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The Korteweg-de Vries hierarchy of equations, whose solutions are quantum-mechanical isospec-
tral potentials, is shown to reduce, in the classical limit, to a family of equations whose solutions are
isoperiodic potentials. The quantum-mechanical spectra of several families of classically isoperiodic
potentials are examined in the light of the above correspondence.

I. INTRODUCTION

The characteristic parameter of a quantum-mechanical
bound state is its total energy. The corresponding charac-
teristic of a classical bound trajectory is its period. The
connection between the classical period and the quantal
energy is well known in the context of the WKB approxi-
mation. Confining our attention to one-dimensional po-
tentials, for which the trajectories are always regular, , we
shall be interested in the relation between transformations
of the potential under which the classical period is invari-
ant and transformations under which the quantum-
mechanical energy is invariant. One case of this relation,
namely, that between a quantum-mechanical equidistant
spectrum and a classical energy-independent period, has
recently been investigated. ' It was established that
three indenumerably infinite sets of potentials exist, each
showing one of the following characteristics: (a) energy-
independent classical period and equidistant quantal spec-
trum; (b) energy-independent classical period and non-
equidistant quantal spectrum; or (c) energy-dependent
classical period and equidistant quantal spectrum.

As is well known, the. quantum-mechanical energy is
invariant under any unitary transformation of the Hamil-
tonian. Similarly, transformations of the classical Hamil-
tonian (or Lagrangian) under which the equations of
motion are invariant have been studied. Clearly, invari-
ance of the equations of motion is a sufficient, though
certainly not a necessary condition for the invariance of
the classical period. In general, quantal unitary transfor-
mations as well as classical period-preserving transforma-
tions do not retain the standard form of the Hamiltonian.
However, certain classes of transformations, which only
affect the potential, transforming a local potential into
another local potential, are known. The simplest such
transformation, which is trivially valid both classically
and quantally, is the shift transformation

V(x)~ V(x+t), (1)
where t is an arbitrary parameter. Using the notation
V, =c)V/Bt, V„=BV/Bx we can express this transforma-
tion by the partial differential equation

(&)

whose solution V(x, t) satisfying the initial condition
V(x,O) = Vo(x) is

V(x, t)= V, (x+t) .

In quantum mechanics this transformation is known to
be the first in an infinite hierarchy of transformations of
the potential, each one of which preserves the bound-state
energies. The next transformation in this hierarchy is ex-
pressed by the Korteweg-de Vries (KdV) equation

(4)

Potentials which support identical sets of eigenvalues are
known as isospectral potentials.

In classical mechanics a simple period-preserving
transformation can be constructed by distorting the con-
fining potential Vo(x), which we assume to have a single
minimum, into V(x), in such a way that the classical
turning points X+(E) and X+(E) satisfy

X+ (E) X(E)=X—+ (E) X(E)—
for all energies. Here, X+ (X ) denotes the right (left)
classical turning point. %e shall refer to potentials relat-
ed by a period-preserving transformation as isoperiodic
potentials, We note in passing that the shift transforma-
tion, which is the first member of the KdV hierarchy, is
also an isoperiodic transformation, satisfying Eq. (5) trivi-
ally.

Isospectral transformations in quantum mechanics are
of interest in the context of the inverse problem, involving
the determination of the potential from spectral data.
The corresponding isoperiodic transformations in classical
mechanics have an analogous role with respect to the clas-
sical inverse problem. The well-known Rydberg-Klein-
Rees (RKR) procedure enabling the determination of
molecular potential surfaces from rotation-vibration spec-
tra is one example in which the characterization of the
possibility of nonuniqueness of the inverse problem is of
practical interest.

