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Radiation from initially static vacuum structures
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An alternate scheme of quantizing extended vacuum structures is further developed to include the
case of scalar multiplets. Approximate static bubble and multibubble states are presented for several
scalar theories which possess a symmetry that creates energetically degenerate minima for their po-
tentials. The first theory is the standard li model, while the second theory is a model which exhib-
its spontaneous CP violation. The approximate bubble solution is consistent with selecting the parti-
cle spectrum associated with a constant vacuum expectation value for the scalar field. The spectrum
of radiation associated with the collapse is calculated in lowest-order approximation and the average
number of emitted particles is found to be proportional to the area of the bubble. Approximate mul-

tibubble solutions are presented and the energy of these configurations exhibits an attraction between
the bubbles.

I. INTRODUCTION

Many of the cosmological ramifications of extended
vac'uum structures, which might be formed during a pri-
mordial phase transition early in the history of the
Universe, have been examined. Such structures will be
possible within the context of grand unified models when-
ever there is a discrete symmetry which causes the mani-
fold of the invariance group to be multiply connected.
The domain walls and strings which may be formed can
be either stable or unstable depending upon the dynamics
of the parent theory. The initial nucleation and subse-
quent growth of bubbles of true vacuum have been exam-
ined. ' The formation and effects of domain walls have
been discussed, and it has been shown that the mass-
energy associated with stable domain walls renders them
inconsistent with current ideas regarding cosmological
evolution, and hence should be avoided. The gravitation-
al field associated with planar walls has been investigat-
ed, and the gravitational and particle radiation from os-
cillating vacuum structures has been calculated.

In previous work the collapse of a time-dependent vacu-
um bubble formed in a simple scalar theory was evaluat-
ed. This process was modeled within the framework of
an alternate technique for quantizing a theory in the pres-
ence of an extended vacuum structure. This technique
allows use of the particle spectrum associated with the
choice of a constant vacuum expectation value, as long as
all the constant vacua are induced by the discrete symme-
try and are thus energetically degenerate. Such an ap-
proach is ideal for modeling the collapse of an unstable
vacuum structure into the translationally invariant sector.
In addition, the equation for determining the shape of the
vacuum structure is considerably easier to solve in this ap-
proach.

This paper will treat the case of a vacuum bubble which
is initially static. Consideration will be limited to the sca-
lar sector of several theories in both one and three spatial
dimensions, the first being the standard f model, while
the second will be a model which exhibits spontaneous CP

violation. However, the technique of quantization will be
extended to the case where there is more than one scalar
field present in the theory. The difference between the ex-
pectation value of the Hamiltonian in the bubble state and
the translationally invariant ground state to which it will
collapse is evaluated in-lowest order, and this yields the
total energy of emitted particles. The spectrum of emitted
particles is obtained from the matrix element of the bub-
ble state and the one-particle translationally invariant
state to which it can collapse. The square of this matrix
element gives the relative spectrum of emitted particles.
The absolute spectrum -is obtained by assuming that it is
proportional to the relative spectrum and then calculating
the total energy of emitted particles. The coefficient of
normalization is then obtained by matching to the energy
calculated from the Hamiltonian. The values for the
number of emitted particles and the Hamiltonian are
found to be proportional to the surface area of the bubble.

II. GENERAL BUBBLE SOLUTIONS

Since previous work was limited to theories of a single
scalar field a brief extension to the case of scalar multi-
plets will be presented. However, only domain-wall for-
mation will be considered. The gauge field sector of the
theory, and hence the possibility of string formation, will
be ignored except to assume that all Goldstone bosons
disappear as the longitudinal components of massive Pro-
ca bosons.

Consideration will be limited to those theories whose
Higgs potentials V(P) possess a discrete symmetry which
creates a set of distinct and degenerate minima in field
space. There are then different sets of solutions to the
equation

V —0
Bg;

where f; is the ith scalar field. The jth possible solution
to (1) for the ith field g; will be labeled v,j. The index i
runs over all fields while the range of j is dictated by the
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form of the potential. The symmetry dictates that

&(g; =v;,. ) = V(i'; =v;k),
for all j and k, and that the mass matrix

the only rule being that each section of space is associated
with only one of the possible sets of unitarily transformed
solutions to (1).

