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We develop a new formulation of the quantum mechanics of a relativistic fermion based on the
existence of an extended set of underlying classical coordinates. We enlarge the classical theory to a
superspace built out of ordinary space-time coordinates and a set of Grassmann coordinates which
transform like Majorana spinors and describe a classical spin. We introduce a natural supersym-
metry between the Grassmann and the space-time coordinates. We quantize the theory both canoni-
cally and via a relativistic particle-mechanics path-integral prescription. The quantization of the
motion of the coordinates in the superspace gives rise to the standard Dirac structure of a relativistic

quantum-mechanical particle with spin one-half.

I. INTRODUCTION

Half-integral spin occupies a somewhat anomalous po-
sition in quantum mechanics since, unlike position and
momentum and even unlike integral angular momentum,
it appears to possess no classical analog. For this reason
half-integral spin is generally regarded as being intrinsi-
cally quantum mechanical in origin. Since integral spin
can be introduced into quantum theory by a canonical
quantization of a purely classical spin it would therefore
be of some interest to be able to introduce half-integral
spin into quantum theory by an analogous procedure.

In order to try to find a way to do this we recall how
the standard spin-one-half theory was developed. The
postulates of quantum mechanics replace the real classical
coordinates and momenta g; and p; (which are ordinary
commuting numbers which obey

qipj—p;jq; =0 (1.1)

for all i,/) by operators g; and p; which obey

4ip;—P;4i =i#d;; . (1.2)
The observable real classical ¢ numbers g; and p; are then
the eigenvalues of the Hermitian operators g; and p;, viz.,

Gilgid=aila:;), Pjlp;)=p;lp;) . (1.3)

This quantization of the motion of the classical trajectory
in the p,q phase space in turn entails the quantization of
the components of the angular momentum L=rXp ac-
cording to

[Li,L;]=ite; Ly

and leads to the quantization of integral spin, with the as-
sociated | ,m ) eigenvectors being given in the coordinate
representation by the spherical harmonics, viz.,

(6,6 |1L,m)=Y"(6,¢) .

Thus the quantization of position, momentum, and in-
tegral angular momentum is completely canonical, and
has a direct connection to the motion of a classical parti-

(1.4)

(1.5)
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cle in phase space. )

It was noted by Pauli that the angular momentum com-
mutation relations of Eq. (1.4) also admit of complex
half-integer spin representations in which the operators
additionally also satisfy anticommutation relations (re-
stricting to spin one-half)

ﬁZ
and have Hilbert-space eigenvectors |S,S;). Unlike the
integral-spin case it is not possible to attach a meaning to
(6,6]5,5;).

Attempts to produce a classical picture of half-integral
spin centered on a mechanical picture of a particle pos-
sessing an intrinsic spin as it rotated about its own axis
(thus unfortunately giving spin its misleading name). For
a point classical electron moving in a circular orbit of ra-
dius » with a period T the angular momentum is given by
L=mvr=2mrmr?/T, while the magnetic moment
w=IA=rr% /T, so that

eL

= om (1.7)
Thus the mechanical picture predicts a gyromagnetic ratio
for spin equal to one. Experimentally the g factor is close
to two, and so the mechanical picture was ruled out.
Moreover, it was laid to rest completely when Dirac cal-
culated the correct g factor from his wave equation, thus
establishing both the relativistic and the quantum-
mechanical nature of spin.

Since Dirac’s work it has generally been thought that
half-integral spin is intrinsically quantum mechanical and
that it possesses no classical analog. However, the above
discussion of the g factor and the lack of any meaning to
(0,6 |S,S,) only in fact indicate that there is no ap-
propriate classical limit which can be associated with a
motion in coordinate space. The analysis does not pre-
clude motion in some other type of classical space. In
particular, noting the connection between Egs. (1.2) and
(1.1), the anticommutation relations of Eqs. (1.6) suggest
looking at spaces whose coordinates obey
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a;Bj+Bja;= (1.8)

Such spaces exist and are nonempty. They were first
studied by Grassmann and are known as Grassmann
spaces with the a; and B; being the Grassmann coordi-
nates. In this paper we shall construct and study such a
space and show that the quantization of the motion of a
classical Grassmann particle in Grassmann space leads to
the standard Dirac theory of a spin-one-half particle.
Thus just as the existence of quantization of energy ob-
liged us to change the space appropriate for physics from
coordinate space to Hilbert space, we see that the ex-
istence of half-integral spin requires us to extend the space
of classical theory to include Grassmann space as well.

In setting up an appropriate classical Grassmann space
we need to specify how the Grassmann coordinates
transform under Lorentz transformations. Since classical
physics deals with real quantities only, we must require
that the Grassmann coordinates only acquire a real phase
under an arbitrary Lorentz transform, and that they be
Hermitian in the Grassmann space itself. Thus it is im-
mediately suggested' to introduce a set of four Grassmann
coordinates £, (1=0,1,2,3), which transform the same
way under the Lorentz group as the space-time coordi-
nates x,, [i.e., according to the real D (5,5 ) vector repre-
‘sentation] and which obey

§u§v+§v§y=o (1.9)

for all u,v. A canonical quantization of Eq. (1.9) would
replace the coordinates by Hilbert-space operators §,
which obey

§p§v+§1§p=2ﬁgl,¢v
in an appr0pr1ate normalization. This is initially very en-

couraging since the §,, satisfy the same algebra as the
Dirac gamma matrices y,, viz.,

(1.10)

YV vV u=28uv - (1.11)
However, the difficulty with Eq. (1.10) is that it admits of
no analog to Eq. (13). Specifically, according to Eq.
(1.10) each §,, obeys §,, ==+7. Hence the eigenvalues of
g could not be the §, Grassmann numbers of Eq. (1.9)
since they obey é‘,‘ —0 We must therefore seek another
set of coordinates.

Now it was noted by Majorana that the real SO(3,1;R)
Lorentz group actually admits of two inequivalent real ir-

reducible four-dlmensmnal representations, namely the

above D (+,+) representation and also one other represen-
tation, the Majorana representation, which transforms like
D(5,0)@D(0,5) and acts on Hermitian Majorana spi-
nors Y, (a=1,2,3,4). For such Majorana spinors
YT C.p¥p is Lorentz invariant, where Caﬁ is the transposi-
tion matrix for the Dirac gamma matrices. Since C,g is
antisymmetric, L Cop¥p is only nonzero if the com-
ponents of 1, anticommute with each other, and so the
_Majorana spinors are just the natural candidates that we
are seeking for our desired Grassmann coordinates. Thus
our classical Grassmann space will be built out of an-
ticommuting Majorana spinors. For such Majorana spi-
nors we will find that it is possible to construct an analog
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of Eq. (1.3) and effect a complete canonical quantization.

It is important to note here the role played by the rela-
tivistic Minkowski metric, Specifically, the four-
dimensional rotation group SO(4;R) only admits one real
irreducible four-dimensional representation, namely, the
one which acts on the four space coordinates. (The Ma-
jorana representation would become complex under the
change in the metric.) Thus the existence of the real Ma-
jorana representation is intimately connected with the
Minkowski nature of the metric. Thus, unlike the Dirac
(or Pauli) theories, spinors already enter our theory prior
to quantization.

The viewpoint that we are developing here is based on
the primacy of particles and coordinates over waves and
fields. Specifically, we first specify a classical particle
mechanics described by the motion of classical coordi-
nates x, and i, under an 7-independent Lagrangian and
then quantize it. We never refer to fields ¥,(x,) at all
with ¢, being independent of and on an equal footing
with x “.2 To effect the actual quantization of the classi-
cal theory it is convenient to use Feynman’s path-integral
formulation of quantum mechanics. To this end we note
that there are two main cases in which path-integral
quantization is usually considered in the literature.
Specifically, Feynman path-integral quantization is usual-
ly only applied either to nonrelativistic classical particles
or to relativistic first-quantized fields. In the nonrelativis-
tic case we start with purely classical particles whose La-
grangian (mx 2/2) is purely classical, and then interfere
the various paths via the path integration to obtain the
nonrelativistic quantum propagator. In this first quanti-
zation (particles into waves) the only reference to Planck’s
constant is in the explicit # factor in the iS¢y /7% phase as-
sociated with each path. In the relativistic case we start
with c-number fields (i.e., fields whose commutators or
anticommutators are independent of #) but use a Lagrang-
ian (Klein-Gordon or Dirac) which depends on # explicit-
ly, i.e., we start with a theory which is already first quan-
tized. The path integration over the c-number fields then
yields the relativistic quantum propagator to give a second
quantization (fields into particles) of the theory. Thus, in
the main the literature appears to ignore a possible relativ-
istic first quantization of purely classical particle coordi-
nates which obey relativistic kinematics and possess a
purely classical (i.e., 7 independent) Lagrangian. For our
Grassmann Majorana spinor coordinates such a formula-
tion is crucial and the bulk of the work in this paper will
be in setting up and then actually integrating the ap-
propriate Feynman path integral. To this end in turn we
will need first to develop the path-integration formalism
for the relativistic space-time coordinates x,,.