II. THE CLASSICAL LIMIT
OF THE KdV HIERARCHY
OF TRANSFORMATIONS

By way of introduction, we derive the KdV hierarchy
of isospectral transformations for the potential in the
one-dimensional Schrodinger equation

fi g„„=(V—A, )t)'t,
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(7)

using a slight modification of the approach presented by
Gardner et al. The potential is a function of both the
dynamical coordinate x and a parameter t, V=V(x, t).
We are interested in characterizing the types of depen-
dence of V on t which do not affect the eigenvalues.
From the Hellmann-Feynman theorem it follows that if
the eigenvalues are independent of t, then

A, , = f V, Q dx=O.

Equation (7) is an identity satisfied for all values of t, so
that it implies k(t)=A, (0). We shall assume that the t
dependence of the potential can be specified by the partial
differential (evolution) equation

Ai „————,Pp(t) V„ (15)

or

Ai = —
2 Np(t) V+01(t» (16)

where Pi(t) is arbitrary. Thus, for n=1 Eq. (14) results
1n

Pp(t) V +[—,Pp(t) V —Pi(t)] V„
4

(17)

origin shift transformation, which is both isoperiodic and
isospectral. With the choice of Ap just made, it follows
from Eq. (13) that

V, =P( V, V„,V~, . . . , V„) .

From Eq. (7) it follows that P should satisfy

f Pg dx=O. (9)

which, for pp(t)=1 and p&(t)=const, reduces to the KdV
equation. The classical limit of this equation, obtained by
setting A'=0, is

~t = [ 2 Pp( t) V—01(t) ]VX .

It is easy to show by repeated integration by parts that Eq.
(9) is satisfied if P is of the form

fiP = A~ —2( V—A, )A„—V„A, (10)

where A is an arbitrary function of x, t, and A, . Note that
our A differs from that in Ref. 9 by a factor of A'

Equation (9), with P as given by Eq. (10), can also be de-
rived from the hypervirial theorem

f @*[H,W']g dx =0

with IV=2Ap (fi/i )A„, w—here P =(fi/i )8/Bx and
H=p + V.

We wish to determine the form of A so as to make P
independent of A, . Writing A in the form

A =p Ap+ A1+ A2+ ' ' ' + An
1 1

gn n

where A; (i =0, 1, . . . , n) are independent of A, , and re-
quiring that all the A,-dependent terms in P vanish, we ob-
tain

1

Am+1, =~Am, x+ z Am~& . (19)

Note that Eq. (14) does not contain A' explicitly, so that its
form remains unchanged in the classical limit. Using the
expression for A i obtained above [Eq. (16)] the following
classical-limit expressions result:

A2 ————,yp(t) V + , yi(t) V+$2(—t),

A3 —
6 Qp(t) V + P](t)V + 2 (i2(t) V+$3(t )

(20)

(21)

etc. Equations (16), (20), and (21}suggest that in general

A thorough mathematical investigation of this limit was
carried out by Lax and Levermore, ' who refer to it as the
zero-dispersion limit. The following equation in the
hierarchy can be derived in an entirely analogous manner.
However, it is more interesting to note that although the
complete hierarchy grows more and more complicated,
the classical limits retain a simple form in the various or-
ders. This can be seen as follows. Setting St=0 in Eq.
(13) we obtain

g2
An, ~—2~A.,~

—~ An (12)
A„= g a„~V" P (t),

m=0
(22)

as well as the recursion formula
where P~(t) are arbitrary functions of t. Substituting Eq.
(22} in Eq. (19) it follows that

Am+ i,~ = ~Am, + 2 Am ~x — Am, ~ (13)
n+1, m =

1
n —m+ —,

+n, m
n —m+1

where m =0, 1, . . . , n —1. Note that Eq. (13) is indepen-
dent of n It can be.used to write Eq. (12) in the form m Oy 1p ~ ~ ~ p E1 y n=0, 1,2, . . . . (23)

~~= —2Am+i, ~ . (14)
Equation (23) determines a„~(n )m ) in terms of a~ ~
and it follows easily that

[2(n —m ) —1]!!
2n —m(n ~ )t

(24)

The choice of a m is arbitrary because it merely amounts
to normalization of the arbitrary functions P (t). We
shall therefore set a = —1 for all m.

