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Dirac equation in a six-dimensional spacetime:
Temporal polarization for subluminal interactions
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We examine the effect of the introduction of a six-dimensional extension of the Dirac equation on
the problem of the physical meaning of the additional temporal coordinates of a (3+3) spacetime.
We demonstrate that the electromagnetic field introduces a polarization of the temporal axes and
that this polarization effect divides the (3+3) spacetime into six (3+1) Lorentzian subspaces. Sub-
luminal interactions which involve fields and particles within a specified (3+1) subspace do not in-
troduce multitemporal motion; We have therefore shown that a (3+3) formulation of the problems
of subluminal and superluminal motion along with extended relativity is consistent with ordinary in-
teractions predicted by the Dirac equation.

I. INTRODUCTION

Efforts to formulate a four-dimensional approach to
the problem of superluminal motion have consistently led
to the introduction of imaginary, or complex, numbers in
situations where the physical system requires real observ-
ables. ' ' Further, a recent paper by Marchildon, Antip-
pa, and Everett' appears to have demonstrated that there
is no possibility of an extended theory of relativity within
the context of a purely (3+ 1) framework.

One alternative is a (3+3) spacetime, but this six-
dimensional approach is not without problems. The most
complete of the classical (3+3) systems, that of
Cole, ' provides an immediate insight into one of the
more significant of these difficulties. If we postulate a
symmetric six-dimensional metric of the Cole form

—1 0 0 0 0 0
0 —1 0 0 0 0
0

gyv= 0
0
0

0 —1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

and therefore admit time on an equal basis, then we must
be prepared to deal with the possibility of multitemporal
motion. In turn, this presents us with the problem of the
meaning and physical observability of these additional
time axes. In that we have no a priori knowledge of the
nature of superluminal matter, this situation lacks any
major significance with respect to the u) c case. We are
not so fortunate when dealing with u (c. The postulate
of a multitemporal nature for spacetime also yields con-
flicts with experimental data. These have been discussed
by Strnad, who notes that these problems do not exist if
interacting subluminal objects are forbidden nonparallel
time vectors. The case of common spatial coordinates

(p"p& —m )/=0, (1.3)

where p" is the six-momentum operator. (Greek indices

only is also admissible: two objects in this state cannot
undergo an extended interaction. Patty has attempted to
deal with this problem by assuming that matter, although
contained within a (3+3) spacetime, is intrinsically of a
(3+1) nature. While this has some appeal, it constitutes
an additional assumption. It would be far better if a
reasonable extension of one of the laws governing sub-
luminal matter were to impose the conditions necessary to
remove the difficulty.

We report the results of an examination of the validity
and effects of extending the well-known four-dimensional
Dirac equation to six dimensions. It is important to
note we assume the metric given by Eq. (1.1) and the ener-

gy relation of the associated classical relativity theory.
For the sake of clarity, we take the viewpoint of an ob-
server of the type E. This K type designates any observer
that considers the axes x', s =1,2, 3 to be spacelike and
the axes x', t =4,5,6 to be timelike. We designate an ob-
server who takes a viewpoint inverted with respect to that
of a K type as a J-type observer. We note that these
viewpoints are equivalent: our selection of one does not
result in a loss of generality. We let fi=c =1. The direct
extension of the energy operator is the energy vector
operator.

Kg=i(e t)4+e B5+e B6)g

=(e'E4+e'E, +e'E, )1b

= (e 4g4+ e 'g, +e 'ri, )Ett,
where the si, are the direction cosines of the time vector t
and E is the magnitude of the energy vector

We restrict our primary derivation to matter viewed as
subliminal by a IC-type observer. We designate this E-
type matter and note that it must obey
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II. THE COVARIANT FORM
OF THE EXTENDED WAVE EQUATION

or

The extended wave equation my be written as either

(&y&a„—m)y=O (2.1)

(y"pq —m)/=0 . . (2.2)

The y" are expected to be matrices of the form n )&n. It
is clear that Eq. (1.3) may be satisfied only if

I y" y"I =2g" I. (2.3)

where I„ is an n &(n unit matrix. (Ia, b I is the anticom-
mutator of a and b Squar. e brackets denote ordinary
commutators. ) A representation of the six y", in terms of
8 && 8 matrices, is not difficult to find. This representation
may be expressed in compact form by introducing

run from 1 through 6.) Again, this operator is a direct ex-
tension of the four-momentum operator.

