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This paper is part of a series of papers with the aim of developing a complete self-consistent for-
malism for the treatment of electromagnetic and gravitational fields in the neighborhood of a
black-hole horizon. In this membrane formalism, the horizon is treated as a closed two-dimensional
membrane lying in a curved three-dimensional space, and endowed with familiar physical properties
such as entropy and temperature, surface pressure and viscosity, and electrical conductivity, charge,
and current. This paper develops the concept of the “stretched horizon,” which will be vital for
both the electromagnetic and gravitational aspects of the formalism, and it presents several model
problems illustrating the interaction of dynamical electromagnetic fields with stationary black-hole
horizons: The field of a test charge in various states of motion outside the Schwarzschild horizon is
analyzed in the near-horizon limit, where the spatial curvature may be ignored and the metric may
be approximated by that of Rindler. This analysis elucidates the influence of the horizon on the
shapes and motions of electric and magnetic field lines when external agents move the field lines in
arbitrary manners. It also illustrates how the field lines interact with the horizon’s charge and
current to produce an exchange of energy and momentum between the external agent and the hor-
izon. A numerical calculation of the dynamical relaxation of a magnetic field threading a
Schwarzschild black hole is also presented, illustrating the “cleaning” of a complicated field struc-
ture by a black-hole horizon, and elucidating the constraints on the location of the stretched hor-
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izon.

I. INTRODUCTION

During the 1970’s theoretical studies of the physics of
black holes showed that black-hole horizons behave as
though they were endowed with various physical proper-
ties, including entropy and temperature,' > surface pres-
sure and viscosity,>’ and electric conductivity, charge,
and current.2—!1° Motivated by these studies, in 1978
Damcyur10 reformulated the standard theory of black-hole
horizons in terms of precise boundary conditions which
involve these horizon properties and others:. (See also the
independent, partial reformulation by Znajek.®)

Damour’s formalism is a powerful foundation on which
to build a physically intuitive picture of black-hole phys-
ics. But it is only a partial foundation. An intuitive pic-
ture of black holes needs, in addition, an intuitively fami-
liar formulation of the laws of physics for the surround-
ing spacetime, which may contain accretion disks, elec-
tromagnetic fields, orbiting stars, etc. The standard gen-
erally covariant laws of general relativity do not do the
job; but if one performs on them a “3 + 1 split” (a split of
spacetime into space plus time), they acquire an adequate-
ly intuitive form.

These considerations have led the authors and their
Caltech colleagues to combine Damour’s horizon formal-
ism with a 3 + 1 split of the spacetime around a black
hole, thereby obtaining a reformulation of the laws of
physics which has intuitive appeal and power. Because
this reformulation regards the horizon as a two-
dimensional, membrane-like surface residing in a three-
dimensional space (and evolving as time passes), we call it
the “membrane formalism” for black holes.

Our membrane formalism is completely equivalent,
mathematically, to the standard general relativistic black-
hole formalism [see, for example, Chaps. 33 and 34 of
Misner, Thorne, and Wheeler (MTW) (Ref. 11) and the
theoretical sections of DeWitt and DeWitt!?], but the
mental and verbal pictures associated with the two for-
malisms are rather different. Our membrane studies
(mostly not yet published) suggest that the standard for-
malism and pictures are the more powerful for studying
highly dynamical black holes, but that the membrane for-
malism and pictures will be more powerful for studying
complicated physics around slowly evolving holes. Thus,
we regard the membrane formalism as a potentially
powerful tool for theoretical astrophysics.

This is the third paper in our research group’s series on
the membrane formalism. Paper I, by Thorne and Mac-
donald,' constructed the 3 + 1 split of electromagnetic
‘theory in an arbitrary curved spacetime; then it special-
ized the 3 + 1 electromagnetism to the spacetime outside
a rotating black hole and there married it to Damour’s
horizon equations to give the electromagnetic portion of
our membrane formalism. Paper II, by Macdonald and
Thorne,' used this membrane formalism to analyze the
structure of stationary, axisymmetric black-hole magneto-
spheres and to study the Blandford-Znajek'’ process, by
which such magnetospheres may power quasars and ac-
tive galactic nuclei.

In this third paper we turn from stationary electromag-
netic fields outside black holes to dynamical electromag-
netic fields. Our objective is to build up physical intuition
by studying a number of idealized thought experiments in
which dynamical fields interact with the horizon of a sta-
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tionary black hole.

In future papers in this series, we and other members of
our Caltech group will develop the membrane formulation
of gravitational perturbations of a stationary black hole,'®
we will study idealized thought experiments which give
physical insight into gravitational perturbations and their
effects on the evolution of the hole,!” and we will present
a pedagogical review of the formalism and its insights.'®

For the sake of brevity, we assume in this paper that
the reader is fully familiar with general relativity theory,
at least at the level of track 1 of MTW. However, our fu-
ture review paper'® will be written in a form understand-
able to people who have had only vague contacts with re-
lativity theory.

The structure of this paper is as follows:

In Sec. II, we review the electromagnetic features of the
membrane viewpoint and introduce the concept of the
stretched horizon, which is fundamental to both the elec-
tromagnetic and the gravitational aspects of the mem-
brane viewpoint. :

In Sec. III, we study electromagnetic fields very near
the horizon of a Schwarzschild black hole. We focus at-
tention on a region close enough to the horizon that the
curvature of space can be ignored. In this region, the
Schwarzschild geometry may be approximated by the
algebraically simpler Rindler!® geometry. We derive the
general solution of the electromagnetic field equations in
Rindler spacetime and apply it to obtain the fields of
charges in various states of motion near the hole’s
stretched horizon. Those fields (Figs. 3—9) give insight
into the electromagnetic properties of the stretched hor-
izon.

Section IV presents a numerical calculation modeling
the fully dynamical evolution of a magnetic field in a
Schwarzschild background (Figs. 10—12). This example
illustrates the “cleaning” of a complicated electromagnet-
ic field by a hole’s stretched horizon and also elucidates
the constraints on the amount of stretching one should do
when passing from the true horizon to the stretched hor-
izon.

Section V describes how the intuition gained from the
model problems of Secs. III and IV can be used to under-
stand heuristically other interactions of black holes with
electromagnetic fields.

II. THE 3 + 1 FORMALISM
AND THE STRETCHED HORIZON

In this section, we will briefly review the electromagnet-
ic aspects of the membrane viewpoint, mainly in order to
define terms and notation for later use. For further de-
tails and derivations, see Thorne and Macdonald!® (hence-
forth denoted TM) and Macdonald and Thorne'* (hence-
forth denoted MT).

In the 3+ 1 formalism, we choose a space-filling,
rotation-free family of timelike fiducial observers
(FIDO’s), whose world lines cover the entire spacetime
outside the black hole, and we regard the hypersurfaces
orthogonal to their world lines as a curved, ‘“‘absolute”
three-dimensional space viewed at different moments of
time. (The fact that the congruence is rotation-free
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guarantees the existence of these hypersurfaces.) We label
the hypersurfaces with a parameter ¢, which we call
“universal time.” The relation between the proper time 7
of the FIDO’s and the universal time ¢ is given by the
lapse function

a= — . 2.1
along FIDO world line

The negative four-acceleration of a FIDO g= —V Ina lies
in the absolute space and plays the role of the “gravita-
tional acceleration measured by the FIDO.” (Here and
throughout, all vectors and vector operators, e.g., g and
V, are three-dimensional and live in the absolute space.)
The magnitude of g diverges at the horizon, but the “re-
normalized” quantity « |g| has a finite limit at the hor-
izon; this limit is the “surface gravity” gy of the hole.