It is consistent to assume that the interaction-picture
fields exist as the weak limit of the interpolating fields,

(3)

has identical eigenvalues regardless of which set of solu-
tions to (1) is used. It then follows that domain walls are
possible and describe regions of space where the vacuum
expectation value of the field interpolates between two of
the values available as solutions to (1). The form of these
domain walls in the tree approximation is given by a clas-
sical solution to the equations of motion of the theory.
Unfortunately, only a limited number of such solutions
are known analytically. The picture is further complicat-
ed by Derrick's theorem, which predicts all purely scalar
solutions in higher than one spatial dimension will be un-
stable and will thus collapse into the translationally in-
variant sector.

It is possible to bypass some of these problems by using
an alternate form of quantization in the presence of an ex-
tended vacuum structure which does not require the
knowledge of an exact solution to the equations of
motion. This approach employs interaction-picture fields
whose masses are given by the eigenvalues of the mass
matrix (3). The same unitary matrix U which diagonal-
izes the mass matrix is next applied to each possible set of
solutions to (1). To be specific, if

M,J-
——U;k MI,I U)q, (4)

where M is a diagonal matrix, then the diagonalized solu-
tions to (1) are defined as

(5)

A discontinuous function of space is then constructed by
partitioning all space into sections and assigning one of
the possible sets of (5) to each section. As an example,
consider the spherically symmetric function

(CI+ml )fj(x)=mj vj(x)

(no summation on j), where ml is the mass of the jth
interaction-picture field and vj is the function constructed
from the values of (5), of which relation (6) is an example.
It is straightforward to show that

P;, (x)=lim(f, t+
~
g;(x)

~
f, t )

A'=0
(10)

is a classical solution to the original equation of motion
such that U;lp~; interpolates between the constant values
chosen for v;. The approximate forms for bubble and
multibubble extended structures are obtained by solving
Eq. (9) with an appropriate choice for v;(x). This is easily
seen from the fact that

(f,t
~

P;(x)
~ f,t) =f;(x) .

The simplest case is that of a one-dimensional system.
While not of physical significance, such a system offers
insights because of the mathematical simplifications ob-
tained. The case of the kink has been analyzed else-
where. The general form of the static double kink or
bubble in one dimension is obtained by choosing

The incident extended vacuum structure consistent with
(6) and (7) is realized as a coherent state in n spatial di-
mensions,

~

f)t=exp i f d"x(gjfz vlf ) —~0),

where
~
0) is the vacuum cyclic with respect to the alge-

bra of the interaction-picture fields and m J is the momen-
tum canonically conjugate to pl. The functions fz ap-
pearing in (8) are solutions to the equation

v;(x) =v; 8(r —a)+v;k8(a r), —(6)
v; (x)=v J 8(a —x ) +v k 8(x —a)8(b —x) +v l8(x b), —

where 8 is the standard step function. This assigns the jth
value outside a ball of radius a and the kth value inside
the ball. Obviously, more complex structures are possible, where it is assumed that a & b Equation (9.) gives

—m;(a —x) I —m;(b —x)f;(x)=8(a —x)[vs ——,(vie —v;k)e ' ——,(v k
—v;l )e ' ]

—m,.(x —a) j —m;(b —x)+8(x —a)8(b —»[vik+ 2 (vij —va )e '
z(vtk v—il )e '

]
-m, .(x -a) l -m, .(x -b)+8(x b)[vl+ —,(vlJ —vt—, )e ' + —,(vl, —vl)e ' ] .

The generalization of (13) to the N-kink solution is straightforward.
The static solution of (9) consistent with the choice of (6) for three spatial dimensions is

(13)

C.i —m;(» —a)f;(r) =8(r —a) v~ ——
(v~j —vik)e ' +8(a r) vik+ (vl —vk)sinh(m;—r)

I' I"
(14)

where
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1 —2m. a —m,.a
c; =a — (1+m;a)(1—e ' ), d; = (1+m;a)e

2mi
(15)

A double-bubble solution is also possible. For simplicity each bubble will be assumed to have the same radius a. One
bubble will be placed at position r&, the other at r2, and it will be assumed that the radians a is such that the two bubbles
do not overlap. The form of v;(x) will be

v;(x)=v; 8(a —
I
x —ri

I )+vi, 8(a —
I
x—r2

I
)+vi8{

I
x—ri

I

—a)8(
I
x—r2

I

—a),
so that

(16)

ifg(x)=8(a —
I
x —ri

I
) v; + (vii —vg")sinh(m;