The present paper is therefore organized as follows.
First, in Sec. II, we study the Feynman path-integration
prescription for the coordinates x, by developing a five-
dimensional formalism. The actual path integration then
yields the Klein-Gordon propagator. In Sec. III we study
the path-integral quantization of the pure Grassmann sec-
tor of the theory, and then in Sec. IV present its canonical
quantization. In Sec. V we study the Feynman path-
integral quantization in the complete superspace of the
combined Majorana spinor and space-time sectors of the
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theory to obtain the Dirac propagator. Finally, in Sec. VI
we present some general comments on our work. We have
already presented some of our results briefly> and in this
paper we give the details.

II. FEYNMAN PATH INTEGRATION
FOR SPACE-TIME COORDINATES

In this section we quantize the relativistic classical
mechanics of the four space-time coordinates by path in-
tegration. Our philosophy here and throughout will be to
first identify the correct underlying classical particle
theory by constructing the space of paths needed to apply
Hamilton’s variational principle in the classical theory,
and to then integrate over the self-same set of paths in or-
der to obtain the quantum propagator. Thus all the re-
quisite information needed to specify the measure for the
Feynman path integral must be contained in the classical
theory and Planck’s constant must only enter via the
iS¢y /% phase factor associated with each classical path.

. The usual classical action for a free spinless relativistic
particle is

S=—m fds=—m fdt(l——v2)1/2 . 2.1)

Its noncovariant variation with respect to x(¢) gives the
equation of motion vgr=const (ST denotes stationary).
For the purposes of path integration we will need a co-
variant measure which treats x and ¢ equivalently and so
we must rewrite the action in a more convenient form. To
this end we express the Hamiltonian form of the action,
viz.,

S:fdt[p'V—(pz-i—mz)‘/z] ,

where p=0.Z /dv in the manifestly covariant form [here

and throughout we use the metric g, =(1,—1,—1,—1)]
dxH
S=— fdsp# a (2.3)

Though now covariant the above action is a constrained
action since ds=dt(1—v?)!/? is the proper time interval
and po=(p>’+m?)!/2. Since we would like to be able to
perform a free covariant variation to obtain the equations
of motion in the classical theory we must remove these
constraints. Thus we shall reinterpret the action as an ac-
tion in the five-dimensional space introduced by Feyn-
man* and Nambu® in which ds is replaced by a Lorentz
scalar parameter d7 which can then be varied indepen-
dently of dx, (d7 is thus not the proper time), in which
Do is allowed to vary independently of p, and in which an
extra (p>—m?)/2m Kkinetic energy term is introduced.
With these requirements our new 5-space action takes the
form

S=fd7'

Trajectories in the 5-space are given by the sets of func-
tions x,(7) and p,(7). While there is a connection be-
tween x and ¢ for the stationary path associated with the
4-space action of Eq. (2.1), we note that for the arbitrary
4-space path x and ¢ are independent, and we thus need

pl,,(‘r)p"(r)—-m2
2m

dx (1')

—Pu(7) (2.4)

2.2)

some additional parameter to specify the arbitrary path.
The parameter 7 then serves this purpose. The parameter
T serves to parametrize covariant trajectories x,(7) just as
the ordinary time ¢ serves to parametrize trajectories x(¢)
in nonrelativistic classical mechanics. Indeed, while the
5-space action is Lorentz covariant in the four-
dimensional space associated with the x, and p, vari-
ables, it is not five-dimensionally covariant in the full 5-
space x, and 7 variables, but rather it is “nonrelativistic”
in 7.

Having now specified the 5-space action we vary it free-
ly in a Lorentz- rovanant manner between end points
(x! po T= 0) and (x/ 2> 7=T). The independent phase-space
variations of x,(7) and p,(7) yield the equations of
motion

(xf —xi)r .
x,sLT(T)=—————” T £ Xy s
) (2.5)
ST m(xf—x})
W ="
In the stationary path the ordinary velocity 3-vector
(Xf —X; )
—_ (2.6)
VST =)

is constant as it should be. Additionally we note that vgr
is independent of T. Thus all values of T lead to the usu-
al classical minimum associated with the action of Eq.
(2.1) with the magnitude of T thus being unobservable.
The parameter T is thus only a convenient intermediate
parameter and must be integrated out in the 5-space
path-integral measure. Finally, we note that in the sta-
tionary path the stationary action takes the value

m (xﬁ ——x;,)2 _mT
2T 2
Now while 7 is not the proper time for the arbitrary path
we can still identify it with the proper time for the sta-
tionary path. Thus if we were to normalize T to the sta-
tionary proper time by settmg (x;': —X ﬂ) =T?, we would

then recover the constraint ( p T)2—m?2. Additionally the
stationary action would take the value Sgr=—mT, so
that we would then also recover the standard value for
St that would be obtained by varying the action of Eq.
(2.1) noncovariantly with respect to x(¢). This then nor-
malizes the value of the coefficient of the (p>—m?) term
in Eq. (2.4) to 1/2m.

To obtain the Feynman propagator we now simply in-
tegrate back over all the paths needed for the 5-space vari-
ation, viz.,

Gx,T)=G (x],T;x},,0)
= [ [dx][dplexpliS /%) .

To perform the explicit integration it is convenient to
parametrize the arbitrary coordinate path in terms of the
stationary path and a complete basis which vanishes at
the end points, viz.,

<~ n_. RTT
(T)+n§1a“sm T

SST == — (2.7)

(2.8)

(2.9

__ ST
x,,(f)—xp
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Here the variation coefficients a, can take on all values
between — oo and + «. In order to parametrize the arbi-
trary momentum path we recall that while p, is defined
as mx, for each path x,(7) in a Lagrangian fez)rmulatlon,
in a Hamiltonian formulation of the action principle
pp(7) is varied independently of x,(7). Since the momen-
tum is not constrained at the end points of the motion the
arbitrary momentum path can be parametrized as

nuwT
T

p,,(T)-——p T(r)+ Zb" cos 2.10)

Here the coefficients b, can take on all values between
— o0 and + . Because of the different boundary condi-
tions we obtain one extra set of coefficients, the n =0
terms, for p,(7). For the arbitrary path the action is
readily evaluated as

n2
Tb,” nm

=7 e

S=SST+ (2.11)

+3 |-

n=1

With this form for the action we confirm that under arbi-
trary variations of the a, and by, Ssr is indeed the sta-
tionary action.

In terms of the coefficients a, and b, the path-
integration measure is given by

4N +1)
Jlaxidpl=a Jim |55
<11 Hf - [T abldaldbl, (2.12)

p n=l1

where the irrelevant normalization constant A is a pure
number. Because of the one extra set of db p integrations
the measure is not dimensionless. Since the arbitrary ac-
tion of Eq. (2.11) is quadratic the path integration can be
performed analytically to yield (for a suitable choice of A4)
2

exp(iSst/#) ,

Gifx, T)=—i (2.13)

m
2mi#hT

where Ssr is given by Eq. (2.7). The —i (m /2mwi#T)? fac-
tor is due to the db,‘ integrations. Performing a four-
dimensional Fourier transform to ordinary momentum
space yields the dimensionless propagator

G(p, D= [d*x/—x"Gix, Dexplip-(x/ —x") /%]

)
=exp Hp~—m)T , (2.14)
2m#i
which we recognize as being of the form
~ iHcL(p)T
G(p, T)=exp ———C—LZ—E— (2.15)

Here Hcp(p) is the classical Hamiltonian associated with
the action of Eq. (2.4).