The electric and magnetic fields and the charge and
current densities are defined physically by measurements
made by the FIDO’s. Mathematically this corresponds to
the definition

E®=F°Fy,, B®=_ ¢ePrd

uBF,,s ,
(2.2)
pe:—‘]aua ’ ja=(gaﬁ+uauﬂ)‘[ﬁ »

where u® is the FIDO four-velocity, F' a8 is the Maxwell
field tensor, and J¢ is the four-current density. These E%,
B% p,, and j® are tangent to the hypersurfaces
t =constant and thus live as three-vectors and scalars in
absolute space. Using these electric and magnetic fields,
the curved-space Maxwell equations take a form very
similar to their flat-space analogs [see TM Eq. (3.4)].

The 3 + 1 formalism developed here will be most useful
when a particular choice of fiducial observers is singled
out by the geometry. For the problems we will study in
this paper, namely, Schwarzschild black holes with
dynamical electromagnetic “test” fields whose gravita-
tional effects are ignored, such a preferred set of FIDO’s
is the set of “zero-angular-momentum observers,” or
ZAMO’s.2® With this choice, the global time parameter ¢
is equal to the standard Schwarzschild time coordinate;
the lapse function and the three-metric of absolute space
have the form

a=(1—-2M/N'"?, v (2.3a)

ds’=(1—2M /r)~'dr’ 4+ rX(d6*+sin’6d¢?) ;  (2.3b)
the horizon’s surface gravity is

gu=|aVina | _o=1/4M ; 2.3c)
and Maxwell’s equations read

V-E=4mp, ,

V-B=0,

(2.3d)

0E/dt=V X (aB)—4maj ,
0B/dt=—VX(aE),

where M is the mass of the black hole.
Since our absolute three-dimensional space covers only
the exterior of the black hole, Maxwell’s equations have to



850 DOUGLAS A. MACDONALD AND WAI-MO SUEN 32

be supplemented by a set of boundary conditions on the
horizon, =0, namely the Znajek®-Damour!® horizon
equations (TM Sec. 5.4). In attempting to apply these
boundary conditions, however, we come up against a
pathology of the family of spacetime hypersurfaces
t =constant in terms of which the 3 + 1 split is made.
Because the ZAMO world lines become null at the hor-
izon, their orthogonal hypersurfaces also become null
there; i.e., they coincide with the horizon as a—0. They
achieve this by extending deep into the past as they ap-
proach the horizon. This may be seen from Fig. 1, which
shows the #=constant hypersurfaces plotted in spacetime
as functions of the Eddington-Finkelstein time coordinate

f=t+2MIn(r /2M —1) , (2.4)

which is well-behaved at the horizon (cf. Box 31.2 of
MTW). This ill behavior of the spatial hypersurfaces
means that the ZAMO’s will never see any infalling parti-
cle or any part of the electromagnetic field actually cross
the horizon, but rather the ZAMO’s will observe them
asymptotically approach and hover just above the horizon.
If the electromagnetic field is dynamical, the near-horizon
fields will form a layered structure reflecting their entire
past evolutionary history.

If one (mathematically) approaches the horizon along a
particular ¢=constant hypersurface in order to try to de-
fine a horizon boundary condition at that moment of
universal time ¢, one will not see the field settle down to a
well-defined value which may be used as a boundary
value. Rather, the field will point first one way, and then
another, as one examines the relic fields reflecting more
and more ancient eras of the near-horizon region.

1 4

2M

FIG. 1. The surfaces of constant universal time ¢ around a
Schwarzschild black hole, as viewed in Eddington-Finkelstein
coordinates. The Eddington-Finkelstein time coordinate 7 is re-
lated to universal time by 7=¢+2M In(r/2M —1), and the
Eddington-Finkelstein coordinate r is identical to the
Schwarzschild ». The cones are the radial light cones as given
by the metric in Eddington-Finkelstein coordinates:

ds = —di’ +dr?+(2M /r)(df +dr?+rXd6*+sin®6d ¢$?) .

A way of avoiding this difficulty in defining boundary
conditions at the horizon was suggested briefly in TM,
Sec. 5.3, but was not developed there. This method con-
sists of choosing a closed two-dimensional surface just
outside the horizon, and applying boundary conditions on
this surface rather than on the true horizon. We will call
this surface the stretched horizon, and for mathematical
convenience'® we will take it to have a fixed (time-
independent and angle-independent) location a=ay << 1.
~ By defining boundary conditions on the stretched hor-
izon, we ignore the layered fossil field structure between
the stretched horizon and the true horizon. Field boun-
dary values defined at the stretched horizon differ from
the values on the true horizon at the same moment of 7
time by terms of order aj, so boundary conditions posed
on the stretched horizon become increasingly accurate as
the stretched horizon is moved closer to the true horizon.
In solving a particular problem, the stretched horizon
must be chosen so that fractional errors of order ay are
small enough to be tolerated. It also of course must be
chosen so that no interesting physics takes place between
the stretched horizon and the true horizon.

One purpose of the model problems in this paper is to
demonstrate the efficacy of the procedure of stretching
the horizon and to determine what constraints exist on the
choice of its position.

The ‘“membrane” version of the true horizon’s elec-
tromagnetic boundary conditions, without an external
3 + 1 split, has been derived in elegant form by Znajek®
and Damour.”'° Carter?! reviews that formalism, and TM
have translated it into 3 + 1 language. Although the TM
version is not expressed specifically in terms of a stretched
horizon, it is trivial to show that when so expressed it
takes the form described below.

The ZAMO-measured field components E; and B,
parallel to the horizon diverge as a~! when a << 1. This
is due to the fact that the ZAMO’s are accelerating out-
ward to keep from falling into the horizon; they are boost-
ed to almost the speed of light v~1 relative to physically
reasonable infalling observers, who see finite fields at the
horizon. The horizon-parallel field seen by the ZAMO’s
thus diverges proportionally to the “gamma factor”
y=(1—0v2)""2xa~! of this boost, while the horizon-
normal fields E, =(E-'n)sy and B, =(B-n)sy remain fin-
ite. (Here n is the unit outward normal vector at the
stretched horizon and the subscript SH denotes evaluation
at the stretched horizon.) It is therefore convenient to de-
fine “renormalized” parallel fields on the stretched hor-
izon

Ey E(aE||)SH s
(2.5)
By =(aB)sy -

These renormalized fields have the advantage that they
are nearly independent of the location chosen for the
stretched horizon. They are equal, to within fractional er-
rors of order ay, to the true-horizon fields defined by
Znajek, Damour, Carter, and MT. Since we will often
have need of this concept, we will define. the notation
“=" to mean ‘“equal, to within fractional terms of order
aH.”
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In terms of the horizon fields, one may define (imagi-
nary) surface charge and current densities on the stretched
horizon:

oH= (2.6a)

1

L= 477_n><BH . (2.6b)
These definitions link the horizon charges and currents to
the external fields in the way which would be expected
from Gauss’s and Ampere’s laws. An observer falling
through -the horizon would not see a charge layer or
current sheet on the horizon, of course, but the fields seen
by observers who remain outside the hole (e.g., ZAMO’s)
are accounted for by imagining that the surface charge
and current exist on the stretched horizon and ignoring all
charge and current, as well as the normal electric field E,
and tangential magnetic field By}, inside the stretched hor-
izon. For example, the stretched horizon of a Reissner-
Nordstrom black hole with charge Q will have a uniform
surface charge density Q /(surface area of stretched hor-
izon) in the absence of external sources.

Znajek, Damour, Carter, and MT show that one of the

standard  black-hole-horizon  boundary  conditions
translates into an Ohm’s law:
Ey
=T, 2.
FH Ry 2.7

where Ry =4m~377 Q is the surface resistivity of the
stretched horizon. Moreover, another of the standard
boundary conditions translates into the statement that the
horizon charge and current densities “close the circuit” of
external currents entering the stretched horizon:

(cj, )SHE—%;H———(Z)V'/H . ©28)
This equation says, more precisely, that whenever electric
charge falls into the stretched horizon, it can be regarded
as stopping its fall and thereafter moving around on the
stretched: horizon in a conserved manner, until such a
time as it reemerges into the external universe (in the form
of opposite charges moving inward, of course). The fac-
tor of a in Eq. (2.8) serves to renormalize j, the current
density measured by ZAMO’s, from a “per-unit-ZAMO-
proper-time 7 basis to a “per-unit-global-time ¢ basis—
the same kind of time as is used in doy /3¢t and in £ 4.