I
x —r,

I
)—

Ix—r,
I

—m;( fx —r2/ —a)
(v;i —v;k)e

X—I'2

d c.i —m;( Ix—rl ~

—a)+8(a —
I
x —r2 I ) vlk+ (vil —vik)sinh(mi

I
x r2 I

) — (vir —vij )e
Ix—r,

I Ix—r, I

+8(
I
"—ri

I

—a)8(
I
"—r2

I

—a) v.i
Cg —m;( Ix—

r& ~

—a)
Vil Vi ' ~e

Ix —r,
I

c;
(v,, —v,„)e (17)

In order to find the energy available from the collapse it
is necessary to calculate the expectation value of the Ham-
iltonian in the bubble state. Care must be taken since this
will be, in general, a divergent quantity even at the tree
level. However, the physically ineaningful quantity is the
difference between this value and the one obtained using
the translationally invariant ground state, and this will be
finite at the tree level. The value to be computed is

& v
I f ) =exp ——,

' f d "k el'�'
I g (k)

I

'
where

(i) (k2+ 2)1/2~k i 7

g;(k)= f [f;(x) v;]e'"" . —
)n/2

(22)

(23)

E=(f IH I f)—(vIH
I
v), (18)

E=H [fl H[v]— (20)

It is possible to expand (20) around the function v;(x) in a
functional power series in g;(x). It is not difficult to
show that the lowest-order term in g;(x) is given by

E=g f d"x[ ——,'m; v;(x)g;(x)],

(21)
g;(x)=f;(x)—v;(x) .

It is to be remembered that (20) does not contain all the
tree-graph contributions since the choice of free fields will
create terms in the evolution operator which are linear
and quadratic in the interaction-picture fields. However,
in the next section it will be shown that for the case of the
kink in one dimension, where the exact tree-level energy
may be computed, expression (20) is an excellent approxi-
mation.

Using the forms (8) and (18), along with a plane-wave
decomposition of the interaction-picture fields, gives

where
I
v) is the translationally invariant ground state to

which the bubble will collapse. The state
I
v) may also be

realized as a coherent state
r

I v) =exp i f d—"x(v,~, )
I
0),

where v; is the value to which f; will collapse. At the
lowest level it follows that

The spectrum of emitted particles is obtained by per-
forming the following two steps. First, the matrix ele-
ment between the bubble state and a particle state in the
translationally invariant sector is found. It follows that

(k",v
I f ) =(~")' 'g. (k)(v If ) . (24)

The relative probability of emission, Pk, is then obtained
by squaring the matrix element, so that

Pk=~'k' Ig;«) I'. (25)

Once C is known the total number of particles emitted by
the collapsing bubble is given by

Ã, = f d"kN, (k) . (28)

III. SPECIFIC MODELS

The first model to be examined is the standard single
scalar fie1d theory described by

V(Q)= —,'a P + ~A,iti—

The spectrum of the bubble collapse is then proportional
to (25), so that

Ã~(k) =Ceo'k'
I
g;(k)

I
(26)

The coefficient C is next determined by matching the en-

ergy of the emitted radiation obtained from (26) to the en-

ergy (20) released in the collapse. This gives
—1

C=E g f d"k(cok') Ig;(k) I
(27)
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V—:V11=

while the mass of the interaction-picture field is

which has the discrete symmetry hatt
—+ —g. The two con-

stant solutions to (1) are
' 1/2

V12= —V

force between the kinks, which drops off as the exponen-
tial of the bubble size.

The spectrum of the one-dimensional bubble collapse is
obtained from

g(k)= f — [f(x) v] e—'~
V2~

m =2m (31) =2vm sin(kL)[v'2m k (k +m )] (41)

Using (28) and (24) gives the general form

E= f d"x[ —a~v(x)g(x}+Av(x)g (x)+ ~kg (x)],
(32)

so that, from (25) and (26),

N (k )=2Cv2m sln2( kL )[hark 2( k 2 +m 2
)
3 /2] —1 (42)

where

g(x) =f(x)—v(x) . (33)

—1
4,

(1 2mr.—
)

mA,
(43)

Before proceeding to the examination of bubble solu-
tions it is instructive to examine the value of (32) in the
case of the approximate kink, which is given by the one-
dimensional form

f (x)=8(x —a)v(1 —e '" ')

where E is given by (40).
For a large bubble (42} simplifies to

35 a 'sin (kL)
24~ A(aL) k'(k'+2a')' ' (44)

