. It was also

shown that to all orders in perturbation theory supersym-
metry breaking by an F-term is not restored in four di-
mensions. In Sec. II we find that for systems in which
spontaneous supersymmetry breaking is achieved with the
help of a flat tree-level potential, supersymmetry is not re-
stored. In Sec. III we describe a class of models for which
the symmetry is restored; these systems have, however, a
compact fiat direction and singular features.

The supersymmetry quantum-mechanical system that
contains an equal number, N, of bosons and fermions is
given by the Hamiltonian
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where W(x) is the superpotential and
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The supersymmetry charge Q is given by
r
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II. O'RAIFEART'AIGH- TYPE MODELS

A. The N =1 case
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The classical potential V,~
is defined to be

2

(2.2)

We wish to investigate if it is possible that V,& & 0 and yet
supersymmetry is unbroken. For 8'of a polynomial form

The simplest case to study is X = 1 quantum mechan-
ics. In that case Q I and H are given by
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we know that the answer is negative. A necessary condi-
tion to have a positive definite V,l is that the leading
power x" in 8' be odd, but in such a case Witten has
shown that supersymmetry is broken. More generally, a
positive V,l implies, if W has a continuous derivative,
that W is a monotonic function. The zero-energy wave
function $0 always exists and is given by

$0(x) =c exp[+ W(x)] .

(2.7)

where Ho is a one-dimensional matrix acting on zero-
forms, Hl is a two-dimensional matrix acting on one-
forms, and H2 is a one-dimensional matrix acting on
two-forms. The explicit form of the H; is

The sign is chosen so that $0(x) is normalizable. This
cannot be achieved for any monotonic W(x). The closest
one can get is to a plane-wave normalizable ground state.
That is achieved if

Ho ———,[—b, +(VW) —b W],
BllW Bl2W
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(2.8)

lim W(x) ~ const.
Ix ( ~Do

(2.3)

In that case the classical potential tends to zero at infinity.
A plane-wave normalizable wave functional would corre-
spond to the absence of a mass scale; large field values are
not suppressed. (For W with a discontinuous derivative, a
formal zero-energy solution exists. ) In higher dimensions,
however, the minimal supersymmetrical realizations con-
tain at least one complex scalar.

%e thus turn to quantum-mechanical systems that con-
tain more degrees of freedom. The spontaneous breaking
of supersymmetry in field theories containing scalars and
fermions is obtained through the O'Raifeartaigh mecha-
nism. For complex scalars the mechanism becomes only
operative in the presence of three supermultiplets. In that
case one can construct a positive-definite classical poten-
tial that has flat directions. We wish to abstract that
feature and study multicomponent quantum-mechanical
supersymmetrical systems whose classical potential has
flat directions. This can be achieved already for N =2.

B. The N =2 case
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W(x,y) is the superpotential. The g;, 1t; obey
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They are chosen to be
r r
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The Hamiltonian H = —, [Q, Q I conserves the total num-
ber of fermions and thus factorizes into three blocks,

(2.6)

X =2 supersymmetric quantum mechanics contains
two bosonic and two fermionic degrees of freedom. The
states of the system are given by four functions
p(nl, n2, x,y) (nl ——0, 1; n2 ——0, 1) describing the amplitude
to measure values x and y provided one is in a state con-
taining nl fermions of type 1 and n2 fermions of type 2.
In the language of forms P(o, o,x,y) is a zero-form,
P( 1, l,x,y) is a two-form and the other two functions con-
stitute a one-form. Q and Q can be represented in this
basis by

H2 ———,
'
[—b, +(VW) +b, W] .

The number of zero-energy states in each p-form sector is
also called the Betti number 8&. They are the solutions g
to the equations

Qf=o Q 4=0 (2.9)

which themselves are not given by 1t =Qp or Q=Qfg. In
the zero-form and two-form sectors the equations are

Ve P(o,o,x,y) =0,

Ve P(1, l,x,y) =0 .

These equations are solved to give

P(0,0, x,y) =ce

P(1, l, x,y) =ce+

(2.10)

(2.11)

The properties of W will determine if the functions are
normalizable, if

~

W
~

is increasing at infinity and W has
a we11-defined sign there then a normalizable solution ex-
ists, if W tends to a constant at infinity it is plane-wave
normalizable. The O'Raifeartaigh potential we have in
mind is

Wz(x, y)=x(y +c) . (2.12)

It leads to the classical potential

V.l
=

& [(y"+c)'+4x'y'] (2.13)

For c &0 the minimum of V,l is c /2) 0. That value is
obtained along the line y =0. For Wz there is no normal-
izable, zero-form or two-form, zero-energy state. In the
one-form sector a zero-energy state satisfies the equations

~ le 02 ~2e (t I

fl = —l)2e
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(2.14)

These equations are called pseudoanalytic equations by
mathematicians; we do not know the general classification
of their solutions, in the case when W is polynomial.
However, assuming that in this case the Mitten index can
be calculated reliably in the classical limit, one can argue
that no solutions exist to Eq. (2.14) for W~ given by Eq.
(2.12). In the classical limit the index is zero. We have
shown, by studying the zero-forms and two-forms, that no
bosonic zero-energy solutions exist. Thus there are no
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zero-energy fermionic solutions as well. For the case
N =2 there is no supersymmetry restoration if neither
e —+ are normalizable. To strengthen our proof and due
to the fact that for X ~ 2 we do not have such a general
argument, we shall present also a variational argument
that for a class of potentials that includes WR there is no
supersymmetry restoration.