Equations (2.6b) and (2.7) imply that

Ey=nXBy , (2.9

i.e., the fields at the stretched horizon have the form of
ingoing plane waves. This might have been expected from
the fact that the horizon’s surface resistivity Ry =4 is
just the impedance of free space at the end of an open
waveguide.

The horizon surface charges and currents enter into -

dynamical equations in the same way as do ordinary
charges and currents. The rate of change of the horizon’s
momentum density (momentum per unit area) II; with
respect to global time ¢, produced by an electromagnetic
field, is given by the expected Lorentz-force law:!% 16

iHHEUHEH+/HXBnn. (2.10)

dt
[If the hole begins precisely nonrotating at =0, then
II;=0 at t=0 and a subsequent growth of Iy corre-
sponds to a gradual spin-up of the hole. For very slow ro-
tation about the polar (6=0) axis, the total angular
momentum is'®?! J= o (M '0/0¢)dA =IyQy, where
In=4M3is a Schwarzscgild hole’s moment of inertia??
and Qy <<1/M is the angular velocity.] The fields also
increase the black hole’s entropy (area) in accord with the
Joule-heating relation®°

dSy

e
where Ty is the black hole’s temperature and Sy is its en-
tropy, and they increase its mass in accord with the first
law of black-hole thermodynamics®® dM =TgdSy
+QydJ (=~TyxdSy for very slow rotation).

The use of “renormalized quantities” on the stretched
horizon may generate some initial uneasiness. We have
defined all physical quantities living in the absolute space
in terms of ZAMO measurements, and we could equally
well have used these ZAMO-defined fields (E, B, o, and
j) in defining the boundary conditions on the stretched
horizon, without the renormalization factor ay. The ad-
vantage of such an approach would be the simplicity of
using a single set of fields in our absolute space and on the
stretched horizon; the disadvantage would be that the un-
renormalized stretched-horizon fields would depend very
sensitively on ay, i.e., on the location chosen for the
stretched horizon, and in general they would diverge as
the stretched horizon approached the true horizon. Clear-
ly, since ay is chosen to be a constant throughout this
work, all equations we write describing the physical prop-
erties of the stretched horizon and the relations between
its various fields would be valid regardless of which con-
vention was adopted. However, we will choose to present
the horizon boundary conditions in terms of the renormal-
ized field quantities in order to maintain notational con-
sistency with papers I and II and also to enable the for-
malism to be generalized in our future papers to gravita-
tional interactions with horizons.

The model problems in the following sections will illus-
trate the utility of the concept of the stretched horizon
and will elucidate the constraints which exist on where it
may be chosen (i.e., on the value of ay), and will help the
reader develop an intuitive feeling for the membrane view
of black holes.

= [ FuEydd, (2.11)

III. ELECTROMAGNETIC FIELDS
OF POINT CHARGES NEAR A
SCHWARZSCHILD BLACK HOLE

A. The Rindler approximation

In this section we focus our attention on the interaction
of a black-hole horizon with the electromagnetic fields of
point charges. In order to get maximum insight from a
minimum of computational labor, we shall restrict atten-
tion to charges that are very close to the horizon and to
the near-horizon fields that they produce. This permits us
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to approximate the Schwarzschild spatial geometry and
lapse function by those of Rindler, which cover only the
near-horizon region r —2M <<2M and ignore the spatial
curvature there.

In the region near the horizon, the Schwarzschild spa-
tial metric (2.3b) may be written in the form [cf. TM, Eq.
(5.29)]

ds’=da*/gh +(2M)X(d 6% +sin0d $?) ,

where a is the lapse function and gy is the surface gravity
of the hole. If one restricts attention to a region of
dimensions <<M centered on the location (6y,¢y) on
the horizon, and then defines the variables
x =2M sinfy(¢p —g), y=2M(0—86,), and z=0a /gy, the
lapse function and the metric take the Rindler'® form

a=gyz , ds*=dx*+dy*+dz?. (3.1)

The coordinates (t,x,y,z) will be called Rindler coordi-
nates; in these coordinates the horizon is at a=z=0.
Therefore, the Rindler geometry can be considered as an
approximation to the metric of a spherically symmetric
black hole in the limit as one approaches the horizon. In
the Rindler approximation, z is the proper distance from
the horizon, and it is related to the usual Schwarzschild
radial coordinate » by

r_._ar 172 _ _
sz m—z4M(l—2M/r) =a/gy=z .

(3.2)

Of course, in approximating Schwarzschild space by
Rindler space, a certain amount of information is lost.
The Rindler approximation neglects the spatial curvature
near the horizon; it approximates the lapse function a as
linear in the distance z from the horizon; and consequent-
ly it characterizes the black hole’s gravitational field en-
tirely by the gravitational acceleration g= —VIna
=—(gy/a)e, felt by the ZAMO’s. As a result, the
Rindler approximation loses sight of the physics associat-
ed with spacetime curvature, such as the reflection of elec-
tromagnetic waves by the gravitational field, the “tails” of
electromagnetic waves,?* and the Smith-Will electrostatic
self-force® on a charge in a curved background. Also, as
we restrict ourselves to a region of space of dimensions
much less than M, the global structure of the external
electromagnetic field is lost.

But the Rindler approximation is nonetheless a valuable
tool in studying electromagnetic fields near a black-hole
horizon, since the gravitational acceleration g is the major
influence on the near-horizon field structure of a
Schwarzschild black hole. The Rindler approximation
combines the kinematic properties of horizons predicted
by the membrane formalism (such as electrical conductivi-
ty) with an algebraic simplicity lacking in full
Schwarzschild. This simplicity permits us to obtain the
general analytic solution of the electromagnetic field
equations, and thus allows us to develop a detailed under-
standing of the physics associated with the presence of the
~ horizon. In fact, this consideration is not restricted to
electromagnetism; in a future paper, Suen, Price, and Red-
mount!” will also use the Rindler approximation to study

the gravitational aspects of the membrane viewpoint. It is
also well known that Hawking radiation near a black-hole
horizon may be understood in terms of the Rindler
approximation’s acceleration radiation.?

B. Solution of field equations
in the Rindler approximation

In order to solve the curved-space Maxwell equations
(2.3d) in the Rindler approximation, we note that, since
Rindler spacetime is flat, it may be transformed to
Minkowski-type coordinates ( T, X,Y,Z):

T =zsinhgyt, Z=zcoshgyt ,
(3.3)

X=x, Y=yp.

These coordinates are associated with a family of ob-
servers who are falling freely in the z direction, and who
ultimately fall into the horizon. In terms of Minkowski
coordinates, the four-metric associated with Eq. (3.1) is

(4)ds2:

=—dT?*+dX*>+dY*+dZ?.

—a?dt* +dx?+dy?+dz?

To solve for the general electromagnetic field, we will
transform the Minkowski-spacetime Liénard-Wiechert po-
tential?’ into Rindler coordinates.

We consider a charge Q moving with four-velocity
#®(x) which is a function of spacetime position x. (Here
primed letters will be taken to denote four-vector indices
in Minkowski coordinates, while unprimed ones will
denote four-indices in Rindler coordinates.) The elec-
tromagnetic four-potential A% (x) at a particular space-
time observation point x will be generated entirely by a
single point of the charge’s trajectory: the retarded point
xg which lies at the intersection of the particle’s trajecto-
ry with the past null cone of the observation point. The
Liénard-Wiechert potential is

Quf

A%(x)=————— ,
uRE(xg—xﬂ)

(3.4)

where
|xf —xP | =[(xF —x)xf —xPgp]'?=0

and where 7,g=diag[—1,1,1,1] are the Minkowski
metric coefficients.