In Sec. II we develop the covariant form of the six-
dimensional Dirac equation and introduce the Hamiltoni-
an form in Sec. III. We discuss the nature of our generali-
zation in Sec. IV and give our conclusions in Sec. V.

0 0 —iI 0
0 0 0 I,I
iI 0 0 0
0 —iI 0 0

0 0 0 I
0 0 —I 0
0 —I 0 0
I 0 0 0

It is not difficult to demonstrate that the y" and Is are
generators of 64 I J which divide into seven sets. The first
set has one element, I8, and is a zero-index object. The
six y" form the one-index objects of the second set. Fif-
teen cr""=[y",y"]/2i form the third set of two-index ob-
jects. Twenty (i/3!)e~&„~zsy yry form the three-index
object set. Fifteen (i/4!)e~&„~zsy y y~y provide an addi- .
tional two-index object, (i/5!)e~z„q&yi'y"y yry provides
the six components of an additional one-index object, and
(i/6!)e &„&ey y"y"y yry gives another zero-index ob-
ject. We label these the scalar, vector, antisymmetric
rank-2 tensor, fully antisymmetric rank-3 tensor, pseu-
dotensor, pseudovector, and pseudoscalar, respectively.

In the standard manner, explicit construction of the spi-
nor transformation gives

0 1

1 0

0 —i2=o'

P'=Sf= exp — cocr&g""—
4

and

tanhco =—=P, cosh' = ( 1 —13 )
C

where, for Lorentz boosts with U (c,

(2.4)

1 0I—
0 1

0 0
0 0. 0

0
0
0

0 0 cr'

0 a' 0
—o 0 0

0 0 0

for s = 1,2, 3 with the remaining three r" given by

I 0 0 0,
0 I 0 0

4r=o0 I 0
0 0 0 —I

where we note that the first three 2X2 matrices are the
standard form of the Pauli matrices. Our y" representa-
tion is written as

[y„y ]
Op~=

2l

I",gives the usual unit boosts extended to a (3+3) space-
time. Using Eq. (2.4), one can demonstrate the covariance
of Eq. (2.1) or (2.2) under a proper Lorentz transforma-
tion from one E-type observer to a second K-type ob-
server.

It is also straightforward to demonstrate that the 64 I J
are linearly independent and may be used as the basis for
8)& 8 Clifford numbers. These obey the algebra associated
with the six-dimensional Dirac ring. As a direct conse-
quence, one finds that

det
i G;1 i

=(trI8)

where

G~ ——trl; I J

and thus, up to a similarity transformation, our represen-
tation of the I J and ri" is the only representation. We
note that a second I J representation may be obtained by
taking all possible double direct matrix products of
o', o. ,o. , and I. This presents an interesting compar-
ison to the basis elements of the Dirac ring for which the
same four 2)&2 matrices may be combined under all pos-
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sible single direct matrix products to yield the sixteen
4X4 I J of the (3+1) theory.