As such G(p,T) would be the propagator associated
with nonrelativistic (in 7) quantum mechanics in the 5-
space with T serving as the “time” interval. However,
our interest is in recovering the usual Minkowski theory
and so, as discussed earlier, we integrate out the unobserv-

able T. Since the proper time ds is intrinsically positive
and since the 5-space theory is nonrelativistic in T, we
must only consider positive values for d7 and 7. Thus we
obtain, finally [using a convenient dimensionless integra-
tion measure which takes into account the normalization
of Eq. (2.20) below],

m2

(p?—m?+ie) ’
which we recognize as the Klein-Gordon propagator. As
well as obtaining the required Klein-Gordon propagator
of a free spinless particles of mass m we note that we
have also obtained the correct ie prescription. Indeed,
this prescription follows naturally in our formulation
since forward propagation in T involves both forward and
backward propagation in ordinary time ¢ (see Refs. 4 and
5); just as in ordinary nonrelativistic quantum mechanics
forward propagation in ¢ involves forward and backward
propagation in x. Hence our theory is a one-body theory
in the fifth coordinate T but is many body in the Lorentz
coordinates x,. Quantum fields are thus not necessary to
describe particle creation and annihilation.

It is of interest to compare our analysis with that given
by Feynman.* Feynman used a first-quantized approach
based on an #-dependent Klein-Gordon equation in which
the important factor exp(—imT /2#) in the path-integral
action was obtained by imposing a quantization eigen-
value condition in T space. Specifically, Feynman intuit-
ed the existence of a quantum-mechanical 5-space with a
wave function ¢(x,, T) which satisfied

3d(x,,T) # | 92 3% 9 9’
o T = L ° L 2 =
! oT ax? + ay? + dz2  or?

—im

f dT G(p,T)= (2.16)

$(x,,T).

(2.17)

By analogy with the path-integral formulation of ordinary
nonrelativistic quantum mechanics he then obtained a 5-
space propagator

2
D(xf,T;x%,00=—i6(T)

27 fiT
tm(x —xi)?
X exp ————2;1,‘7‘;—#—— , (2.18)

w}lich obeys the differential equation (f refers to the final
xy)

1ﬁ—-— f‘af

_ f Terd 0y 4 f i
aT 2m D(xy,,T;x,,0)=i#(T)8" (x/ —x") .

(2.19)

[This differential equation thus differs from the one asso-
ciated with the G;{x,T) propagator of Eq. (2.13), viz.,

.

w_m
oT 2m afa

G yx, T)=i#d(T)8*(x/ —x")

(2.20)

because of the extra mG{x,T)/2 factor.] Feynman then
projected out the dependence on T in Eq. (2.17) by defin-
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ing
$(x,)= [ aT ¢(x,,, Texp(—imT /27) (2.21)
and '
i im i imT
D(lx,f,;x;,)=_Ef_wdTD(x{,,T;x;,O)exp T
(2.22)

The four-dimensional wave function ¢(x,) satisfies the
Klein-Gordon equation, while the ordinary four-
dimensional Fourier transform of D(x{, ;x,) of Eq. (2.22)
gives the Klein-Gordon propagator of Eq. (2.16). In
Feynman’s approach the eigenvalue condition of Eq.
(2.21) was introduced a priori by hand because of the re-
quirement that #(x,) obey the first-quantized Klein-
Gordon equation. In our approach, on the other hand, no
such knowledge of the structure of the first-quantized
theory is required, with all the relevant information being
contained in the underlying classical theory. Our analysis
thus serves to complement Feynman’s work.®

In order to get some further insight into the role of this
fifth coordinate T we recall Nambu’s analysis.” In a co-
variant relativistic quantum mechanics the energy and the
time become quantum operators since they transform as
Lorentz 4-vectors together, respectively, with the three-
J

dimensional momentum and position operators. Conse-
quently, the canonical commutation relations of Eq. (1.2)
must be extended to the covariant

Xupy—p Xy =—itg,, . (2.23)
Since the time is an operator some other quantity has to
be introduced. to parametrize the dynamics, namely T,
with T being the nonrelativistic variable associated with a
five-dimensional Schrodinger equation.’ In terms of the
associated five-dimensional wave function P(x,,T) a
four-dimensional wave function is then defined as®

Yix)= [ dT¢(x,,T)

so that the four-dimensional propagator is given by

(2.24)

G(x,{;x;)z_%f_”wdrem(x,{ | exp( —iHT /%) | x5,).

(2.25)

Thus for the particular case where the quantum-
mechanical Hamiltonian H is given by
~ (A SH_ m 2)
f=_twb —M (2.26)
2m

inserting complete sets of eigenstates of the momentum
operator p,, into Eq. (2.25) yields

i im ®© v d4
G(x,’:;xﬂ)z—Ef_wdTB(T)f—(-;T%;exp

Since Eq. (2.27) gives the same propagator as that of Eq.
(2.16) we thus establish the complete equivalence between
integrating out 7 in the wave function using quantum-
mechanical information [i.e., Eq. (2.24)] and integrating
out T in the path-integral measure using classical infor-
mation [the redundancy in T in fixing the classical
minimum in Eq. (2.6)].

We thus see the need for a fifth coordinate in both the ‘

classical theory (where it serves to parametrize the varia-
tional paths required for Hamilton’s principle) and the
quantum theory (where it serves to parametrize the
dynamics of operators and states). Since Feynman’s
path-integral prescription forms a bridge between classical
and quantum mechanics it is thus natural that the param-
eter T will play a role in both theories. As we noted ear-
lier it is only for the stationary classical path that we may
identify T with the proper time of classical special rela-
tivity. In the path-integral language the nonstationary
classical paths represent fluctuations.in 7 space around
the proper time. It is thus the interference of the fluctua-

tions around the proper time which produces the quantum

mechanics, with its Schrodinger equation then being
parametrized by the same parameter 7.

III. GRASSMANN MAJORANA SPINORS

In this section we introduce the Grassmann coordinates -

appropriate to fermions and quantize their dynamics. We
recall that the usual discussion of spin one-half deals with

_Ha T  jpe(xf—x)

# . (2.27)

T
Dirac spinor fields #,(x) which are tensor representations
of the Lorentz group which depend on both spin and
space. Additionally, a first-quantized #-dependent Dirac
Lagrangian (with inverse length scale mc /#) is used to
describe the dynamics. It is our wish here to describe spin
one-half by classical coordinates rather than by quantum
fields. As we noted in the Introduction the 4-vector £ 1S
not suitable for this purpose, and so we turn instead to the
Majorana spinors v,,.

In his study of the Dirac equation Majorana construct-
ed a real representation of the Lorentz-group commuta-
tion algebra

[Epwzpa] = _g,upzva"}‘gvpzya _gyozpv‘*‘gvazpy (3.1)

by fihding a basis for the gamma matrix algebra of Eq.
(1.11) in which the gamma matrices are all pure imagi-
nary, viz.,

0 o, o; 0

Yo= g, 0] 7/1:_—1'{0 o3|’
0 (o)) (23] 0

V2= —o, 0|’ V3=i 0 o, (3.2)
— 0, 0 0 ()

Vs=1 0 o, C= o, O

[The matrix C in Eq. (3.2) transposes the ¥, according to
C “y,,C= —~7/'5.] Consequently, in the Majorana basis
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the Lorentz generators 2,,(=7v,Y,/2) are purely real

with
, |10 o ,|=10
201=VT oy 0 ’ 02=7 0 11>
. 0 o3 . 0 —0
203=7 0_3‘ 0 N 212=7 o, (’) ) (3.3)
. 0 o, i |92 0
2p=7 —o3 0| 231:_'2— 0 o,

and furnish a four-dimensional irreducible representation
of the real Lorentz SO(3,1) group. Under a Lorentz

transformation an arbitrary Lorentz-group spinor
transforms as
v

by (3.4)

where the rotation angles w,,, are real. The Hermitian and
anti-Hermitian parts of a general Lorentz spinor thus
transform independently, with a Hermitian Majorana spi-
nor then transforming irreducibly under the real Lorentz
group.” Majorana spinors are thus suitable candidates for
classical coordinates.

Altogether the Lorentz group admits of two real four-
dimensional irreducible representations, namely the Ma-
jorana one and also the standard one which acts on the
coordinates x,. The coordinate representation leaves in-
variant x*g,,x" while the Majorana one leaves invariant

VaCoaphp= — iV Ps+ithhs—isr+ivy; . (3.5)

Since C,g is antisymmetric, the coordinates v, must
therefore anticommute according to

¢a¢ﬁ+ ¢B¢a=0 . (3.6)

The Majorana spinors must thus be Grassmann numbers,
and they are thus the natural coordinates needed for Eq.
(1.8). Further, if the anticommuting components of 1,
are all Hermitian in the Grassmann space the quantity
L Cqptg will be Hermitian also. The square root of —1,
while foreign to the classical coordinate space associated
with real x,, is thus naturally present in the classical
Grassmann space associated with Hermitian ,. Finally,
with the anticommutator of the Grassmann number ¥,
with the Grassmann derivative operator 3/9g being 8,4,
we thus see that the generators

z;wz 711-¢TC [?/;v YV]C - la/ad/

furnish a differential operator representation of the
Lorentz algebra of Eq. (3.1). This is then the Grassmann
spinor analog of the ordinary coordinate differential
x,0,—x,d, representation of the Lorentz group.