Thus, it follows from Eq. (14) that

(25)V, =F„(V,t) V„,

For n =0 Eq. (14) can obtain the form V, = V„, provided
that we choose Ap ———1. As pointed out in the Introduc-
tion, this equation, which is independent of A, is equally
valid in classical and quantum mechanics. A slight gen-
eralization can be achieved by choosing Ap —— Pp(t), —
where pp(t) is an arbitrary function of t With this .choice
of Ap, Eq. (14) becomes V, =gp(t)V„The solution o. f
this equation satisfying V(x 0)= VQ(x) is V(x, t )
= Vp(x+Np(t)} where Np(t ) = Pp(t)dt This is still an.

0
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where

F„(V t)= g P„V" P (t)

and

[2(n —m )+ 1]!!
2lf —Nl( ))

(26)

Substituting Eq. (25) for V, we obtain

d V= V„[dx +F„(V, t )dt ] . (27)

Choosing the curve C, which will be referred to as the
characteristic curve of the partial differential equation
(25), so that

dx+F„(V,t)dt=O, (28)

we obtain along C dV=O, i.e., V(x, t)= Vp(xp). Conse-
quently, Eq. (28) can be integrated into

x =xp —g P„Vp(xp)" 4 (t), (29}

where

@ (t)= I P (t')dt'.

Equation (29) is the equation of the characteristic passing
through (xp, O). Let xp be the point satisfying
Vp(xp ) = Vp(xp). It follows from Eq. (29) that the

characteristic through xo is parallel to the character-
istic through xp, so that for all t the equation

III. SOLUTION OF THE CLASSICAL-LIMIT
EQUATIONS

Each one of the equations in the hierarchy (25) is quasi-
linear, " i.e., they involve the derivatives linearly. The ini-
tial values are given along the line t =0,

V(x, O)= Vp(x) .

Along the tangent to an arbitrary curve C passing
through the point ( x, t ) (Fig. 1), we have

dV= V„d„+V dt .

x(t) x—'(t)=xp —xp holds, as illustrated in Fig. 1. Since
V is constant along the characteristics, the distortion of
the potential specified by Eq. (25) satisfies the classical
condition for isoperiodicity, Eq. (5). Each choice of
F„(V, t) represents a different distortion, differing by the
shapes of the characteristics passing through any initial
point (x,O), but they all belong to the indenumerably in-
finite class of isoperiodic distortions.

A simple geometrical interpretation may be helpful; it
is presented in Fig. 2. Note that

t V~(xp 0) =—V„(xp,O)
Axo

and

t V, (xp, 0) =—V„(xp,0) .
hxo

Using Eq. (25) and noting that V(xp, 0)= V(xp, O), we ob-
tain axo=ma

One simple feature of the transformation of the poten-
tial defined by Eq. (25) is that the minimal value of
V(x, t) with respect to x is independent of t. Thus, the
minima of all the potentials related by Eq. (25) are at the
same height. This is certainly not the case for the
quantum-mechanical transformations such as the KdV
equation, as one can easily verify by considering a
potential which has a positive third derivative at the
minimum [say, Vp ——x /4 —x /3; Vp „(x~;„=I ) =0;
Vp~„(x;„=1)=4]. Clearly, from Eq. (17) with Pp

——1,
it follows that at the minimum of Vp(x}, V,
= —(fi /4) V~, so that a positive V~„means a reduction
in V, at x;„, for the distorted potential relative to the
minimal value of Vp(x). This rather trivial distinction be-
tween the quantum-mechanical transformation and its
classical limit is relevant to the interpretation of some nu-

merical results presented in Sec. V.
A special case of particular interest of Eq. (25) corre-

sponds to the choice P~(t) =f~ =const. In this case the
characteristic is a straight line through xo, whose slope is
determined by Vp(xp). The two characteristics through
xp and xp satisfying Vp(xp)=Vp(xp) have equal slopes

t. V~ {X'„O)

V{x,o
/

II
/

lg
V{x,t)

4

slope: V&

Xo Xo

XoI xo

FIG. 1. Parallel characteristic curves for Vo(xo) = Vo(xo ). FIG. 2. The isoperiodic transformation.
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and are therefore parallel to one another. Equation (25)
can be written in the forin

Vi =f( V) Vx (25')

where f( V) stands for F„(V,t) when all P~ are indepen-
dent of t.