The above indicates that the (3+3) theory duplicates
the formal properties of the (3+1) theory. The actual
connection between (3+1) and (3+3}spacetimes is dis-
cussed in Sec..IV. so

[y i (p e—Ai)+ y2 e A2+ m ]/=BE/

B=B'=B-',

(3.14)

(3.15)

III. THE HAMILTONIAN FORM
OP THE WAVE EQUATION

[By, (p —e A&)+By2 e A2+Bm]Q=E@,

from which we identify the Hamiltonian

(3.16)

We now seek to place Eq. (2.1) in the form

Hg=Eg (3.1)

and thus discover the form of H. Before proceeding we
add a real electromagnetic six-vector potential A& to Eq.
(2.2), such that

H =Byi (p eAi—)+By2.e A2+Bm . (3.17)

However, there is a problem. The first and third terms of
the Hamiltonian are Hermitian, but the middle term is
neither Hermitian nor anti-Hermitian. It may be split to
give

[y"(p„—eA„)—m ]/=0 (3.2) ey2. A2 ——A .A2+AJ, A2=A. A (3.18)

yi'p~P ey"A~—f m$=0—.

The first term on the left may be written as

( r i p—+r2. EW =r"p,4
where

ri=X'ci+X 2+7 c3

F2=X c4+r cs+X.c6-

(3.3)

(3.4)

(3.5)

(3.6}

y eA„Q=( y, .e A, +y—2.e A2)p, (3.7)

where A& is the usual three-vector potential and Az is a
vector potential associated with the multitemporal axes.
Using Eqs. (3.4) and (3.7) in Eq. (3.3) gives

( —y| p+y2 E+y] eA$ y2 eA—2 —m)1i =0 (3.8}

or

[y$ (p eA$}+y2—eA2+m]y=y2 Ey . (3.9)

We now use Eq. (1.2) to express the right-hand side of Eq.
(3.9) as

r2 Ef=r2 ( l4 4+ 95e5+ 96e6)EP (3.10)

or

y2 EQ=BEQ,
where

e=n4y4+nsys+96y6

(3.11)

(3.12)

or

Iq4 0 —iI'Qs Ig
0

e= .Il '77s

Thus,

Iq4 —Ig6 LIgs
—Ig4 0

—I'Igs 0 —Ig4

(3.13)

p is the usual three-momentum operator and E is defined
by Eq. (1.2). Using Eqs. (3.5) and (3.6) again, the second
term on the left of Eq. (3.3) may be written as

where A, .A2 is an anti-Hermitian operator and A~ A2 is
a Hermitian operator. We note that AI, A2 consists of the
diagonal terms of Byz. A2 and A, A2 consists of the off-
diagonal terms of this same operator.

Recalling that A2 is real, we now consider the physical-
ly realizable conditions necessary and sufficient to make
H a Hermitian operator. We may set all components of
Az equal to zero. However, we note that this is not a
realistic general assumption for matter obeying Eq. (3.2).
We may set two components of A2 equal to zero. This
alone is not enough to ensure that H is Hermitian. This
follows from the retention of one term from A, A2. If
additional terms of A2 are retained as nonzero, the prob-
lem simply becomes more complicated. Thus, a restric-
tion on the field with which the particles interact is not
sufficient. We now consider A, . If we set ri; =gz =0 and
21k ——1 for some combination of i,j,k =4, 5, or 6 and
i&j&k&i, then all A components containing g; and rij
vanish. However, this action alone is not sufficient to
elixninate A, and A, A2. Further, other possible values
of the direction cosines again only complicate the situa-
tion. Thus, a simple restriction on the direction of the
time vector of the interaction particles is not sufficient.
The final case involves a combination. Consider
A;&O, AJ =2k ——0 and g; = l,gj =gk ——0. This combined
restriction on both the applied field and on the time vec-
tor of the interacting particles is necessary and sufficient
to ensure that A, Az ——0.

Up to this point, we have restricted our derivation to
the viewpoint of a E-type observer who is examining in-
teractions involving only K-type matter. Although the
covariant form of Eq. (3.2} makes it clear that we should
be able to find a transformation that carries our results
into the case of a J-type observer who is considering in-
teractions involving only J-type matter, it is now a simple
and instructive process to actually construct the Hamil-
tonian for this case. There are two choices as to the
specific method used in this construction: we may search
for the actual transformation, or we may take advantage
of the work already performed and construct the J-type
Hamiltonian directly. We choose the latter approach.