In the usual discussion of the Lorentz group we look
for the most general set of transformations in coordinate
space which leave the length x¥g,,x" invariant and obtain
the algebra of Eq. (3.1). We then look for other represen-
tations of the algebra. We now see that we could instead
. just as well have started with the invariance structure of
1/1§Ca,g¢,3 in a Grassmann space and still have gotten to

the algebra of Eq. (3.1). From the point of view of coor-
dinate space we call Xy the vector representatlon and 8uv
the metric. Hence, from the point of view of Grassmann .
space we can think of i, as the “vector” representation in
that space and C,g as the “metric.” The Lorentz group
may be realized in two distinct spaces, namely coordinate
space and Grassmann space, and there is no a priori
reason why one is any more fundamental than the other.
Spinless particles only exist in coordinate space while spin
one-half particles exist in both spaces simultaneously.

While on an equal footing with the coordinates x,, the
Majorana spinors are distinct from and independent of the
X, so that ¥, is not a function of x,. In order to discuss
the dynamics of 9, the spinors will have to depend on
some parameter, and so we are led again to our fifth coor-
dinate, the Lorentz scalar parameter 7, with v, then being
a function of 7. Thus 7 will provide the bridge between
x,, and ¢, to link coordinate space and Grassmann space
dynamics.

To complete our description of the underlying classical
theory we must still specify the actual set of coordinates
which are to be associated with physical particles such as
the electron. For a single Hermitian Grassmann Majora-
na spinor the Lorentz vector current 1/;TC7/#¢ is zero iden-
tically because of the antisymmetry properties of Eq. (3.6),
so that a single v, would have no coupling to elec-
tromagnetism. An axial-vector current is allowed and
yields the only available Hermitian coupling to the
momentum, viz.,

f=¢TCy5y#p”¢+m¢rTC¢ (3.7

(up to an irrelevant chiral rotation on ¥,). However, the
mass shell associated with Eq. (3.7) is the tachyonic space-
like mass spectrum p?+m?=0.2 With the use of two
Hermitian spinors we can construct both a nontrivial elec-
tromagnetic current and timelike solutions. Thus we
must associate the physical electron with not one but two
Hermitian Majorana Grassmann spinors, ¥%(7) and ¢/(7),
which we shall combine into the conventional Dirac form
of ¥(7) and ¥(7) by identifying

W) =yPR(r)+iYl(r) .

Our theory thus has the same number of degrees of free-
dom as the standard Dirac theory. In our 5-space formal-
ism then the complete description of a classwal electron is
the set of 12 coordinates x,(7), YR(7), and YX(7). Before
discussing the full dynamxcs based on all these coordinates
we turn first to a discussion of the dynamics of the pure
Grassmann sector.

Hamilton’s principle for the spin kinetic energy of the
pure Grassmann sector requlres us to vary the action be-
tween fixed end points (15,7 5,0) and (9£,%%,T). Since
the initial and final values of the Grassmann coordinates
are to be independent, the equation of motion for ¥,(r)
must be second order in 7, so that the Lagrangian cannot
be of the familiar Dirac ¥4 form. By analogy with
mx 2/2 we instead take as our action

S=f [ drrgn) . (3.8)

In this action f is an ordinary commuting number and
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carries a dimension. It is the analog for Grassmann coor-
dinates of the mass parameter m and serves the same pur-
pose. Nothing appears to be known about the value or the
dimension of the parameter f. In terms of the dimension
of f the dimension of ¥,(7) is given by

1/2
/]
Similarly, canonical conjugates for 1,(7) and ¥,(7), viz.,
rr =32 _rin),
Ay(7)
2.2 ] (3.10)
To(T)=———=f,(7),
Y,(7) K
have dimension
. 172
Dir]= [action] X [f] 3.11)
[7] ’

Thus the dimension of ¥ type products is that of the ac-
tion and is independent of the dimension of f.

It is possible to avoid the introduction of a new parame-
ter f if we instead take for the action

S=T [dr(ri(r) .

Then y,(7) and 74(7) have the same spinor dimension of
[action]'/? as the spinors in the standard Dirac theory.
This possibility is very intriguing since we can then intro-
duce # into classical physics as the dimension of a coordi-
nate. The quantization of the theory is then in units of
this same 7. We shall consider both actions in this paper
treating the quantization of the f-dependent action of Eq.
(3.8) first so as to not lose generality.

In terms of the canonical conjugates of Eq. (3.10) the
Hamiltonian form of the action of Eq. (3.8) is

(3.12)

S= [dr |§rmn+monin) — T | 3.13)

Varying the action between its end points gives the equa-
tions of motion

(nh—nb) .
ST(,,.)=_77._.17£_+ i

Yo T Na »
—f =i
75T (r)= (T a T‘ﬂa)T i
(3.14)
Z’r( )_f(ﬂﬁ—??fz)
e
A
T
|
. 8(N +1) N
Jlavllagiianlian =B lim [% I I1S
a n=

- [dy3dy SdBrdBrdyidT

so that in the stationary path

Ser f@ =)y =)
ST — T .

(3.15)

By complete analogy to Egs. (2.9) and (2.10) we

parametrize the arbitrary 7-space path by

Yl =350+ 3 BasinIT
n=1

Dol TV =T (1) + i Blsin 27T

-

n=1 T
(3.16)
To(T) =73 (7)+ 3 ylicos naT
n=0 T
Fo(T)=T 53 (7)+ 3 7 Icos n;T ,

n=0

where B, Br, Ve, and 7% are mutually anticommuting
Grassmann numbers which obey

J dBEB3=D%,,,8.5,
(3.17)
deZ7§=5 28mn6aﬁ .

[D and D are dimensionful parameters which are intro-
duced to carry the dimensions of y,(7) and m,(7), respec-
tively.] In the arbitrary path the action takes the form

T—O 0 © T "yh
§=Ssr——T4 3 | -1
n=1

+ ”T”(B"y”w ngn) (3.18)

Variation of S then confirms Eq. (3.15).
The Feynman path-integral prescription enables us to
introduce a quantum propagator via

Gy, 1) =G (qL, 7 L, T35 5,0)

=0(T) [ [dy)[dP][dn][d7]exp(iS /%) .
(3.19)

In terms of the Grassmann variation parameters the
path-integral measure is given by

(3.20)
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where the irrelevant normalization constant B is a pure
number. To check the Lorentz invariance of the measure
we note that

($aCopthp)* =8¢ thythsthy

.according to Eqgs. (3.5) and (3.6). Thus dyidy3dyidys,
etc., are Lorentz scalars as required. Because of the sim-
ple form of the arbitrary action in Eq. (3.18) the path in-
tegration can be performed analytically and yields [for a
suitable choice of B which absorbs a dimensionless
(DD /#)'8N +1 factor]

(3.21)

o T) (3.22)

G, T)= 16f4 exp(tSST/ﬁ)

where Sgr is given in Eq. (3.15). Finally, a Grassmann
Fourier-space propagator may also be defined via

G(mm,T)= [ d*(n;—n,)d*;—7,)Gln,7,T)

i(Me—=m)m  iw(gp—mn;)
Xexp | = # - # ’
(3.23)
where we normalize according to
f d’?a’fl,e:DZsaB »
_ (3.24)
f dmymg=D *8,g,
and yields
G (7, T)=6(Texp | — LT (3.25)
Aif
We recognize G(m,7,T) as being of the form
~ iHcy(m,7)T
G(m, 7, T)=6(T)exp | — —EL—;—”— , (3.26)

where H ¢y (,7) is the classical Hamiltonian associated
with the action of Eq. (3.13).

Thus the Feynman path-integral prescription for the
Grassmann coordinates leads us to a familiar form for the
propagator. Having now found the Feynman propagator
in 7 space we shall next obtain some further insight into
its significance by rederiving it via canonical quantization.