—8(a —x)v(1 —e ' "') . (34)
The total number of particles emitted during the collapse
of a large bubble is

For this case

35
96 A,

(35)

P, (x) =vtanh —,
' m(x —a), (36)

The exact tree-level solution to the equation of motion is

35 2aN= J dkN(k)-
96 A,

(45)

It should be noted that the main contribution to the in-
tegral of (45) comes from the small interval (—1/L, 1/L)
in k space. Not surprisingly the average 'energy of an
emitted particle is

which gives the tree-level energy of this configuration

1 u
tree (37)

Expression (35) is only slightly larger than (37), so that
(33) is a very good approximation of (36). Form (32) is
also well approximated by the first term of the Hamiltoni-
an which is linear in g, whose general form is given by
(21). The value of this term for the model (29) is

E =—-m.avg

For a small bubble (42) becomes

4a sin (kL)
rrA2k2(k +, m )'

so that

v 2a'L,
2

(46)

(47)

E= —u xvxg x (38)

Using (34) gives

1 u-2k (39)

CX

48 8 16 8

The approximation (38) has the advantage of yielding in-
tegrable expressions for the three-dimensional case, while
the terms cubic and quartic in g are not easily integrated.

Inserting form (13) and (32) gives E for the one-
dimensional bubble

Result (45) shows that, for large L, the number of parti-
cles emitted by and the energy of a one-dimensional bub-
ble are independent of L, so that both can be considered
to be proportional to the area of the bubble,

It is interesting to examine the energy of the one-
dimensional double-bubble solution. This is given by solv-
ing (9) with the choice

v(x) =v8(a —x)—v8(x a)8(b —x)+v—8(x b)8(c —x)—
—v8(x —c)8(d —x)+v8(x —d) .

The size of each bubble will be fixed to be L, so that

24e
—3mL)

,
L=(b —a) .

I.=b —a=d —c, I.&0,
(40) while the bubble separation will be S, so that

(50)

For large separation (40) reduces to twice the energy (35)
of a single kink. Expression (40) exhibits an attractive

S=c—a =d —b, S~1. . (51)

Using the approximation (38) for the Hamiltonian gives
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—mL —mSE= I 1 —e —e ™[cosh(mL)—1]I . (52)

This clearly exhibits the attraction between the two bub-
bles, which grows exponentially with the size of the bub-
bles. For large L and larger S the expression (52) reduces
to four times the energy of a single kink in the approxi-
mation (39).

The same analysis can be extended to the three-
dimensional bubble given by the general form (14) for the
specific model of (29). Unfortunately, the form (14) gen-
erates intractable integrals for the terms cubic and quartic
in g(x). As a result, approximation (38) will be em-
ployed. This gives

E= [(ma) —1+(1+ma) e '],2&Pl
(53)

& [sin(ka) —ka cos(ka)] (54)

Matching the two forms (53) and (54) gives, for ma large,

108X(k)=, k '(k'+m'-)
A,Q

which is clearly proportional to the area of the bubble.
Repeating the previous steps yields

X(k) =C—dm4k '(k-'+m')8

The presence of a nonvanishing value for t9 induces CP
violation in the theory. The two degenerate minima are
characterized by

8=0I= cos
8

4A
02 ———0, (60)

which is a direct result of the symmetry (58). When the
scalar fields are coupled to a set of spinor fields, in a way
which manifestly breaks the symmetry (58), spinor parti-
cles or antiparticles are created preferentially during decay
processes, the preference depending on the sign of 0. This
model has been used to create a cosmology where the
Universe has no preference for baryons or antibaryons,
but can give rise to domains where either baryons or anti-
baryons predominate. Of course, there must be domain
walls between the respective sectors, and the formation of
unstable bubbles will be possible. That such a bubble
could be stabilized against collapse by the presence of par-
ticles in its interior will not be considered here, although
such a situation is clearly not out of the question. In-
stead, the collapse will be modeled by the techniques out-
lined in Sec. II.

The potential (57) is diagonalized by first rewriting it in
terms of four Hermitian scalar fields which are related to
the charged fields through a unitary transformation, ex-
plicitly given by'

A =
~ e""[&i+4+i(6+03)],

&& [sin(ka) —ka cos(ka)]

Result (55) gives

(55)

6= z e [4l 44 '(4'z iti3)] .