Recalling that a J-type observer has a viewpoint invert-
ed with respect to that of a X-type observer and thus con-
siders the axes x', s =1,2, 3 to be timelike and the axes x', ,
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t =4,5,6 to be spacelike, we note that the J-type observer
writes the energy operator as

Iq3 0 —iIg2

Ef=i(e'B~+e Bz+e Bz)g

=(e'E~+e Ez+e Ez)P
—Ig)
—iIg2

—Ig3
0

0
—Ig3

IQ3 —Ig ~ tIg2
(3.25)

=(e'eq~+e'g&+e g3)EQ (3.19)

where the g, are again the direction cosines of E and t.
There is also a corresponding adjustment in the three-
mornentum vector operator. Further, J-type matter,
which is matter a J-type observer views as subluminal,
must obey

(p"I'~+m )/=0, (3.20)

as compared to Eq. (2.3).
It is obvious that a representation of the y" which satis-

fied Eq. (3.21) can be found. The most direct route to the
desired representation is the simple permutation
)' ~~@, 1' ~~y, and y +~y . Of course, this is not the
only acceptable permutation. It is equally obvious that
the new y" will serve as the basis for generating an alter-
native to our previous Dirac ring. In that we have
demonstrated the uniqueness of the K-type representation
of the ring, up to a similarity transformation, the fact that
it is possible to construct the J-type representation
demonstrates the existence of that transformation which
was our other possible approach to arrive at a J-type H.

We now insert a potential A& as in Eq. (3.2) but note
that an exchange of meaning of the components of Az, in
direct analogy to the permutation of the yl", is necessary
to conform to the J-type nature of the problem we are
considering. Repeating the procedures used to develop H
for the K-type observer yields

H=ey, .(p —eAz)+By& eA& —Bm, (3.22)

where y&, yz, A~, and A2 have also been redefined ac-
cording to the permutation procedure given above and
have components consistent with the J-type viewpoint.
To eliminate the very real possibility of confusion, it is
best to give the explicit expressions for the y vectors.
They are

V 1+7 2+7 e3 (3.23)

and

X2 y e4+ Y e5+ Y e6 (3.24)

which are identical in form to Eqs. (3.5) and (3.6) but have
components given according to the premutation rules stat-
ed above [e.g., y' of Eq. (3.23) is the y of Eq. (3.6)].
Also, A2 is now the usual three-vector potential and A& is
now the vector potential associated with the J-type mul-
titemporal axes. The only term remaining to be identified
is the e matrix. It is

rather than Eq. (1.3). Equations (2.1) and (2.2) are not
directly affected by the shift of viewpoints —beyond the
meaning now assigned by the observer to the
coordinates —to that of a J-type observer, but Eq. (3.20)
will only be satisfied if

(3.21)

as would be expected.
Again, there is a term whikh is composed of a Hermi-

tian and an anti-Hermitian part: ey~ eA~. Reasoning
identical to that used in finding the conditions necessary
to make the K-type Hamiltonian (Hz) a Hermitian opera-
tor may be applied. The conditions necessary to make the
J-type Hamiltonian ( Hz ) a Hermitian operator are
3;&O,AJ =3k=0 and g;=l, rij =qk ——0 for some com-
bination of the index values 1,2,3.

There remains one point that, for clarity, should be
made explicit. Throughout the construction of the J-type
H the components of the various matrices and the ele-
ments of Eq. (3.25) have altered. From this, it is possible
to reach the conclusion that the basis vectors ez have also
altered. However, in that we wish to retain the metric of
Eq. (1.1), this is not the case and the e„of the K-type
coordinate system are identical to the e„of the J-type
coordinate system. The only change associated with the
basis vectors is the view of their timelike or spacelike na-
ture as taken by a particular observer type. Of course,
this will be consistent with the observer's view of the
meaning of the coordinates. Other approaches to the no-
tation used could have been selected. Our choice was
made to place emphasis on the significant relationships
which exist between the two observer types and the impor-
tance in a (3+3) spacetime of ensuring that the meaning
of physical quantities, as understood by the observer
under consideration, is carefully preserved.