IV. CANONICAL QﬁANTIZATION
OF GRASSMANN SPINORS

In this section we canonically quantize the Grassmann
spinors. In a canonical quantization we reinterpret the
Majorana spinors and their conjugates as operators in Hil-
bert space, and by correspondence thh the Poisson brack-
ets associated with (lﬁa,’ﬂ's) and (tﬁa,ﬂ'g) postulate the
equal-7 anticommutators

(Do), J1)} =i#C,p ,
R 4.1)
($ L), p(1)) =i#C g

with all other equal-r anticommutators vanishing. The
presence of the factor C,g in the anticommutators is dic-

tated by Lorentz covariance, so that just like the commu-
tation relation [X,,p,]= —ifig,, we see again that in the
Grassmann space C,g serves as the metric. Unlike the
&u,6y anticommutators of Eq. (1.10) which are symmetric
in the u,v indices, the Majorana anticommutators are an-
tisymmetric in the a,B indices. This will enable us below
to construct an eigenspectrum for zpa('r) and ‘lTa(T) analo-
gous to that of Eq. (1.3). In terms of #(7) and 7(7) we
may rewrite the anticommutation relations of Eq. (4.1) as

(Dol ), 75(7)} =i#i80p
. 4.2)
{{/J_a(r),%ﬂ(r)} = —iﬁsag .
The quantum Hamiltonian associated with the action of
Eq. (3.13) is

~  T(r)R(r)

H= ’ , 4.3)
so that the Heisenberg equations of motion are
dPe(T)  Bolr)  ditg(r)
dr ~ f ° dr
N (4.4)
dio(T) T (1) dF7)
dr ~ f °  dr

We solve these equations in terms of initial 7=0 values
%,%,wa,ﬂa to obtain

A /’ﬁ'a’r A ~ ~
¢a(7-): —F + Y T TV =T ,

S
(4.5)
¢a(T) f +¢a; Tr (T)——?Ta .
The initial values then satisfy
(Do Tg) =i#8p ,
(4.6)

(Do g} =

as required of an equal-r anticommutator.

Having removed the explicit 7 dependence from the
operators we next construct their eigenstates. In terms of
mutually anticommuting Grassmann spinors 7y, 7 Og»
and G, we seek states which obey

— i#i8p »

'Zalnr?l>=7lal77’?l> s 1—/;11'7]77]):770!'7]’?’) ,

4.7
Bl 0,0)=0,4|0,0) , Ty|0,8)=05,|0,5) .

Such states can then be used to construct the G{(n,7,T)
propagator of Eq. (3.19). Ignoring spinor indices we see
that we are essentially trying to construct eigenstates of
creation and annihilation operators @' and a which obey
aa’+ala=1. Since a?=(a’)?=0 the eigenvalues of «a
and a' must be Grassmann numbers with both a and a

being representable as Hilbert space operators of the gen-
eric form |p)p{p|. Consequently the operators a and a

anticommute with all Grassmann numbers. Eigenstates
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of a and a' may be constructed by analogy with position
and momentum coherent states. In terms of the Fock
vacuum which @ annihilates according to a|0)=0 we
readily construct

+
ot |p1'> —ale—rogt |0) =aT(1-—era)aT |0)=—a
using the Grassmann properties p>=(p')2=0
Given these eigenstates of . and o' the generalization
to the Majorana spinors is straightforward. We define a
vacuum via

D2]0)=0, %,]0)=0 (4.10)
and eigenstates
- 1 ( ) 2222
|77’77)=38‘6XP __EII%’LE_l% W34 | 0)
4.11)
IO',U)=__;CXP l_("d%a:‘w_) %1%2%3%4'0)

By use of the anticommutators of Eq. (4.6) it is then
straightforward to show that these states satisfy Eq. (4.7).
The states are normalized to Grassmann delta functions,
viz.,

I Ta—7 &) (Na—13)

L
D¢
4.12)
ﬁS

H(aa—a Nog—0b) .

be

a [p):ae“t”IO)=a(l+an) |0)

=p|0)=p(1+a'p)|0)=p|p) (4.8
and
tot10) =p'a’|0) =p'(1—pla)a’|0) =p' | p") 4.9)
I
# i (o +a7)
(0,5 |7,7)=|—= | exp | — 2T 4.13)
DD #
and are complete according to
Hf [7,7)dndTa{n.7| =1,
a
(4.14)

;%Hf |0,5)do,dT,{0,F|=1.

The above relations are completely analogous to the usual
ones for the position and momentum eigenstates of Eq.
(1.3) (which have Dirac delta-function normalization and
plane waves for the {p | g) scalar products), and thus we
see that we have constructed a canonical quantization
analogous to the usual one for p and gq.

To complete our discussion of the canonically quan-
tized theory we calculate the propagator

Gy={(ns7T | 1:,7:,0)

=0(T) 7y | exp(—iHT /%) | 0:,7,) ,  (4.15)
where H is given by
i
= 4.16)
f

according to Egs. (4.3) and (4.5). Inserting complete sets

They satisfy ‘ of eigenstates of 7, and 7, into Eq. (4.15) yields
#® Ve e , iMgo'+T'17)  iGoT I(Mio+Tn;)
G0“=9(T)W1;I l;I fdaadaadaﬁdoﬁ(aa—oa)(aa—aa)exp f P L ﬁ;‘ - 7 :
#Tt | @—m0—n)
=0(T) s prexP AT , (4.17)

which we recognize as Eq. (3.22). We thus check the consistency between Feynman path integration in Grassmann space

and canonical quantization.

Further insight into the structure of the quantized theory may be obtained by rewriting the propagator of Eq. (3.22) as

imny—mi)m

im(nr—mn;)

4
G, T)=0(T)— 515 16fd17'fa717'ex

#i

This propagator satisfies the differential equation

a7 [t | [ 7amg

T~ f
=inS(D[[@4—

G0, %,T)

B h—ni) /DS . (4.19)

Recognizing a Grassmann-space delta function, we see
that Eq. (4.19) is thus a Green’s-function equation for

iT7rm

7 i (4.18)

[

Grassmann variables. Additionally, we may define a
wave function ¥(%,7%,T) which satisfies a Schrodinger
equation

Y(n,m,T)=0

2 d
i# —ifi

AT T

(4.20)



32 ' CLASSICAL SPIN AND ITS QUANTIZATION 907

Noting that the canonical anticommutators of Egs. (4.6)
admit of a differential operator representation

A d

Fo= —ifi—— , To=ifi , @.21)
@ M Yy
Eq. (4.20) may be reexpressed as
., 0 5 —
tﬁaT —H [¢¥(1,7,T)=0 . 4.22)

Thus Eq. (4.20) provides us with a wave mechanics inter-
pretation of the Grassmann sector of the theory. The
quantum mechanics in the Grassmann sector is therefore
completely analogous to the usual one based on p and g.

V. THE COMPLETE SUPERSPACE PROPAGATOR

So far we have constructed the propagators associated
with the separate space-time and Grassmann sectors of
the theory. In this section we shall construct the propaga-
tor associated with the full x#(7), ¥,(7), and ¥,(7) classi-
cal theory by using a Lagrangian which also contains
cross terms between the space-time and Grassmann coor-
dinates. Initially there is a great deal of freedom in choos-
ing such a Lagrangian. In order to restrict the structure
of the Lagrangian we will therefore impose some addi-
tional symmetries. Specifically, we shall extend the
Galilean (in 7) invariance of the space-time sector of Sec.
II to the Grassmann sector as well. Additionally, noting
that we have been treating the space-time and Grassmann
coordinates in our work in a completely analogous
fashion, we shall introduce some symmetry between them.
Thus we shall interpret the full-space-time, Grassmann
manifold as a superspace and introduce some supersym-
metry transformations which mix the space-time and
Grassmann coordinates. As we shall see, the imposition
of the Galilean symmetry and of the supersymmetry, both
of which are natural in our model, will completely specify
the structure of the full superspace Lagrangian.

We discuss first the Galilean invariance. In the space-
time sector the coordinate-space form of the phase-space
action of Eq. (2.4), i.e.,

m dx,(7) dx™(r) m
2 dr dr 2 |’ (5.1

S=fd7' -

was constructed to be invariant under Lorentz transfor-
mations on the four x*(r) coordinates. However, our ac-
tion is also nonrelativistic in the fifth coordinate 7, and is
thus additionally Galilean invariant in the larger x*, 7 5-
space. It is our wish to extend this Galilean invariance to
the Grassmann Majorana spinor sector as well. As we
shall see, this will have nontrivial implications for our
theory.