Consider a potential Vo(x) which is monotonically de-
creasing for x &0 and monotonically increasing for x &0.
Let V(x) be an arbitrary monotonically decreasing func-
tion of x for x &0, such that V(0)= Vo(0). In view of the
monotonicity of both Vo(x) and V(x) for x &0, we can
invert them, obtaining x =go ( V) and x =P ( V), respec-
tively. To define V(x) for x &0 we use the isoperiodicity
condition as follows. First, inversion of Vo(x) (x &0) re-
sults in x =$0+(V). P+(V), the inverse of V(x) for x &0,
is defined by means of the relation

P+( V) —Pp ( V) =P ( V) —Po ( V),

Xo XI

FIG. 3. The straight characteristic for t-independent con-
stants of integration.

1.e.,

x=p+(V)=$0+(V)+p (V) —$0(V) (30)

Assuming that x i & 0 we have also x i ——P+( V) and
xo ——$0 (Vo)=$0+(V) so that

4'+( V) —4'o ( V) = r if( V) . — (31)
I

ri can now be chosen arbitrarily, say, t, =1, so that f( V)
is finally given in the form

f( V) =y+(V) —y+(V) . (32)

In view of the isoperiodicity condition this result is identi-
cal with Po ( V) —P ( V) which is the form f( V).would ob-
tain assuming that x~ and xo are negative.

What Eq. (32) establishes is that a t-independent choice
of the constants of integration P~ in Eq. (25) can always
be made, transforming an arbitrary single minimum po-
tential Vo(x) into any other potential V(x) which is iso-

which can be inverted into V(x) (x &0). To determine
the form of the function f(V) generating the isoperiodic
transformation Vo(x)~V(x) we note that V is constant
along the characteristic a (Fig. 3), so that V(xi )= Vo(xo),
where

dx
xi =xo+ri =xo —r if [ Vp(XQ) j

periodic with it. The corresponding f(V) is determined
by Vo(x) and V(x). However, the additional freedom
available in Eq. (25) enables the choice of not only the ini-
tial and final forms of the potential, at to ——0 and ri, but
also the complete scenario in between.

IV. THE PO%'ER POTENTIALS

Before embarking on a quantitative study of one specif-
ic set of potentials, it will be of interest to point out a cer-
tain extension of the analysis of the properties of iso-
periodic potentials presented in Ref. 6. Let V(x) be a
continuous potential which is monotonically decreasing
for x &0, monotonically increasing for x &0, and which
vanishes at x =0. The first derivative of V with respect
to x need not be continuous at x =0, so that this point is
not necessarily a minimum in the strict sense. Any in-
tegral of the form

x (E)
IF= „, ,

I' E—Vx dx

0 x (E)= f, ,
F(E—V(x))dx+ f I'(E V(x))dx—

(33)

is invariant with respect to isoperiodic transformations.
This follows by noting that IF can be written as a sum of
two integrals over V, i.e.,

TABLE I. Energies, i.e., eigenvalues of Eq. (40), for the isoperiodic linear potentials, specified by
Eqs. (35) and (36) with %=1. The first row is the ground-state energy and the following rows are con-
secutive energy differences.

50

0.808 62 0.822 22 0.833 74 1.029 86 1.16905

1 —0
2 —1

3 —2
4 3
5 —4

1.047 13
0.722 34
0.666 53
0.581 09
0.555 96

1.034 14
0.72444
0.661 13
0.586 86
0.549 61

0.986 26
0.773 74
0.650 71
0.581 63
0.548 97

0.875 89
0.71995
0.636 45
0.581 69
0.541 99

0.874 93
0.716 30
0.633 07
0.578 71
0.539 27
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TABLE II. Energies for the isoperiodic quadratic potentials.