Transforming this expression to Rindler coordinates
yields

QLS Lguf
uRYLKE(xg—xﬂ)

A% x)=L& A% = , (3.5)

where L%,=03x%/0x% and LBBEaxB'/axﬁ are the
transformation matrices between Rindler and Minkowski
coordinates, the subscripts O and R denote evaluation at
the observation point and retarded point, respectively, and
xP(xP) is given by Eq. (3.3). The factors of Ly appear in
Eq. (3.5) because ug is a vector at the retarded point xg,
not at the observation point.

In the numerator of Eq. (3.5), Lﬁ’};u}? gives the Min-
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kowski components u & of the retarded four-velocity. We
parallel-transport it to the observation point by fixing its
Minkowski components and then transform to Rindler
coordinates using L§,. The factor L3,Lgg is the bivec-
tor of geodetic parallel displacement defined by Dewitt

853

and Brehme?* The potential (3.5) agrees with the

Liénard-Wiechert potential given by Dewitt and Brehme
as specialized to Rindler space.

Writing out Eq. (3.5) explicitly in terms of Rindler
coordinates yields

1
[ z
ik (t—tz) 0 0 —Lsinhgy(t—tg)| [, ¢
" . coshgy R Znz gl —Ig uk
4%l 9 0 10 0 uR
M 0 0 1 0 ub | (3.6a)
A? —guzgsinhgy(t —tg) 0 O  -coshggy(t —tg) uk
where ,
N =gyzzgsinhgy(t —tg)uh —(zcoshgy (t —tg)—zg uf —(x —xg)uf —(y —yglug . (3.6b)

The coordinates tg,xg,Vr,zr of the retarded point are glven in terms of those #,x,y,z of the field point by the intersec-

tion of the field point’s past null cone
(x —xg )+

with the world line of the charge. Together, Egs. (3.6),
(3.7), and the particle’s world line give the complete solu-
tion for the field of an arbitrarily moving charge in
Rindler space. By linear superposition, we thereby know
the general vector potential for an arbitrary distribution of
charge and current.

In terms of the four-vector potential, the ZAMO-
measured electric and magnetic fields (2.2) are [cf. MT
Eq. (2.24)]

Eim L[4l (ghz24",],
8HZ
(3.8)
Bi=6ijkAk'j N

where i,j,k run over x,y,z and €’ is the three-
dimensional alternating tensor.

In the following subsections, we will discuss the elec-
tromagnetic field structure generated by various source
motions.

C. ‘“‘Static” charge in Rindler space

For arbitrary motion of the source particle, it is gen-
erally not possible to solve Eq. (3.7) explicitly for the re-
tarded coordinates as a function of the coordinates of the
observation point. However, when the charged source
particle is static in Rindler space, i.e., fixed at a position
(x,y,2)=(0,0,z¢), analytic expressions for the retarded
coordinates may be derived and Eq. (3.6) may be used to
write 4% solely in terms of the observer-point coordinates.
In Fig. 2, the trajectory of the accelerated particle is plot-
ted as a dashed line in both the Minkowski and Rindler
spacetime coordinate systems.

Substituting xz =0, yg =0, and zx =z, in Eq. (3.7) and
adopting the cylindrical coordinates p=(x2+y?)!/? and
. ¢:_——tan_'(y/x), we find

(y —yr P +2z2+2z3 —2zzgcoshgy (t —tg ) =0

(tR <t) > (3.7)

z (a)

(b)

SO AN
N

FIG. 2. The world lines of the Minkowski-stationary (dotted
line) and Rindler-stationary (dashed line) charges, as seen in
Minkowski (a) and Rindler (b) coordinates. The Minkowski-
stationary charge is fixed at Z =z,, while the Rindler-stationary
charge is fixed at z=2z,. In diagram (a), the lower and upper 45°
lines represent the past and future event horizons, respectively.
In diagram (b), the intersection of the horizons is represented by
the solid vertical line z=0, to which the dotted line asymptotes.
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tp =t LCOSh_l _Z_Z_M
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8H

Equation (3.6) then yields?®
0 224 p* 422

A=
gH22 3

’

ra—
’ z

é—E[(ZZ+p2_z(2))2+4p22(2)]1/2 .

9ut

From Eq. (3.8), the only nonvanishing physical com-
(3.9 ponents of the electromagnetic field are

80220z
Epz% ,
, (3.11)
4
E,— Qf"(zz_pz_z%).
(3.10) 13

As might be expected, this field is stationary in the sense

gut

FIG. 3. Electric field lines for two opposite charges which split at =0, z=z,: one remaining stationary in Rindler coordinates,
and the other stationary in Minkowski coordinates and thus falling into the horizon. The field-line diagrams are shown at different
values of Rindler time ¢t. By ¢t =6/gy, the field geometry has become almost indistinguishable from the field of the stationary charge

alone, which is shown in the lower right-hand diagram.
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that it does not depend on the Rindler time ¢ and it is
purely electric. It should also be noted that it is normal to
the horizon at z=0. The electric field lines are plotted in
the lower right corner of Fig. 3. It is a major advantage
of the 3 + 1 viewpoint that field lines may be used to
describe the field. The Gaussian Maxwell equations
V:B=0 and V-E=4mp, say, just as they do in flat-space
electrodynamics, that magnetic field lines never end and
that electric field lines end only on electric charge.

The horizon charge density Eq. (2.6a), which terminates
the normal electric field of Eq. (3.11) at the horizon, is

E, 22
on= =— —% ; (3.12)
T P m(p*+2z¢5)

and by integrating oy over the horizon, one can verify
that the total charge induced on the horizon is equal to
— Q. The horizon surface current density defined in Eq.
(2.6b) vanishes, so there is no dissipation of energy in the
horizon. The stretching of the horizon described in Sec.
II is not necessary in this example since the field is sta-
tionary and therefore has none of the layered horizon-field
structure described there.

It is important to note that, although the horizon sur-
face charge density (3.12) was not explicitly included as a
source in deriving the electric field (3.11) from Egs. (3.6)
and (3.8), its inclusion would not change the exterior field
in any way. The reason for this is the defined role of the
horizon surface charge: it terminates the normal electric
field in the region exterior to the horizon, and annuls it in
the interior region. Indeed, by substituting zero for z, in
Egs. (3.11), it may be seen that a hypothetical charge on
the horizon z=0 produces no field in the exterior region.
For the more general case (considered in the following

sections) where the horizon must be stretched, the exterior

fields produced by the induced charge and current densi-
ties on the stretched horizon may be shown to be of order
ay, the lapse-function value at the stretched horizon, and
thus will vanish in the limit as the stretched horizon ap-
proaches the true horizon.

The same conclusion holds for a Schwarzschild black
hole, which has zero net charge. As shown by Hanni and
Ruffini,?° a hypothetical charge on the horizon produces a

radial electric field centered on the center of the hole. If-

the total charge on the horizon is zero, then no matter
what its distribution, it will produce no external electric
field. For a Reissner-Nordstrom black hole with total
charge Q, the surface charge density oy consists of a total
charge Q distributed over the horizon. Although this
charge distribution may be distorted away from uniformi-
ty by the fields of external sources, the field generated by
the horizon charge will remain the same as that of the
Reissner-Nordstrom hole, i.e., E=Q /r?, B=0.

The solution (3.11) might alternatively have been de-
rived from the Copson-Linet*® solution for a point charge
at rest outside a Schwarzschild black hole by applying the
change of variables and the limiting process (Rindler ap-
proximation) described in Eq. (3.2) and the preceding
paragraph. The Copson-Linet solution is summarized in
3 + 1 form in TM, Sec. 6.1; the field lines were first plot-
ted by Hanni and Ruffini.?> For a point charge Q at rest

above the north pole of the hole at r=b, 6=0, the hor-
izon surface charge density for the Copson-Linet solution
is [cf. TM Eq. (6.4)]

_9 [M (1+4cos*0)—2(b —M)cos6]
8mb[b —M (1+cos))?