C. A variational argument against supersymmetry
restoration

In a supersymmetric quantum-mechanical system with
N degrees of freedom the Hamiltonian is block diagonal
in the form basis. As the total fermion number is con-
served H acts only within a given p-form sector. The ex-
pectation value of the Hamiltonian in the p-form sector is
given by

(x.VW)=y +c, (2.18)

which is positive for all x,y as long as c &0. We have
thus shown that for a flat potential of the O'Raifeartaigh
type supersymmetry is not restored. This result holds also
for N &2; for example, for N=3 a flat potential is de-
rived from Wz ayz+ bx (y ——+c), this potential has
monotonic direction such that n. V W & 0, and therefore
does not possess a zero-energy solution.

From the variational treatment one can actually set a
lower bound to the ground-state energy. Substituting c of
Eq. (2.12) instead of A, in Eq. (2.14), and calculating the
expectation value of H in the ground state of H(W")
one obtains

)&+

+c&y (W") ln. VWly, ((c))& (2»)
For a positive c one has

w(. & c (2.20)
2

EpC4p] = (2.15)

Assume that the superpotential 8' has a global direction
n such that (n VW) &0 for all x. Note that this is a suf-
ficient condition for a positive V,~. Consider now the
super potential 8' '= 8'+An;x;, where A, is a real num-
ber. The expectation value of H(W' ') in Pz is given by

(,) g2 d x(n. VW) q

dN y
2

The main point to note is that the contribution from the
"Yukawa" term is independent of A, .

If we now assume that H( W' ') has a zero-energy state
we will run into a contradiction. On the one hand, since

w(~&H is semipositive definite E &0; on the other hand, if
w(0}

one assumes E =0 for Pz one has

k2E~'"= +X&n.VW& . (2.17)
2

By the assumption &
n. V W & is positive if it is also finite,

w(A, )

one can always choose such a A, that E ~0.
For 8'z choosing n=x one has

2

W(r)= +gin(r+a ) .
2

This superpotential leads to the classical potential
2

V,)(r) = r+ g
r+a

(3.1)

(3.2)

This potential has a minimum for r =v g —a if g & a .
The value of the potential at that distance is positive. For
O~g &a the minimum is at r =0 and is still positive. In
a way this is a flat potential, but unlike higher-
dimensional supersymmetric theories, this flat direction is
compact. Affleck has shown that for superpotentials
W(x ~, . . . , x~ ), which are 0(N) symmetric, there are
only four possible candidates for a zero-energy state.
They are an O(N) singlet, zero-form, one-form, (N —1)-
form, and N-form. For W as given in Eq. (3.1), there ex-
ists a zero-form, zero-energy, normalizable state for g pos-
itive. The form of this potential does not allow the appli-
cation of the variational argument. For negative g super-
symmetry is unbroken at the tree level. The classical
value of the index is zero. All this is due to the singular
nature of the potential. The zero-farm wave function is
given by

exp( r!2)—
(r+a )g

IV. DISCUSSION

(3.3)

We have faund no evidence for supersymmetry restora-
tion in quantum-mechanical models that have a flat poly-
nomial potential. Actually we have found that in these
models the tree-level value of the potential serves as a
lower bound to the true ground-state energy. We have
constructed systems in which such a restoration occurs;
however, they have no obvious field-theoretical counter-
parts.
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where b is a positive number, that is, the exact ground-
state energy of the flat potential Wz is larger than the
classical value of the energy c /2. Recent Monte Carlo
calculations in a two-dimensional supersymmetric field
theory are in agreement with this result.

III. AN EXAMPLE OF SUPERSYMMETRY
RESTORATION

We conclude with an example for which supersym-
metry is indeed restored. A flat noncompact potential
was unable to sidestep the h expansion, that can be, how-
ever, achieved with a slightly singular potential O'. Its
crucial property will be that while the classical potential
(the gradient squared of W) is finite and positive every-
where, the Yukawa term (essentially the I.aplacian of W)
is somewhat singular at the origin. This will be enough to
maintain a well-defined Hamiltonian in which supersym-
metry is restored. For a general N (N&1 however) we
study as an example the radially symmetric potential
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