(61)

W= I d k N(k) = (ma) (56)
The two minima of expression (59) are reproduced by the
following two sets of expectation values for the new scalar
fields:

«0 0 )= '(q*q +y'y —)+ —,'i([(q*q )'+(/*gati, )']

+ 4 +( It 1 el + f202)(01 4+ 02 Pl )

+ '
/1 [(0*0»'+(e*—e )'] . (57)

Apart from the usual gauge invariance this potential
possesses the discrete exchange symmetry

which again gives the result that the average particle
created by the collapse of a large bubble has the energy

Another model examined in the literature is one which
exhibits spontaneous CP violation. The scalar sector con-
sists of two charged scalar fields interacting through the
potential

(p ) =2v, (p~&=(p3) =(p4) =O, (62)

or

(P l ) =2v cosO,

(Pq) = —2vsin8,

&y, & = &y. & =o,
(63)

where the positive solution for {9 is understood. Rewriting
the potential in terms of the fields (61) and then shifting
them by either of the two sets (62) or (63) removes all
terms linear in the fields and yields a diagonal set of mass
terms. The values of the masses are

pl I =2(x2 2

4z Vz (58)

which ensures the occurrence of degenerate minima. The
potential is minimized by the solutions

v ei 8/2 y e i8/2—
where

2

m2 ——4a 2

162

m3 ——0,2

g2
m4 ——2a (A, +A)

SA

(64)

g2v=a A, — —A
8A

8
cosO =—

4A
(59) It is now possible to construct a bubble which separates

two different sectors of the theory. The form for v;(x)
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will be constructed from the solutions (62) and (63), and
will be chosen to be

v11 =2v, v12 =2v cosO,
(65)

~1 V1 + g1 X +m2 V2 + 82 +

lim E =4nv a [m ~(1 —cos8) +m2sin 8] .
a~oc

(66)

v21 ——0, v22
———2v sin8 .

There are thus two functions, f &
and f2, necessary to

model the domain wall, and these both take the general
form (14) in three spatial dimensions. From form (21), to
lowest order in g1, and g2 the energy of the bubble is

From the form of the coherent state (8) and the fact that
both f, and f2 are present, it is apparent that the bubble
collapse will couple directly to both type 1 and type 2 sca-
lars. The spectra of radiation for the two types are,
respectively,

N~(k)= —Cv (1—cos8) I& k (k +I& ) ~ [sin(ka) —ka cos(ka)]8

and

N2(k)= —Cv sin 8m2 k (k +m2 )
~ [sin(ka) —ka cos(ka)]8

(68)

where result (25) has been employed again. Matching the energy of the emitted particles predicted by (67) and (68) to the
total energy of (66) gives the coefficient C. The final result, for a large bubble, is

r

m& v (1—cos8) [m~(1 —cos8) +m2sin 8]
N&(k) = — [sin(ka) —ka cos(ka)]

k (k +m& )
~

[m& (1—cos8) +mq sin 8]
(69)

6
N2(k) —=

3
m2 v sin 8 [m&(1 —cos8) +myosin 8]

[sin(ka) —ka cos(ka)]
k (k +m2 )

~ [I& (1—cos8) +m2 sin 8]

Integrating these expressions gives the total number of
emitted particles of type 1 and type 2.

Again, both results are proportional to the area of the
bubble. The branching ratio of the bubble decay is given
by

(1 —cos8)
m2 (1+cos8)

(71)

m i(1—cos8) + mslI21 8
N ) =-(4m a )m ) v (1—cos8)

m) (1—cos8) +m2 sin 8

(70)

m~(1 —cos8) +m2sin 8
N2=-(4vra )m2v sin 8

m ) (1—cos8) +m2 sin 8

IV. CONCLUSIONS

The results presented in this paper have verified the
oft-made assumption that the number of particles emitted
in a bubble collapse is approximately the energy of the
bubble divided by the mass of the particle emitted. How-
ever, the technique of this paper allows the calculation of
particle production by more complicated vacuum struc-
tures, which may couple directly to more than one particle
mode. In the CP-violating model examined in Sec. III
this technique showed the branching ratio between type 1

and type 2 scalars in terms of the CP-violating parameter
0, the scalar masses, the coupling constants of the theory,
and the size of the bubble. In addition, because the bubble
is represented as a coherent state, this technique allowed a
calculation of the momentum distribution of emitted par-
ticles. This technique is general enough to be applied to
any model, non-Abelian or otherwise, which can support
domain formation.
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