This charge density yields a total induced surface charge
of zero. As shown in Fig. 6 of Ref. 29, the horizon is
polarized, with a total charge —2Q[b—-M
—V'b(b —2M)]/b north of the critical colatitude

0=0.=cos~'([b —M —Vb (b —2M)]/M]} ,

ohy (3.13)

and a like charge of the opposite sign distributed south of
this latitude. When one applies the Rindler approxima-
tion to Eq. (3.13), the critical radius where the sign of the
polarization charge changes is moved out to p= 0, so the
charge density (3.12) is of the opposite sign to Q over the
entire Rindler horizon.

Thus, we have verified that Eq. (3.6) gives the
previously-known field of a Rindler-static charge; and we
have shown explicitly that this field is a valid approxima-
tion to the field of a charge static outside Schwarzschild
in the near-horizon limit. We now turn to the study of
the fields of charges in motion above the Rindler horizon.

D. Infalling charge

Another simple source configuration which yields an
explicit analytic solution for the fields is that of a charge
— Q stationary in Minkowski coordinates at position
Z =Z,, so that its trajectory in Rindler coordinates is

Zo

Z=—"". (3.14)
coshggt

As seen in Rindler coordinates, this particle emerges from
the past horizon at = — w0, reaches a maximum distance
Z, from it, and then falls into the future horizon at
t=+ «. In Fig. 2, the trajectory of this charge is shown
as a dotted line in the two different coordinate systems.
The physical components of the particle’s field as seen by
Minkowski observers (who are falling into the hole with
the particle) are

Q(Z—-2Zy)

»3

Ey=—22  E,—_

. £ , (3.15)
,

where r=[p?+(Z —Z,)*]'/% In Rindler coordinates the
nonvanishing physical components are

__ 9
E,=— 3 coshgyt ,

Ezz—-Q-(zcostht——ZO) , (3.16)

r=[p?+(zcoshgyt —Z,)*]'"?

in terms of Rindler coordinates. These are the fields seen
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by static observers (ZAMO?’s) outside the horizon, i.e., the
fields which are used in our membrane viewpoint of black
holes.

The definition of the horizon charge and current densi-
ties in this case is trickier than in the case of the Rindler-
stationary charge. In attempting to calculate them, one
evaluates E, and E; at the horizon (z=0, = ), which
leads to indeterminate results. The reason for this is the

red-shift at the horizon. As

J

infinite gravitational

described in Sec. II, the field structure associated with the
infalling charge only asymptotically approaches the hor-
izon, and the tangential field strength at z=0 diverges ex-
ponentially with universal time ¢. To get meaningful re-
sults, it is necessary to define the charge and current den-
sities on a stretched horizon as discussed in Sec. II. We
choose it at the location a=ay << 1, or z=zy =ay /gy,
where 0 <z <<Z,. The charge and current densities on
the stretched horizon produced by the infalling charge are

(3.17)

E, —Q(zycoshgyt—2Z,)
Oyg= —— = ’
H™ ag z=z; 4m[p’+(zycoshgyt —Zy)*1?"?
: a —Qgypzysinhgyt
Fu= |, e XB =2 2
41 z=zy 47T[p +(ZHCOStht‘~ZO)

respectively, where B|| is the component of B parallel to
the horizon. - As the particle descends toward the
stretched horizon, the charge density becomes more and
more sharply peaked at the position p=0 directly under
the particle; the integral of oy, over the stretched horizon,
however, remains constant at.the value Q/2 during the
descent. In the limit as the particle approaches the
stretched horizon, the charge density approaches the func-
tional form

Q3(p)

dmp
The surface current density feeds the growing concentra-
tion of charge at p=0.

As in the case of the Rindler-stationary charge treated
in Sec. III C, the present problem is the near-horizon limit
of a Schwarzschild problem: that of a charge which
emerges from the horizon and falls back into it. As be-
fore, the charge simply polarizes the surface of the
Schwarzschild hole, leaving it with zero net charge; but
the Rindler approximation moves the neutral point where
the polarization charge changes sign out to p= o0, so that
the charge density on the entire stretched Rindler horizon
has the opposite sign to Q.

O—> (3.18)

According to Eq. (2.11), the rate that energy is dissipat-

ed in a unit area of the stretched horizon is just # 4 Ey,
and the rate of increase of the hole’s mass energy may be
obtained by integrating this quantity over the stretched
horizon:
dM dSy
LTy — = ‘BydA
dt — " ar Jou# nEn

_ Q%X z%sinhgytcoshgyt
B 8(zycoshgyt —Z,)?

The integral of this function over time, which should give
the total mass energy absorbed by the horizon, diverges
due to an infinite contribution at the point at which the
particle crosses the stretched horizon. This is not unex-
pected, however, since the particle is assumed to be point-
like and thus has an infinite amount of energy in its near
field.

(3.19)

2 € >

In contrast to the case of the Rindler-stationary charge,
only half of the field lines of the infalling charge intersect
the stretched horizon; the rest extend to spatial infinity.
It may be seen by comparing Egs. (3.14) and (3.16) that
the electric field lines in Rindler coordinates emanate ra-
dially from the charge, just as they do in Minkowski coor-
dinates. But unlike in Minkowski space, the field lines in
Rindler space do not emerge from the charge isotropical-
ly. As the particle falls in, its field lines (even the ones
that eventually extend to spatial infinity), are flattened
down near the horizon within an ever-widening circle of
radius Ap~zycoshgyt on the stretched horizon. If its
electric field lines were plotted, the entire field out to any
chosen radius p would ultimately seem to disappear
beneath the stretched horizon. Therefore, in plotting the
field, it is convenient to add an oppositely charged parti-
cle, stationary outside the horizon, with field given by Eq.
(3.11), to “hold the field lines up” and to illustrate the ap-
proach of the field toward stationarity.

Since we are considering Rindler space as an approxi-
mation to Schwarzschild, it is not physically realistic to
consider the full trajectory of the Minkowski-stationary
particle. Although the full analytic continuation of the
Schwarzschild geometry has-a past horizon, an astrophys-
ical black hole does not. Therefore, we choose to consider
the example of a neutral particle which splits into two
parts at t=0, z=2z,: a charge + Q which continues along
the uniformly accelerated trajectory z=z;, and a charge
— @ which falls freely into the hole along the trajectory
Z =z,. Thus, we set Z;,=z;, in Eqgs. (3.16) and then su-
perpose the fields (3.11) and (3.16). The electromagnetic
field will be given by this superposition inside the future
light cone of the spacetime point (t,x,y,z)=(0,0,0,z,),
and will vanish outside it. Likewise, the surface currents
and charges (3.12) and (3.17) are valid at points on the
stretched horizon within the future light cone of the split-
ting point, and vanish outside it. That is, currents flow
only within the ever-widening circle

p=(2zgyzocoshgyt —zf —z3)'/?

on the stretched horizon. If the charge densities corre-
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sponding to the static and infalling particles are summed
and integrated over this circle on the stretched horizon, it
may be verified explicitly that the resulting total charge
has the expected behavior: it vanishes for time
t <gi 'cosh™!(zy/zg) when the infalling charge is still
above the stretched horizon, and is equal to — Q after the
charge falls through the stretched horizon.

Figure 3 shows the electric field lines resulting from
this superposition at several representative times. It may
be seen that the effects of the field of the infalling particle
rapidly vanish, and that by about t=6/gy, the field has
very nearly settled down to the stationary form which
would be produced by the static charge alone. - All of the
effects of the infalling particle’s field become flattened
into a thin layer just above the true horizon, the thickness
of which decreases at a rate proportional to
1/coshgyt ~e %H'; thus all effects of the infalling charge
dlsappear beneath the stretched horizon in a time of order

gi In(zy/zg).