This completes the derivation of Hz and Hq for the
cases of a K-type observer viewing K-type matter and a
J-type observer viewing J-type matter. In that our con-
cern in this paper is with the mechanism of temporal vec-
tor parallelism preservation for a collection of interacting
subluminal matter within a (3+3) spacetime, in fact that
these purely subluminal cases are sufficient for the task
eliminates that need for the calculation of the superlumi-
nal cases of a K-type observer viewing J-type matter or a
J-type observer viewing K-type matter. Thus, we end our
derivations at this point and leave the inessential and con-
siderably more complex question of superluminal motion
for future consideration.

IV. DISCUSSION

In the preceding section we established the necessary
and sufficient conditions for the (3+3) Hz and HJ to be
Hermitian operators describing subluminal matter obeying
the extended Dirac equation. Further, we established, by
explicit construction, the physically equivalent nature of
the L-type and J-type viewpoints. The covariance of Eq.
(3.2) aside, this equivalence is not particularly unexpected.
Examination of the definition of the K-type observer
demonstrates that it is in direct analogy to the formula-
tion of special relativity based on a (3 + 1) metric given by
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0
0 —1

gpv= 0 0
00

0 0
0 0

—1 0
1

(4.1)

A similar examination of the definition of the J-type ob-
server demonstrates that it is in direct analogy to the for-
mulation of special relativity based on a (3+1) metric
given by

gpv=

—1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

(4.2)

It is well known that these are physically equivalent ap-
proaches. It should be noted that our work, restricted to
the case of subluminal matter, does not demonstrate that
the K-type and J-type viewpoints will have simultaneous
physical existence within the same (3+3) spacetime. We
have only demonstrated a mathematical possibility. Reso-
lution of this question requires consideration for the su-
perluminal Hamiltonian, which might be formulated
within the framework of a (3+3) spacetime, but which is
beyond the stated scope of our present work.

We now examine the consequences of the restrictions
placed on H~ and HJ by the requirement of. Hermiticity.
We begin with some notational definitions. Consider a
K-type observer. Let there exist a collection of interacting
matter, within the (3+3) spacetime, for which the initial
state is such that the temporal vectors of the particles
constituting this matter are paralled. Further, let this col-
lection of matter have its rest frame as a K-type reference
frame. Clearly, the initial state of this collection of
matter defines a (3+1) subspace of the (3+3) spacetime.
It is not necessary that the E-type observer start with his
temporal coordinates configured in such a way that the
collection of matter is unitemporal with respect to this
coordinate system: he is free to orient these axes as he
chooses. However, by Eq. (3.17) and its associated restric-
tions, the observer can only obtain a Hermitian H& with
which to describe the Dirac particles within this matter if
he aligns one of his time axes with the time axis of the
matter. Such an action would be natural and is accom-
plished by a rotation of the observer's temporal axes. Let
the observer carry out such a coordinate transformation.
We introduce a label for K-type (3+1) subspaces: they
are designated 0,, where 1 =4, 5, or 6 and indicates the
temporal axis selected by the observer for alignment with
the temporal vector of the (3+1) subspace. Let our ob-
server select the axis k for alignment. Then the subspace
under observation will be 0- and we further designate a

k
(3+1) observer composed of matter belonging to Q- as a

k
K--type observer. This (3+1) observer would use a

k
metric of the form given in Eq. (4.1). Of course, the IC-

k
observer has the usual option of using Eq. (4.2), but we
eliminate this choice to permit a consistent notation
within which to evaluate our results. Accepting the rein-

terpretation principle, we do not consider a negative-time
vector particle as belonging to a separate subspace.