0.50000 0.506 84

15

0.557 63

135

0.617 56

1215

0.664 81 0.75000

1 —0
2 —1

3—2
4—3
5 —4

1.00000
1.00000
1.00000
1.00000
1.000 00

0.98903
1.005 51
0.998 70
0.999 38
1.000 95

0.951 40
0.984 97
0.998 18
1.003 06
1.003 79

0.95045
0.971 62
0.981 95
0.987 80
0.992 14

0.963 14
0.975 51
0.981 69
0.985 51
0.988 16

1.00000
1.00000
1.00000
1.00000

' 1.00000

0 dx E dx+I,= f F(E V) — dv+ f F(E V) —'dv

d(x+ —x )= f F(E V) —+ dV. (34)

From the invariance of x+(V) —x (V) with respect to
isoperiodic transformations it follows that IF is also in-
variant. The special case I" =[E—V(x)] '~ corresponds
to the classical period, discussed in Ref. 6. For potentials
whose first derivative with respect to x is everywhere con-
tinuous, F=[E—V(x) ] ' corresponds to the WKB
quantization condition. This means that within the &KB
approximation isoperiodic potentials with a continuous
first derivative are also isospectral.

As an illustration of the quantum properties of classi-
cally isoperiodic potentials we examine the power poten-
tials

A [x ]~, x&0
Vjg(x)= '

Bx~, x)O (3&)

B &yx+A —i'm 2 . (36)

The form of f(V) for the isoperiodic transformation of
the power potentials is easily derived using Eq. (32).
Thus, for V&(x) we have Vo ——x and V+=Bx so that
Po ——V' and P+=(V/B)' . Hence,

which, for N & 1, have a continuous first derivative. Not-
ing that the classical turning points at an energy E are
x (E)= (E/A )' and x+—(E)=(E/B)' it is obvious
that V~(x) is isoperiodic with V~(x)=

~

x ~, for which
—x =x+ ——E', provided that

x+(E)—x (E)=x+(E)—x (E),
i.e.,

f( V)= V'i+(1 —B (37)

Let us point out that for x &0 we could have ob-
tained Vo ——x I, V =A

I
x I, t.e., Po ———V'~,

= —(V/A) so that f(V)=V' (A ' —1) which
is identical with Eq. (37) because of the relation between
A and B, Eq. (36). For N= 1, Eq. (25') with f(V) given
by (37) corresponds to the classical limit of the KdV
transformation, Eq. (18).

The isoperiodic transformation from
~

x
~

corresponds
to the perturbation

(A —l)ix i, x&0
A V=

(B—1)x, x &0. (38)

V. EIGENVALUES FOR THE POWER POTENTIALS

The Schrodinger equation for the power potentials

d + V~(x) P=Eg
dX

(40)

can only be solved analytically for the linear and quadra-
tic potentials, N=1, 2. In the former case the solutions
can be written in terms of the Airy functions. Continuity
of the logarithmic derivative at x =0 results in the quanti-
zation condition

For infinitesimal distortions A = 1+@ so that
A '~ =1—e/N and B=l —e. Hence

,~x~", x&0
—Ex, X)0

which means that 5V is an odd function of x. Thus, in a
perturbation theory treatment with ~x

~

as the zero-
order potential, the first-or'der corrections to the eigen-
values vanish,

TABLE III. Energies for the isoperiodic quartic potentials.