E. Charge in uniform motion
parallel to the horizon

In this stlibsection, we shall study the case of a charge
sliding at constant height and with constant velocity
above the Rindler horizon. We will analyze in detail the
electric and magnetic fields, the work done on the charge,
and the horizon heating.

We consider a charge Q which is located at
(x,,2)=(0,0,z9) at t=0 and which moves in the +x
direction with constant velocity dx/dr=v=_e,, as seen
by the ZAMO?’s, for all time — o0 <% < . Thus, its velo-
city with respect to universal time ¢ is dx/dt=av
=gnzoPe,. If we set ay=gyz, and

xl%:(tR’ aoﬁtR) O; ZO) >
(3.20)
uﬁ=(1//a0, ?’ﬂ: 0: O) ’

where y =(1—3%)"!/2, then Egs. (3.6) and (3.8) yield
E, = Q; % [D(&@+BSD —BC)+BS(B—aC)] ,

3

Z
Ey,= _Q%/,TP'I’-(&-%ﬁSD ~-BC),

3

Zy
Ez=g]l:7——[~BSD~—(1+B2)aC+ '+,

(3.21)
B, = Q; ° B5(CD—BS)
Q?’ 0 2 P PO S |

B,= BIBSD —CD*—C(@*+p*)+a(C*+ 4],
Bz QY 0B~(~C Bz

where we have used coordinates normalized by zp:
y=y/zy, A=a/ap=z/zy, and a “lagging-comoving” x
coordinate: X =x /zqg—gu Bt —BIn(z /zy). We also define

D=(x—xg)/zg=X+BIn[a(C+S)],

where
C=coshgy(t —tg)=(F*+a&@+1)/2& ,
S=sinhgy (t —tz)=[(C*—1)]'/?,

and p° p =D%4j5? y“. The quantity N of Eq (3.6b) can be ex-
pressed as

N =yzo(a@S —B{x+BIn[al(C+S)]})

Note that p* is defined implicitly in terms of the
observer-point coordinates through C and S; only in the
limit B—0 can it be expressed explicitly as ﬁz=f2+)72 ,
and thus only in this limit can the electric and magnetic
fields be expressed completely explicitly in terms of the
observer-point coordinates.

Figure 4(a) shows the electric field lines in the x —z
plane for a charge moving with B=0.5. Figure 4(b)
shows a similar plot for the case B=0.1. In the region
close to the charge, the electric field lines go out radially
with an excess concentration factor y in directions per-
pendicular to the motion, just as for a uniformly moving
charge in Minkowski space. For $=0.1, the field struc-
ture resembles that of the Rindler-static charge (last dia-
gram of Fig. 3) in a large region around the charge.

In the region close to the horizon, both the 8=0.1 and
B=0.5 cases show a similar tangential structure with

(a)

b)

FIG. 4. Electric field lines in the x-z plane for a charge mov-
ing with uniform velocity Be, in the + x direction in Rindler
space at a distance z, above the horizon. Part (a) shows the
field lines for B=0.5. A possible choice of the stretched hor-
izon is shown as a dotted line. Part (b) shows the field lines for
the case 8=0.1.
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diverging tangential field strength, although the 8=0.1
case shows this structure much closer to the horizon, so
close that it cannot be resolved in the figure. The field in
the tangential structure is complicated, varying rapidly in
strength and direction as a function of a near the horizon.
But any field line followed far enough toward the horizon
will eventually point in the + x direction, essentially be-
cause this part of the field was generated by the charge at
early times when it was far to the left in the figure. Near
the horizon, the tangential field structure is sinking slowly
down toward the horizon at a rate dz /dt =a, i.e., it is ap-
proaching the horizon asymptotically along the trajectory
z=constxXe *#’. (Note that the descent is slow relative
to universal time ¢, but at the speed of light as measured
locally by the ZAMO’s.) The separation between neigh-
boring field lines goes as a and the field-line density as
measured by the ZAMO’s thus diverges as a ™!, indicating
a diverging tangential field strength near the horizon.
However, the details of this near-horizon tangential field
have no effect on the structure of the external field and
thus may be conveniently ignored by stretching the hor-
izon. A possible choice of the stretched horizon is shown
as a dotted line in Fig. 4(a).

It may be seen from Fig. 4 that the largest normal field
at the stretched horizon, and thus the largest concentra-
tion of horizon surface charge (2.6a), occurs at a position
lagging behind the charge. The tangential fields drive ¢
surface current (2.6b), which moves the surface charge
concentration along the stretched horizon at a constant
distance behind the charge. By evaluating E, from (3.21),
taking ay to be small, and using Eq. (2.6a), we find the
induced charge density on the stretched horizon to be

oo B __ Q0 P+1+(@—DF—(F+1BD

B am sy mz} (p*+1—2BD)* ’
(3.22)

where 5 is given implicitly by g =D>4j%,

D=5E+Bln(ﬁ2—|—1). When B=0, this is easily seen to
reduce to the static form Eq. (3.12). The variation of the
charge density (3.22) along the x axis is shown in Fig. §
for two different choices of stretched-horizon location:
a(,})=10‘2a0 and a%)=10_4a0. It may be seen that in
each case the charge is concentrated around X =0, i.e.,

x=x*=aft +(aB/gy)nlay /ay) .
The quantity
aoft —x* =(aoB/gy)In(ay/ay)

is the amount by which the induced charge distribution
lags behind. the source; it is given by the velocity of the
source multiplied by the time required for the field to

_auBy | Qay B(p’+1)[2D>—2BD +28°—

0.1
0.0
-0.1

o -0.2

¥ie

bI
-6.3 (2) (1)
ay ay,
-0. 4
-0.s
-0.6 - Ivd
-8 - Y@ -4 X -2 0 2
x/z,
FIG. 5. The stretched-horizon surface charge density

oy(x,0,0) along the x axis (directly below the track of the parti-
cle), as induced by a charged particle in uniform motion parallel
to the horizon at a height z, above it [same particle as in Fig.
4(a)]. The charge density is plotted in units of Q/z} and is
shown for two different choices of stretched horizon location:
aV'=10"2ay and a?’=10"%x, Both are shown at time =0
for B=0.5. The points marked x* are defined by
x*=(aoB/gy)In(ay /ay). Both plots go slightly positive in the
region to the right of their large negative peaks.

propagate from the position of the charge down to the
stretched horizon. The size of the lag increases as ay is
made smaller, i.e., as the stretched horizon is moved
closer to the true horizon. The qualitative features on the
stretched horizon are independent of the value of ay we
choose (see also Fig. 6). They are just shifted in the x
direction by an amount (8/gy )ln(af;})/a((l?), since the
field at a(,%) is laid down a time (l/g{I )ln(aH)/ag)) earlier
than the corresponding field on ay’. As was stressed in
Sec. II, we look at earlier epochs in the history of the field
evolution as we look closer to the true horizon. We can
understand the lag physically either by saying that there
are strong retardation effects near the stretched horizon,
or by noting that the stretched horizon has a finite resis-
tivity which gives rise to a frictional force on the moving
induced charges. This behavior is qualitatively the same
as for the flat-space case of an external charge moving
past a conducting surface with finite resistivity and drag-
ging its induced charge behind itself.

Substituting the tangential electric field given by Eq.
(3.21) into the definition (2.6b), we obtain the induced sur-
face current density

F+1]

X
41 |su

27z} (3*+1—2BD)>

’

(3.23)
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ayBx | _ Q% By(p’+1)(D—B)

47 |su w2y (P+1—28D)°

/y=

Equations (3.22) and (3.23) can be combined to verify that
do
2)y. 998 _
V- F+ 3 )

which is the charge conservation equation, as there is no
external charge entering the stretched horizon. This
current distribution is shown in Fig. 6 for 5=0.5, t=0,
with afl) =10"2a and a'¥’ =10"*a,,

The distribution of induced charge and current gives us
immediate information on the energy and momentum
transfer between the hole and the charge. The direction of
the momentum transfer is evident from the fact that the
induced charges on the stretched horizon suffer an Ohmic
resistance as they move in the +x direction; thus,
momentum in the 4 x direction will be transferred to the
hole. Also, from Eq. (2.11), Joule heating of the horizon
dissipates the Maxwell field energy at the rate

aM dSy
7=Ty_dt_‘—_— fSH/H.EHdA .