Notational considerations and initial conditions stated,
we now proceed with our discussion. Consider interac-
tions involving only Q- matter. The E-type observer

k
notes that the proper set of restrictions for the subspace
0- Hamiltonian are g- = 1,g-. =q-. =0 and A-&0,k k ' i k
A-. =A-. =0, where ig jgkgi. The observer further

1 J
notes, by explicit examination for the Hamiltonian, that
the interactions described by this Hamiltonain can never
lead to the creation of a multitemporal state for the parti-
cles involved in the interaction. In that this Hamiltonian
is only applicable to Dirac particles, it is natural to con-
sider particles of other spins and the possibility of an in-
teraction within the subspace resulting in multitemporal
behavior of these particles. However, that such interac-
tions are also eliminated may be quickly determined by
considering the necessity for the conservation of six-
momentum. The K-type and, thus, E--type observer will-

never see multitemporal motion resulting from subluminal
interactions that occur between matter contained within
this subspace. Identical arguments may be applied to a
J-type observer and will result in the same conclusion
concerning the behavior of Q; matter observed by a J;-
type observer.

Before proceeding to consider the remaining possible
interactions, we should determine if the physics described
by at least one of the Hamiltonians of the (3+3) K-type
observer and at least one of the Hamiltonians of the
(3+3) J-type observer is identical to that of ordinary
(3+1) Dirac physics. We examine 04 in the IC-type sub-
space set and 03 in the J-type subspace set. Inserting the
proper restrictions on the Harniltonians for these sub-
spaces allows, by direct inspection, confirmation that no
new physical behavior has been introduced.

In addition to set the states associated with the 0- sub-
k

space, the (3+3) K-type observer will also note two addi-
tional subluminal sets. These belong to the subspaces
0-. and 0-., where the indices are as previously defined. If

1 J
no Dirac matter occupies the states of 0-. and ~ these

1 J
may be considered to be defined only to the degree that
their temporal vectors must lie in a plane perpendicular to
the 0- temporal vector and that the Q-. and O. temporalk 1 J-

vectors must be mutually perpendicular. This require-
ment folio'ws directly from Eq. (3.17) and its associated
restrictions combined with the fact that there is no partic-
ular reason for the K-type observer to retain the chosen
orientation of these i and j axes.

It is natural for the K-type observer to consider what, if
any, conditions might lead to the transfer of matter ini-
tially in one of the A- states to a state belonging to either

k
Q-. or Q-.. %e have established that an interaction which

1

is internal to Q- is insufficient. But mathematically, there
k

could be other (3+1) subspaces within the (3+3) space-
tirne. Further, rnatter could exist in either 0-. or Q-.. I.et

i j
us consider the interaction of a particle belonging to Q-

k
with a particle of the K-type but not belonging to 0-. Let

k
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the interaction be electromagnetic in nature and let the 0-„
particle be a Dirac particle. The E-type observer will at-
tempt to write a two-particle Hamiltonian to describe the
interaction. But it is clear that no coordinate transforma-
tion of the K-type observer's temporal axes will permit
the elimination of the anti-Hermitian part of this Hamil-
tonian. However, by Eq. (3.18), the Hamiltonian describ-
ing such an interaction may be split into a Hermitian and
an anti-Hermitian part. That is,

(Hg+H, )Q=EQ . (4.3)

The eigenvalues of HI, will be real and the eigenvalues of
H~ will be imaginary. Physically, this represents a
damped state for the particle originally contained in 0-.
This damped state will decay into an available stable state.
This may be any state described by the three possible E-
type Hermitian Hamiltonians associated with the EC-type
observer's original choice of temporal coordinate transfor-
mation as determined by the initial configuration of 0-.