To see how to implement Galilean invariance in the 5-
space it is useful to recall the nonrelativistic limit of
Lorentz invariance in the usual space-time 4-space.
Under a typical ordinary Lorentz boost with velocity v
(=wvq;) between the space coordinate x and the ordinary
time ¢, x and ¢ transform as

_ x —ut _ t —uvx/c?
(1—v2/c)12”’ (1—v2/cH12’

where c is the velocity of light, and hence transform as
(5.3)

in the Galilean limit. For our purpose here we note that
the Galilean transformations are not just obtainable from
the Lorentz transformations in the limit in which c is tak-
en to be infinite, but rather they are also in fact valid to
the first nontrivial order in v/c. For our work here we
shall define this latter v /c limit as the Galilean limit. To
determine how any other vector (such as the Dirac
current) then transforms in this Galilean limit we rewrite
Eq. (5.2) in terms of the components of the Lorentz vector
x*, viz., x and ct, to obtain

x (5.2)

X—>x—vt, t—t

x —(v/c)et . ct —(v/c)x
(1—v2/c?)172 (1=v2/c2)172 "

To lowest nontrivial order in v /¢, Eq. (5.4) reduces to

x— (5.4)

(5.5

Thus to lowest order in v/c the transformation properties
of x and ¢ in Eq. (5.3) differ from those of x and ct given
in Eq. (5.5). Since x and ct are components of a Lorentz
4-vector, any other Lorentz 4-vector, j* say, then
transforms according to Eq. (5.5), i.e., as

x—x—(v/c)et , ct—ct—(v/c)x .

Jl=jt=w/0)i®, j°—j%'—(/c)j! (5.6)

in the Galilean limit. [In passing we note that in the limit
in which the velocity of light is infinite the space com-
ponents of j# would remain invariant even while the space
components of x* itself would change according to Eq.
(5.3). Hence taking the order v/c limit of the Lorentz
transformations rather than the c¢ equal infinity limit
would appear to be the more sensible nonrelativistic limit
of Lorentz invariance, with the implications for the space
components of the arbitrary 4-vector in Eq. (5.6) then be-
ing nontrivial.] Further, from Eq. (5.6) we note that the
time component of j# is also transformed nontrivially in
the Galilean limit even while the time ¢ itself remains un-
changed in Eq. (5.3).

With these remarks in mind we proceed now to con-
struct and transform spinors in the 5-space. To this end it
is convenient to first discuss the full 5-space Minkowski
invariance with 5-vector x%*=(x*,7), where 7 has the
same dimension as x*, i.e.,, velocity times time, with
O(4,1) metric g,5=(8g,,, — 1) and with Minkowski invari-
ant x,x%=x,x*—72. (With this convention when
dx,dx*=0, dt is equal to the ordinary 4-space proper
time.) A Clifford algebra is next defined via
Ya¥B+7YgYa=28qp- While there are now five mutually
anticommuting gamma matrices in the 5-space we note
that the Clifford algebra admits of a 4-dimensional repre-
sentation y,=(y,,i7s). Hence in O(4,1) the appropriate
spinors still have only four components. To construct an
O(4,1) invariant we must momentarily replace our Ma-
jorana spinors ¥,(7) and ¥,(7), which only depend on T by
spinors ,(x%) and ¥,(x*) which depend on all five com-
ponents of x® and are thus fields on the O(4,1) manifold.
In terms of these fields we construct an O(4,1) Minkowski
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invariant cross term between the fields ¥,(x%) and the
coordinates x ¢, viz.,

L1 =P, 7y x P iy sTIP(xH, ) (5.7)

to thus connect the ordinary Lorentz vector and Lorentz
pseudoscalar terms.

In the Galilean limit in O(4,1) the 5-space ve1001ty Cs
becomes large but not infinite, and, with 7'=7/cs being
the analog of the ordinary time, Egs. (5.3) and (5.6) are
replaced by relations such as

x°—>x°—v051" , PO

(5.8)
J0—j—(ves/cs5)j® , jP—j’—(ves/es)i®,

where vys is a typical O(4,1) boost velocity. Under these
transformations the action of Eq. (5.1) is left invariant
[it being just a linear combination of the nonrelativistic
limit of | (dx,dx®)!”? and the Galilean invariant f dr'].

Additionally, the cross-term action

un ’
y= [ar QUL | Ve dx? | N AUT) (s g
cs dr dr

and the Grassmann sector kinetic energy of Eq. (3.8), viz.,

s=-L [apd¥T) dUT) (5.10)
Cs dr dr

are also left invariant under the transformations of Eq.
(5.8) provided that ¢ is restricted to depend only on 7' and
not on x* at all. Thus the actions of Egs. (5.9) and (5.10)
are completely O(4,1) Galilean invariant for a specific
class of spinors ¥, which are none other than the ones of
interest for this entire work, namely the class of spinors
¥, which are t-dependent coordinates and not x#-
dependent fields. We thus recognize our Majorana spinor
coordinates 1,(7) and 14(7) not only as O(3,1) Lorentz
spinors but also as O(4,1) Galilean spinors. Having now
explored the implications of Galilean invariance in our 5-
space, we see finally that we should build our general su-
perspace action out of the actions of Egs. (5.1), (5.9), and
(5.10). Further restrictions on the structure of our super-
space action are obtained by imposing some supersym-
metry on our theory, a point to which we now turn.

To implement the supersymmetry in our five-
dimensional formalism we note that since we have four
coordinates x* and a parameter 7 in the space-time sector
of our theory we should have an analogous structure in
the Grassmann sector. We thus introduce two parameters
0 and 8 [one for ¥,(7) and the other for 1,(7)] which are
new t-independent Lorentz scalar Grassmann numbers
which are taken to be dimensionless for simplicity and
which obey

o=6", 6*=
00+660=0,

6%2=0,

(5.11)
fdee=fd§§=1,
[ dod= [dgo=o0.

For interpretative purposes only we may think of

(¥o(7),0) and (P,(7),0) as S-spinors in the Grassmann
sector of O(4,1). Specifically, we already noted that the
YoV B+V8Ya=28qp Clifford algebra has a 4-dimensional
representation. It also of course has a trivial reducible
five-dimensional one which is block-diagonal. The quan-
tities @ and 6 may then be associated with the trivial part
of this five-dimensional representation and are hence
decoupled from #,(7) and t,(r) under Minkowski or
Galilean O(4,1) transformations. They are thus only pa-
rameters and not dynamical degrees of freedom. Thus in
our theory 7, 6, and 0 are the parameters in the super-
space, and hence, as with T, we will also integrate out 6
and 0 at the end.

To implement explicit supersymmetry transformations
in our superspace we introduce two independent sets of
Grassmann parameters eR and 61 which transform as Ma-
jorana spinors under the Lorentz group and construct the
following eight supersymmetry transformations:

xHsxt— Le—e(gy"z[/—iﬁy"e) ,
Yoo+ f nyaﬁeB ’
i60

YU+ Txp'}’aﬁeﬂ , (5.12)

¢a‘—>¢a'— Tem/ﬁaxy ’
6—6, 66,

T—T,

with the eight Grassmann numbers 86eX and 86€., being
the eight associated transformation parameters. [In the
above transformations €, denotes e~ +iel, ¢:r, is the Her-
mitian conjugate of 1, with respect to Grassmann space
only, and the Dirac gamma matrices are purely imaginary
as in Eq. (3.2).] In terms of Hermitian Majorana spinors
we may reexpress Eq. (5.12) in the form

by 2106

(6RC7“¢R+GIC)/"¢I)

1]
¢§—>¢a+ : xpyaﬂek ’
(5.13)

R

T,

xwage,’a ,
9—-»0 , 00,

and thus see that x* and ¥Z are superpartners under AR
transformations while x* and ¥/, are superpartners under
86¢’, transformations. (In passing we thus note that un-
llke the situation in standard supersymmetry theories, our
supersymmetry is not between independent fermion and
boson fields, i.e., between different species of fields, but
rather it is a symmetry between the space-time and
Grassmann coordinates of the same partlcle Thus in our
work the fermion with its x¥, ¥X, and ¥/, coordinates pro-
duces the supersymmetry all on its own and needs no fur-
ther companion bosonic partner.) As can be seen, the su-
pertransformations of Eq. (5.12) have been constructed to
leave invariant the quadratic form mx2—2fyi. With 7,
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6, and 8 only being parameters the supersymmetry
transformations also leave invariant the quadratic form
mx% 2—2fy1 of the dynamical variables x*, ¥, and ¢°.
Additionally our supertransformations leave invariant any
term which is proportional to 68. Consequently, requir-
ing that our final superspace Lagrangian be both super-
symmetric and O(4,1) Galilean invariant leads us to our
desired 5-space Lagrangian (written more conveniently in
terms of our original variable 7 rather than 7, with x
denoting dx /dr, etc.)

-2 . . .
L= ””;‘ - % S+ 8O0y X P tiysh . (5.14)
Thus we only need to introduce one new quantity, namely
the coefficient g which is another ordinary commuting
number with the same dimension as f. In the following
we shall explore the dynamics associated with the La-
grangian of Eq. (5.14).