Using the definitions (2.5) and (2.6) along with Ohm’s law
(2.7) and the zero-reflection boundary condition (2.9), this
may be written as

(3.24)

S,
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FIG. 6. The stretched-horizon surface current density in-
duced by the moving charged particle of Figs. 4(a) and 5 for
B=0.5, t =0. Part (a) shows the distribution on a stretched hor-
izon at afy=10"2ao, and part (b) for a?’=10"*a,. Values of
X /zo are indicated by the scale next to each figure, showing that
the lag of the current distribution increases as ay is made small-
er.

ég— =ayFr=ay fSH T%dx dy ,
where Fp is the ZAMO-measured energy flux into the
stretched horizon and where one factor of ay multiplying
it comes from converting d /dt to d /dt on the stretched
horizon, and the other comes from red-shifting the ener-
gy. The Maxwell energy flux density in the z direction
measured by ZAMO’s on the stretched horizon is given by
agT?=ay(E,B, —E,B,)/4w. The heating rate dM /dt
could be found explicitly by substituting the fields from
Eq. (3.21) into Eq. (3.25) and performing the integration.
However, it may be found much more easily by the fol-

(3.25)

lowing consideration.

The field energy dissipated in the horizon must be pro-
vided by the agent which keeps the charge in uniform
motion. By considering the power supplied to the charge
as measured by the local ZAMO at the position of the
charge, the power flowing into the horizon can be easily
evaluated (see the Appendix) to be

aM 2 ., ., B

Next we look at the momentum transfer between the
charge and the horizon. In the membrane language, the
momentum transfer is produced by a frictional force on
the flowing induced charge in the stretched horizon; from
Eq. (2.10) the x component of this force is

dpri
dt
Thus, from Egs. (2.5) and (2.6), the torque on a-

Schwarzschild hole due to a charge moving in the ¢ direc-
tion at polar angle 6 =0y, very close to the horizon, is

= [, (onBu+FuXBm)dA . (3.27)

dpy
dt

daJ . . "
ar =2Msinf, = —2Maysinf, fsn T*dx dy ,

(3.28)

where 2Msin6y is the “lever arm” for converting force to
torque, and where

agT?=—ay(E,E,+B,B,)/4m

is the Maxwell flux density of x momentum in the z
direction, as measured by ZAMO’s on the stretched hor-
izon. The torque dJ/dt can be evaluated either by com-
puting 7% from Egs. (3.21) for E and B and then per-
forming the surface integration (3.28), or by the following
consideration.

The momentum imparted to the horizon must be sup-
plied by the agent which keeps the charge in uniform
motion; in the Appendix, by computing the force on the
charge, we obtain

2,2

dJ . .2Q% B
at ——(2Msmt90)3 o _——(1—[32)2 . (3.29)

Note that since (power supply)=fB(momentum supply), as
measured by the ZAMO’s at the position of the charge,
then dJ /dt and dM /dt are very simply related:

dM /dt =aB(2Msinb,)~'dJ /dt .
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It is also informative to look at the actual distribution
of energy and momentum inflow on the stretched horizon,
as given by T% and T* [cf. Egs. (3.25) and (3.28)]. Fig-
ure 7 shows these distributions along the x axis, after in-
tegration over all y values. As may be readily seen by
comparing Fig. 7 to Figs. 5 and 6, the region of greatest
energy and momentum inflow coincides with the region of
strongest induced charge and current.

Figure 7 shows that, from the viewpoint of our mem-
brane formalism, the region of maximum inflow of energy
and momentum lags behind the motion of the charge
above the horizon. The question of whether this region
lags or leads the charge is not completely unambiguous,
however. It has been pointed out by Hartle’ that an alter-
native, natural way to compare the transverse positions of
points at different values of a (different distances from
the horizon) is by means of a zero-angular-momentum
light ray. This corresponds to a slicing of spacetime dif-
ferent from our choice: A coordinate change 7=t
+(1/gy)Ina brings the spacetime metric into the form

ds’=—a*dt*+2adidz +dx*+dy? . (3.30)

[The coordinate 7 and the Minkowski time coordinate T'
are the Rindler-approximation limits of the infalling
Eddington-Finkelstein time coordinate, Eq. (2.4), and the
Kruskal-type time coordinate

4M(r/2M —1)"/%sinh(t /4M) ,

a

o
©

o)

o
)
o

z
2
2Msing, Q gi dt dx
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FIG. 7. The flux of energy and angular momentum carried
into the stretched horizon by the electromagnetic field of the
charged particle of Figs. 4(a), 5, and 6. The solid line (scale on
left) shows the energy flux per wunit x length
(1/Q%})dM /dt dx) into the stretched horizon as a function
of x, obtained by integrating the energy flux density over y.
The dotted line (scale on right) shows the flux of x momentum
per unit x length (1/2Msin6o)ag/Q%%)(dJ /dtdx) into the
stretched horizon. Both are shown at time #=0 for the choice
of parameters $=0.5 and ay=10"*a, and both are plotted in
units of zg''. The point labeled x * is the location where a zero-
angular-momentum light ray from the charge’s retarded posi-
tion strikes the stretched horizon: x* =fzoln(ay /ag) = —4.6z,.
The momentum plot goes slightly negative in the region to the
left of the peak.

respectively.] In the metric (3.30), a zero-angular-
momentum null ray has the trajectory 7=const,
x =const, y=const, and hence, in a constant-7 slice, a
zero-angular-momentum null ray starting from the charge
will strike the stretched horizon directly underneath it.
Such a position, after transforming back to the membrane
viewpoint’s ¢ slicing, is marked as x* in Fig. 7. We can
clearly see that, from the <“zero-angular-momentum-
light-ray viewpoint,” the location of maximum input of
energy and momentum occurs at a position on the
stretched horizon where the charge is not yet “overhead.”
The same kind of phase-lead phenomenon was observed
by Hartle’ when he studied the tidal bulge on the horizon
due to an orbiting moon. However, when observed in a
slice of constant ¢ (the absolute space of our membrane
viewpoint), the position of maximum energy and momen-
tum input (or tidal bulge) will lag behind the source on the
stretched horizon, which is much more suggestive to
physical intuition.

F. Charge in nonuniform motion
near the horizon

To obtain a better feeling for the evolution of field lines
near the horizon, we consider charges that move only for
a finite period of time.

We first consider a  charge which stays at
(x,,2)=(0,0,z,) for all ¢t <0, then moves with constant
velocity dx /dr=ay ldx /dt =8 in the e, direction until
t=1/gy=z0/ay, and then stops again for all ¢t > 1/gy at
x=Pz,. (We again set ag=gyz,.) For t>1/gy, the
structure of the electric field lines is divided into three re-
gions. Figure 8(a) shows the field lines for t=2/gy,
B=0.5. Near the charge there is a region centered at
x=pfzy, y=0 where the field configuration has settled
down to the static Coulomb field. In the region far away
from the charge, we also have a static Coulomb field.
This is the region where the charge’s “start-to-move” sig-
nal has not yet arrived, i.e., the region where the space-
time separation from the point =0, x =0, y =0, z=z, is
space-like. Sandwiched between the near and far zones is
the transition region, where the field is given by Eq.
(3.21). (We idealize the charge’s acceleration as being in-
stantaneous and ignore the field generated at these in-
stants. If this assumption were not made, there would be
two shells of radiative field corresponding to retarded
times during which the particle was accelerated. But the
same conclusions would apply to these shells as to the
transition region, so we will not consider them here.) As
time progresses [Fig. 8(b)], those parts of the transition re-
gion propagating towards the horizon approach it asymp-
totically along a trajectory z=constXe °¥'. Hence the
transition region gets thinner and the field lines become
more and more tangential. The field-line density increases
as 1/a and hence the tangential electric field grows. This
tangential structure finally sinks down to the stretched
horizon and drives a current which transports the surface
charge from the region near x =0 to the region under the
source’s new position. There is also some surface charge
attracted in from the region x >>0 to settle under the
charge, while some excess charge near x =0 flows off in
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(b)
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(c)
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FIG. 8. Electric field lines of temporarily moving charges in the neighborhood of the Rindler horizon. Diagrams (a) and (b) show
the field of a charge which moves with constant velocity parallel to the horizon, dx/d 7= f3e,, from t =0 to t =1/gy and is static be-
fore and after this motion. In both diagrams, B=0.5; diagram (a) shows the field at t =2/gy, and diagram (b) shows it at 1 =3.5/gy.
Diagrams (¢) and (d) show the field of a charge which moves with constant velocity perpendicular to the horizon, dx/dr=fle,, from
t=0to t=1/gy and is static before and after this motion. In both diagrams, 8=0.5; diagram (c) shows the field at t=2.5/gy, and