k
The process should be considered as a quantum transition
of a bound particle. Prior to the interaction the 0- parti-

k
cle, constrained to remain in Q- if not disturbed by an

external force, should be termed to be in a temporally
bound state. During the transition, this particle was not
temporally bound. After the transition was completed,
the particle was again in a temporally bound state. As is
normal for transitions between bound states, one does not
expect the actual transition state to be observable. This,
in part, eliminates the difficulty created by the fact that
Hermiticity fails during the interaction, but a problem
remains: the K-type observer, although a (3+3) observer,
is not able to write a Hermitian Hamiltonian for 0- and,

k
without transforming his temporal coordinates in such a
way as to destroy the Hermiticity of his description of 0-,k'
also obtain a Hermitian Hamiltonian with which to
describe matter not contained within either Q- or Q-. or

k 1

O..
The Hermiticity problem described above may be

resolved in several ways. We advance a tentative choice
as being both that implied'by a mathematical interpreta-
tion of our results and that consistent with the combined
postulates of quantum mechanics and relativity. We al-
low (3+ 3) K-type observers and (3+ 3) J-type observers
to retain the option of selecting any orientation of their
temporal axes. With each orientation selected, we associ-
ate a threefold subluminal set of temporally bound (3 + 1)
states. Each (3 + 1) subset of unitemporal states is termed
a possible (3+ 1) subspace of the (3+ 3) spacetime. The
(3 + 1) elements of each threefold set are described by the
three Hermitian Hamiltonians associated with the particu-
lar orientation selected. These states may be fully, partial-
ly, or not occupied. But a (3 + 1) subspace is only defined
when some states within that subspace are occupied. We
did not make this distinction in the preceding discussion
but now introduce it to provide separate terms for describ-
ing mathematical possibility and physical reality. We

note that the union of one threefold subluminal set and a
second threefold subluminal set is not necessarily the null
set. With respect to a particular subspace 0-, the rota-k'
tional freedom about the temporal axis of 0- available to

k

the i and j temporal axes gives an infinite number of
threefold sets. Union between any two of these sets yields
the 0- states. We consider all threefold sets of sublumi-

k
nal states associated with such a union as states available
to an II- particle. Further, if the union of the 0- states

k k
and the threefold set of states associated with a given
orientation of the (3+ 3) observer's temporal axes is the
null set, then we consider the states of this threefold set to
be inaccessible to the 0- particle. Thus, the Hermiticity

k
conditions for Hx. and IIJ are interpreted as defining
those states available, and those states not available, to a
particular Dirac particle within the (3 + 3) spacetime. We
call this effect temporal polarization.

As a final point, if the K-type and J-type observers are
physically able to exist simultaneously within the (3+ 3)
spacetime, then the orientation of the spatial axes of a
particular EC-type observer corresponds to the orientation
of the temporal axes of a set of J-type observers. When
the orientation of the E-type observer's temporal axes is
also taken into consideration a subset of J-type observers,
each differing only in relative velocity with respect to the
K-type observer, is fully determined. It is under the as-
sumption of simultaneous physical existence and the
above specification of the meaning of subset and subspace,
that we describe the effect of the introduction of quantum
mechanics and electromagnetic fields into the relativity
theory of a (3+ 3) spacetime as the division of that
(3 + 3) spacetime into six (3 + 1) I.orentzian subspaces.

V. CONCLUDING REMARKS

We have demonstrated that there are no contradictions
between the observed unitemporal behavior of subluminal
matter and a six-dimensional formulation of special rela-
tivity. Further, we have determined that the removal of
the possibility of multitemporal behavior, which has been
the primary problem with obtaining a physically realistic
classical formulation, is a consequence of the quantum-
mechanical behavior of Dirac particles in an applied elec-
tromagnetic field. In using the (3 + 3) Dirac equation, we
have found that there is some ambiguity in the interpreta-
tion of the Hermiticity requirements that apply to the
six-dimensional Hamiltonian, but a form of temporal po-
larization accompanies any possible interpretation and re-
sults in the unitemporal behavior necessary for consisten-
cy with physical reality. This is sufficient to resolve the
problem

Our next task is to examine the possibility of interac-
tion between E-type matter and J-type matter. In that
these are inherently in a state of superluminal motion
with respect to each other, this amounts to examining the
superluminal Hamiltonian. We will consider this problem
in our next paper.
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