0.667 99

10

0.691 14

50

0.71999

1250

0.781 37 0.949 92

WKB

0.546 27

1 —0
2 —1

3—2
4—3
5 —4

1.725 65
2.303 16
2.638 93
2.908 58
3.13503

1.729 24
2.279 00
2.638 85
2.91037
3.13475

1.740 70
2.261 74
2.623 80
2.904 91
3.135 81

1.782 42
2.260 98
2.605 60
2.881 85
3.11536

1.961 27
2.398 41
2.71506
2.970 64
3.188 27

1.817 30
2.306 96
2.644 29
2.91174
3.13724
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TABLE IV. Energies for the isoperiodie X' potentials.

10 250 WKB

0.728 96 0.729 38 0.732 89 0.74642

1 —0
2—1

3 —2
4—3
5

2.132 12
3.39908
4.509 20
5.490 33
6.381 86

2.132 88
3.399 37
4.508 97
5.49000
6.381 66

2.13940
3.402 16
4.507 02
5.487 16
6.380 12

2.164 91
3.415 26
4.503 75
5.478 08
6.372 53

2.490 96
3.739 50
4.789 87
5.732 40
6.602 08

2.16607
3.463 81
4.544 82-

5.508 16
6.392 98

(x)
g 1/3

x= —2E(2A )

g 1/3 A (y) =0 . (41)
y= —2E(2B)-'/'

Similarly, for the quadratic case the quantization condi-
tion, which was also derived in Refs. 2,and 12, obtains the
orm

I (a+ —,
'

)

I (a ) a = ) /4 E/2~A—

, , I'(b+ —,')
+a'" ' =0 . (42)

I (h) b=)/4 E/2~B—
For higher values of X the Schrodinger equations can
only be solved numerically. This was done using the
Runge-Kutta method. Actually, numerical . integration
was also used for the linear potential because of some nu-
merical difficulties we encountered in the evaluation of
the Airy functions required for the solution of the analyt-
ic quantization condition, Eq. (41).

The results, for %=1, 2, 4, and 10, are presented in
Tables I—IV. The accuracy was monitored by changing
the step size as well as the range of integration. Most of
the computations were carried out with a step size
h =0 05/(n+. 2), where n is the principal quantum num-
ber, n =0, 1,2, . . . . This guarantees that the number of
steps within each oscillation of the wave function is
roughly constant. The range of integration was usually
chosen as 1.6x ~x &1.6x+, where x and x+ are the
left and right classical turning points. The results are be-
lieved to be accurate to the number of digits presented.

In view of the fact that isoperiodic transformations cor-
respond to the classical limit of isospectral transforma-
tions, one may expect that a comparison of the quantal
spectra obtained for isoperiodic potentials would be of in-
terest. However, the variations in 'the height of the poten-
tial minimum are purely quantum effects which are com-
pletely lost in the classical limit. Therefore, a uniform

shift of the spectrum corresponding to one potential rela-
tive to another one, isoperiodic with it, cannot be con-
trolled within the classical framework. This suggests that
the comparison of energy differences rather than the ener-
gies themselves should be applied as a test of the quantal
significance of classical isoperiodicity.

The energy differences between consecutive levels, as
presented in the tables, are rather remarkably stable with
respect to the isoperiodic distortion of the potential until
the limit A~ co is approached fairly closely. This limit-
ing behavior may be related to the difference in the WKB
quantization condition between potentials with a finite
and an infinite slope, discussed by Froman and Froman. '

Note that the energies themselves are not as constant as
the energy differences.

What the results strongly suggest is that the leading
quantal correction to classical isoperiodicity is a vertical
shift of the potential. A further readjustment of the shape
of the bottom part of the potential curve, affecting mostly
the low-lying energy levels, is also required. The case of
the harmonic potentials, %=2, which had already been
studied by Ghosh and Hasse, could have been expected to
be unique because the two limiting cases A = 1 and A = Dc

are isospectral (apart from a trivial overall shift), and,
furthermore, the WKB approximation is rigorously exact
for the two limiting cases, ' ' suggesting that the same
might be expected to hold true in between, at least approx-
imately. However, as the results indicate, the quadratic
potentials are only approximately isospectral, to an extent
which is not markedly different from the other potentials
studied.
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