Before doing this, however, it is instructive to discuss
the superalgebraic structure of our theory and compare it
with the previous superalgebra studies in the literature. In
the literature the question of how to combine supersym-
metry with Poincaré invariance has been much studied.
(A recent review is given by van Nieuwenhuizen, see Ref.
2.) The objective is to grade the Poincaré algebra with a
set of spinor generators into a superalgebra which is
closed under commutation and anticommutation. A typi-
cal example is the superalgebra considered by Salam and
Strathdee in Ref. 2, viz.,

[Mpv’Mp(f] = _gprva"'gvapo_gpoMpv+gvaMpy B

[My.v’Po]ngaPp —guan ’ [Pp,:Pv]=O ’

: (5.15)
1

[Sa’Pu]:O ’ [Sa7Mpv]=T[7’w7v]aﬁSﬁ ’

{Sa’sﬂ} = —(YMC)aBPM s

where M, and P, are the Poincaré generators and S, is
a Majorana spinor generator. With just one Majorana spi-
nor this is the smallest possible grading of the Poincaré
group. The algebra of Eq. (5.15) admits of a differential
representation in the x,,¥, superspace (¢, is a Majorana
spinor)

My =x,8,—x,8,+ 79 Cly,,7,]C~'3/3¢,
(5.16)

P,=3,, S,= éyz,,zpﬁa,,—icaﬁa /g .

Thus S, transforms the superspace coordinates according
to

X, —x,—5€Cy Y,
(5.17)
¢a_’¢a+ea ’

where €, is also a Majorana spinor. The transformations
of Eq. (5.17) are somewhat asymmetric since though X,
transforms into ¥,,¥, does not transform into x,. This
stands in contrast to our transformations of Eq. (5.12)
where x,, and 9, do mix with each other. For our pur-
poses here we note that the transformations of Eq. (5.17)

do not leave mx2—2f{y (or any other linear combination
of x? and ¥1) invariant.

A generalization of the superalgebra of Eq. (5.15) to a
case of more interest to us here, namely to two Majorana
spinor generators S,; (i=1,2) has also been given by
Salam and Strathdee’ with a modified anticommutator
(the commutation relations remain unchanged)

{Sai)SBj} =i6ij(yu7/5C)aBPM .

In the superspace consisting of x,, and two Majorana spi-
nors ¥,; (i =1,2) the spinor generators have a differential
representation

Sqi= %(Yu?’s)aﬁlﬁﬁia”+i€ijcaﬁa/a¢aj

and transform the superspace coordinates according to

(5.18)

(5.19)

i
Xy—>X, + EfiTC’Yn'}’dei ’
(5.20)
VYoi—Voi +€;j€q; -

Thus again mx2—2fY1 is not left invariant. Since the
algebra of Eq. (5.18) is the only possible grading of the
Poincaré algebra with two Majorana spinors'® we thus see
that it is impossible to grade the Poincaré algebra with su-
pertransformations which leave mx?—2fy1 invariant.

To illustrate the point further we note that if we do
want to keep mx?—2fYy invariant we must seek
transformations which mix x, and ¢, with each other.
Thus at first we might consider the transformations [viz.,
Eq. (5.13) without the {96 factor]

2
Xp—=>Xpy— ;G,-TC}/'U,!/J,- ’
(5.21)

1
Yai —> Vi + 7xuygB€Bi .

However then, under anticommutation the associated spi-
nor generators

Sei =2 yigipdy + FXur*Clagd /30 (5.22)
do not close on P, (or M, either for that matter). Thus
we confirm the general result of Ref. 10, with the genera-
tors of Eq. (5.22) simply not belonging to a grading of the
Poincaré algebra.

The only apparent way left to satisfy the general
analysis of Ref. 10 is to introduce the additional 66 factor
(i.e., a Grassmann even number whose square is zero) and
generators .

_ 2 .
Ser=00 |~ -l -}x,,wﬂoaﬁa fovg | . (5.23)
These generators then do indeed generate the transforma-
tions of Eq. (5.13) while closing under anticommutation
according to

{Sai’SBj} =0. (5.24)
Thus our chosen superalgebra is simply the trivial direct
product of the algebra of the S,; with the Poincaré alge-
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bra and there is no mixing of the respective generators
under anticommutation. Thus we see that if we want to
preserve the length of mx2—2finp in the superspace we
must not look for a grading of the Poincaré algebra at all,
but rather we must introduce the additional Grassmann
numbers @ and O and use the generators of Eq. (5.23).
Hence in our work supersymmetry is indeed useful but no
grading of the Poincaré algebra can be considered. Hav-
ing now discussed the algebraic structure of our super-
symmetry transformations and motivated the use of Eq.
(5.13) and the need for the 86 factor, we turn at last to an
analysis of the dynamics associated with our supersym-
metric Lagrangian.

For the Lagrangian of Eq. (5.14) canonical conjugates
are defined via

pr=—2Z i _gBoy,

ax”
ta= 3Lt gBO P iy agi s (5.25)
B
Tam 2L = it 800Uy 175
e

Using the Grassmann properties of 8 and 8 we find that
the Hamiltonian form of the Lagrangian is given as
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%,=0, $,=0, $,=0. (5.28)

We thus see that because of the Grassmann properties of
0 and 0 the space-time and Grassmann coordinates decou-
ple in the class1ca1 equations of motion with xZT(T)

(7') and ¢ (7) still being given by Egs. (2.5) and
(3 14). The stationary space-time and Grassmann mo-
menta are given by

m(xt —x*) _
ar)=——tt & B0, — Wy —m1)

T T

VA
ST, \__ F(ni—ngq)
by (T)——T

_ | yMxd—xt) .

+§ 0 |t tiys | (f—mp), (529
af
sty S @e—Ta)
¢ T
(xS i
8 an(f = i 7/(x.“—xl‘) .

.= . —m? while the stationary classical action is
L= —px+YT+TY+ (p 2mm ) :
| 7 S =W 2Ly Ly )
- ’;}T f2 067y +imys)r . (5.26) STET T Ty Tt =
' I
The classical equations of motion are + _gf 86(7, ;) Y ( T Fiys |(ny—m) -
pH—mit 4 %591‘7’7/“77;0 , (5.30)
Ta—f 1/;a—mif§9(‘}’”1’y +imys)aprp=0 _ To specify the measure for the path integration we
(5.27) make the same expansion for the arbitrary x,(7), p,(7),
_ - g = u . Vo(T), Yol ), To(7), and Tro(7) paths as in Egs. (2.9), (2.10),
Ta—/f 1/Ja—~n?601‘7'5(y Pu+imys)pa=0, and (3.16) except that now we expand around the solu-
. . . tions of Eqgs. (5.27). After a little algebra we find that in
Pu=0, m=0, T=0, the arbitrary path the action is given by
]
Th?  T50,0 T
S=Ssr+ 2r:zt - ny }i 66b T + Upsr+imys)y°
bnz
Iy (—apbh+ +7"B" Wl +——==007 "(psr+imys) (5.31)
+n§1 “am  2f +2 B™"+7"B 2f 7 "PsT+imys)y"
where
Jg, :TTSTY;LVO +¥ 07p7TST +7 07,”7/0+ % z Y n'}/,u'}/n s
n=1
(5.32)
n_ T _ —0 n, T _n 0 & ko om nTT kmr mwur
Ju= 5 Tst+7 Vvuy"+ 57 Yu(TsT+Y )+kym2=17/ Yu¥ fdrcos T oS T

Variation of Eq. (5.31) then confirms that Sgr is the statio:

nary classical action.

Having now specified the underlying classical theory completely we can perform the path integration



32 CLASSICAL SPIN AND ITS QUANTIZATION 911

;/(x m, ’Y],T (7] 9)—G(xp;7]w77a’T xyan:la_ﬁ:z’o)

—o(T) [ [dx][dplldy1[dF]1[d][dT lexp(iS /%) ,

where the action is given in Eq. (5.31) and the measure is
the product of the measures given in Egs. (2.12) and
(3.20). The actual integration can be performed readily
since shifting the b, and a, variables eliminates the
dependence on J and J}, p» and yields

,-f(x,n,'q,T,G,G)
#

B
D 16f4 €xXp

where Sgr is given in Eq. (5.30). Finally, a Fourier
transform to the conjugate momentum space yields

iH ¢y (p,m,7)T
N #

m
2mihT

= —i6(T) L, (5.34)

, (5.35)

é(p,'n',?r, T,0,0)=06(T)exp

where H ¢y (p,,7) is the classical Hamiltonian associated
with the Lagrangian of Eq. (5.26), viz.,

. _ p’—m?) Fmr g 5 .
H ey (p,m,77) om + G ——mfZGG»Tr(p+tmy5)1r.

(5.36)

|

G x,1,m,T,0,0)=060(T)— 515 16f (2ﬂ'ﬁ)4 fd41rfd4‘exp

and obtain

X L, 0

ifi

+—£_750

0 oy om 1
it T—2 a[,,af—z——f ln_f

3775 Mg

X Gfx,0,7,T,0,0) =i#S(T)8*(x/ —x [[ @ L~

mf?

(5.33)

Thus despite the trilinear coupling g term which couples
the various nonstationary paths in the path integration we
are able to integrate the propagator right out to obtain the
conventional exp(—iH ¢y T /#) form.

As a check on our 5-space propagator we calculate it al-
ternately via canonical quantization by evaluating

Gyr=06( T)(xu,na,na | exp( —iHT /%) | xh T b -

(5.37)
Using the quantum-mechanical Hamiltonian H,
5 (pr-m? T
H=— + = (5.38)
2m f

and the explicit sets of eigenstates given in Egs. (4.11)
then recovers Eq. (5.34) exactly, to thus confirm the com-
plete consistency between the two quantization pro-
cedures.

To obtain the differential equation that the propagator
obeys we rewrite Eq. (5.34) as

ip-(xf—x% @y r—m;)
# #
(T r—7;) Hcy (p,m,7)T
nfﬁn, ™ Mo Pﬁ”TW (5.39)
i5=2 |ty 4 imy s)ag | — it
3 f V" Ou Yslap aT’]f
a : B
B l—nl)/DS . (5.40)

Thus G{x,7,7,7,6,0) is indeed a Green’s function with Eq. (5.40) being completely analogous to Eq. (4.19).
The propagator of Eq. (5.35) is the propagator in the five-dimensional superspace. To reduce it to the usual four-

dimensional space we define

G(p,m,7)=

~ — im > . S — =
Gpmm=—=2 [ dT(—i)[d0d8G(p,m.7.T,6,8) (5.41)
by a supersymmetric analogy with Eqgs. (2.16) and (2.25). This yields
2igm? TP +imys)m | dm7T 12mX7m)? 32m3(@w)?
2 2 2-21+ 2 2, ; 2( 02 2 2 3,2 2, 2.3 (5.42)
f (p°—m*+ie) fpc—m*+ie) fAp*—m*-+ie) f(p*—m*+ie)
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with the 7 series terminating since the four components
of 7, and 7, are Grassmann numbers. This interesting
propagator has the correct covariant form of (y+imys)
multiplied by powers of (p2—m?2). Moreover, the leading
(p+imys)/(p?—m?)? term is more convergent in the ul-
traviolet than the standard Dirac propagator. However,
since it behaves like the derivative of an ordinary pole
term, it would appear to have interpretational difficulties
near the mass shell, and so we shall not consider it further
here.

To obtain a more readily interpretable propagator we
recall that the standard Dirac propagator has only one pa-
rameter, the mass m, and is built from spinors of dimen-
sion #!/2. If we therefore restrict our theory by requiring
that ¢,(7) and (consequently) 7,(7) both have dimension
#'/? we find that the parameters f and g in the Lagrang-
ian then both have the same dimension as 7. We can thus

eliminate all unknown parameters and reduce to the stan-
]

dard Dirac case if we set both f and g equal to T. This
yields a superspace Lagrangian

¢ 2 - . _ .
L= B T+ TOOU %, +iys  (5.43)

2 2

with classical Hamiltonian

(p:—m?  Fmw 1 =
= — _ —_— y
Hcp ) + T T667T(p+1my5)17- . (5.44)

The presence of T in the Lagrangian is then a supersym-
metric reflection of the presence of 86 in the Lagrangian.
Since T multiplies all z/—np type terms universally in the La-
grangian, any change in the 5-space T interval whenever
the end. points of the classical motion are changed can be
absorbed in a renormalization of ¥,(7). For the classical
Hamiltonian of Eq. (5.44) the five-dimensional superspace
propagator obeys the Klein-Gordon-like

., 0 # o fou M - 7
g~ 8l — > | Girlxm.7,T,6,6)
: i =7 —mi)  i60 . _ | 3 . = | 8%x —x")
=i#8(T) exp % +—ﬁ;(nf—17,~) zﬁy"w—i—zm% (np—m;)—460 A (5.45)
and the Dirac-like
_ itiy*d],+imys) _
g6 |inL D _ |in2 POt | | —in2s | |6y 7, 1,6,8)=0 (5.46)
9 36 anl, m aB 'k
|
differential equations. Equation (5.46) is a superspace  brings our propagator to the form
analog of the Dirac equation. [There is no Grassmann :
delta function on the right-hand side of Eq. (5.46) since ~ . m T(yg+m)r TY 5T
. . Lo Glp,mTr)=—F—5"—>——€xp |— , (5.50)
there is no apparent meaning to forward propagation in #i (p2—m?+ie) #

6.] Thus (3/96)(3/36) acts as a Grassmann “time.”!!
Before integrating out 6 and 6 it is instructive to first
integrate out 7 to obtain

—im =~ - =
7 J_.dT Glp,m7.7,6,0)
1 0 imys)
(p>—m?+ie) mti P vsim
Xexp | — oL | (5.47)

which has the nice form of a Klein-Gordon propagator
plus a Dirac propagator. By means of Eq. (5.41) we now
integrate out 6 and 6 to reduce the theory to ordinary
four-dimensional space-time and obtain!?

~ w(p+imys)m 7T
Gp,m7)="2= exp | — (5.48)
P i (p*—m?+ie) #i
Finally, a simple chiral rotation
i
T—>€exXp l— 47/5 l'rr (5.49)

which we recognize as the standard Dirac propagator with
its familiar pole structure, to give us our desired objective.

VI. GENERAL COMMENTS

In this paper we have developed a new formulation of
the quantum mechanics of a relativistic fermion based on
the existence of an extended set of underlying classical
coordinates. We have enlarged the classical theory to a
superspace built out of both space-time and Grassmann
coordinates. - The quantization of the motion of these
coordinates in the superspace then gives rise to quantized
fermions with a standard Dirac structure. We believe that
our work thus gives some new insight into the basic struc-
ture of fermions.

While our work stresses the primacy of particles over
fields we should point out that there is one possible excep-
tion, namely the massless case. Specifically, in that case
the action of Eq. (2.1) vanishes identically, and there is no
other mass parameter available to give the action the
correct dimension. Consequently, our formalism cannot
be readily extended to massless particles or gauge fields.
While gauge fields may thus exist as explicit fundamental
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classical fields, we can at this stage only speculate on a
few alternative possibilities which require further study.
First, gauge fields may exist at the classical level but may
only arise via a local extension of the superspace super-
symmetry. Second, gauge fields may only exist at the
quantum level being therefore first-quantized a priori,
with classical light then being described by macroscopical-
ly occupied quantum states whose dynamics is indepen-
dent of # because of destructive interference. Finally,
gauge fields may not be fundamental at all but may be
fermion composites.

As well as providing a new approach to the quantum
theory of a single species of fermion, our work has an in-
teresting implication for the quantum theory of different
types of fermions. Specifically, since electrons and pro-
tons, say, separately obey the Pauli principle, pairs of elec-
trons and pairs of protons are separately antisymmetric
under interchange. However, there is no Pauli principle
between an electron and a proton leaving their interchange
structure initially unclear. In our formalism we now note

that both electrons and protons are associated with sets of

Grassmann coordinates, which then mutually anticom-
mute already in the underlying classical theory, even prior
to quantization, to thus establish an antisymmetry be-

tween electrons and protons in the quantum theory.

We conclude this work with one final comment on the
Grassmann coordinates. If Grassmann coordinates exist
in the underlying classical theory we must ask why they
have not therefore been observed experimentally. The
reason for this is because the observable classical limit of
quantum mechanics is actually a double limit, namely the
limit of vanishing # in the equations of motion and. also
the limit of macroscopic occupation of quantum states.
Because of the Pauli principle the Grassmann quantum
states of Egs. (4.11) cannot ordinarily be macroscopically
occupied and thus play no role in the classical limit. The
only apparent exception to this is in a superconductor
where the ground state is macroscopically occupied. It
would thus be of some interest to see whether there is
some observable quantity in a superconductor (perhaps an
electron trapped on a vortex line) which would reveal the
existence of Grassmann coordinates.
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