diagram (d) shows it at £=3.5/gy.

the — x direction. The current flow produces Joule heat-
ing and a Lorentz force in the horizon, which dissipate
the energy and momentum carried by the field in the tran-
sition region. For times ¢ >>1/gy, the field on and above
the stretched horizon returns to a fully static configura-
tion (last diagram of Fig. 3).

The qualitative features of the tangential field structure
observed in the above problem are not unique to it, but
rather they are a general feature of any field lines that
move in the vicinity of a horizon.

For example, consider a problem where we move an ini-
tially static charge perpendicular to the horizon with con-
stant ZAMO-measured velocity 3 during the time interval
0<t<1/gy. In this interval, the charge has a trajectory
z =z-0eg” ' (upward motion) and a four-velocity

‘u®=(y/a,0,0,yB) where y=(1—p?)"1/2. Putting this
into Eqgs. (3.6) and (3.8), we have the electric field:

£ _ QB (1—B)ae*"""_ps)
P25 [a(s —BC)+BesH PR P

(3.31)
a(1—p)ae 5#P" _gs_c)
[&(S —BC) + Be*HP'R |3

Y
Ez=-z-(2)‘

where X=x/z9, J=y/z0, G=2/20, p=[(Z*+5)]"?,
S =sinhgy(t —tg), C=coshgy(t—tg), and the retarded

time tg is defined implicitly by

ZgHBtR gHﬁtR

X492+ a@t+e —2de coshgy(t—tg)=0.
Figures 8(c) and 8(d) show the field lines at t=2.5/gy
and t=3.5/gy, respectively. The qualitative features are
clearly the same as in the case of the charge moved paral-
lel to the horizon, and again we see a tangential structure
traveling down to the stretched horizon. In this case, the
current flows radially outward and distributes the induced
charge over a larger region in the new static situation.

For further insight into the evolution of the electric
field, we show in Fig. 9(a) the evolution of the direction of
a particle’s electric field as the field “propagates” near the
horizon. More specifically, we consider the particle of
Figs. 4(a), 5, 6, and 7 which is moving parallel to the hor-
izon (x direction) with a locally measured velocity S=0.5.
The particle’s field, as described by the Liénard-Wiechert
potential (3.5), propagates away from the particle with the
speed of light. (Of course, this is strictly true only close
to the horizon where the spacetime curvature and its
scattering effects are negligible.) In Fig. 9(a), we study
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(a)

(b)

FIG. 9. Constant-time-interval snapshots of the field of a
charge moving with 8=0.5 in the x direction, parallel to the
horizon [charge of Figs. 4(a), 5, 6, and 7]. The figure shows the
directions of those bits of field (indicated by the short segments,
or arrows) that were “emitted” by the particle when it was at
the point to which the curved lines converge. The curved lines
are the spatial tracks of the null geodesics along which the field
propagates, and the direction of the field is indicated by the ar-
rows on them. Part (a) shows the electric field in the x-z plane
with a snapshot interval Az=0.3/gy. Also shown are the posi-
tions of the particle (crosses) at the times of the successive
snapshots, labeled by the time ¢ in units of 1/g. Part (b) shows
the magnetic field in the y-z plane with a snapshot interval
At = 0.3 / 8H-

the propagation in the x-z plane of that piece of the elec-
tric field which is emitted by the particle at time =0,
when the particle is at the point from which the curved
lines diverge. These curved lines are the spatial tracks of
the null geodesics along which that bit of field propagates.
Each short segment, or arrow, depicts the direction that
the field points when it has reached the location, on its
propagation geodesic, where the arrow’s tail sits. Thus,
the first set of arrows in Fig. 9(a) (those nearest the
particle’s position) constitute a snapshot of the field at a
time ¢t=0.3/gy after the emission event—when the parti-
cle has moved to the location of the first cross. The
second set of arrows is a snapshot of the field at
t=0.6/gy, when the particle has reached the cross
marked 0.6. Each successive snapshot and particle loca-
tion is at a subsequent time interval Ar=0.3/gy. When

the fields generated are still in the region close to the
charge, they behave essentially in a Minkowskian way, ex-
cept that those parts that travel upward move faster as a
gets larger and those parts traveling downward toward the
horizon move more slowly as a get smaller. Recall that in
flat-space electrodynamics, the electric field lines of a uni-
formly moving charge always point toward the present
position of the charge. For the case of a particle near the
Schwarzschild or Rindler horizon, however, the parts of
the field traveling away from the horizon point in front of
the present position of the charge, while those parts trav-
eling downward toward the horizon point to the rear of it
and eventually become tangential to the horizon.

Had we chosen to take snapshots at constant intervals
of 7 [Eq. (3.30)], the field propagating on the null trajec-
tories would march through the horizon without hesita-
tion; but since we use constant intervals of universal time
t, we take an infinite number of snapshots of the field in
the region just outside the horizon. Therefore, we see an
unchanging field structure as ¢ progresses: the fossil field
structure described in Sec. II. The introduction of the
stretched horizon simply cuts off the redundant taking of
snapshots at a convenient surface outside the horizon.

All of the above figures and conclusions have pertained
to the electric field of a moving charge. It is of interest
also to investigate the evolution of a magnetic field near a
black-hole horizon. From the curved-space Maxwell
equations (2.3d), it is seen that, in regions of space with no
sources, the duality transformation E-—-B and B— —E
preserves the form of the equations and hence their solu-
tions, just as in flat-space electrodynamics. Therefore all
of the qualitative conclusions reached above for an elec-
tric field will hold also for a magnetic field.

More specifically, for a static magnetic field, as for a
static electric field, the field lines will intersect the
stretched horizon orthogonally, so that by Eq. (2.6b) there
is no surface current to produce dissipation. If the mag-
netic field is disturbed, the disturbance will propagate
down toward the horizon and form a tangential structure.
This assertion is supported by Fig. 9(b), which shows the
magnetic field generated by the uniformly moving particle
of Fig. 9(a) propagated along null trajectories in the y-z
plane, in the same manner as was done for the electric
field in Fig. 9(a). Note here, as for the electric field, that
the field structure becomes tangential near the horizon.
When this structure sinks through the stretched horizon, a
current is induced which dissipates the Maxwell field en-
ergy and momentum. The effect of this process is to
“clean” the magnetic field by removing complicated
tangential structure near the horizon. This process might
be important in models of quasars which involve large
magnetic fields in the neighborhoods of black-hole hor-
izons."> A model problem relevant to this process will be
considered in the next section.

IV. RELAXATION OF A
MAGNETIC FIELD
IN SCHWARZSCHILD SPACETIME

The preceding section considered electromagnetic
model problems in Schwarzschild spacetime in a region
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close enough to the horizon that the Rindler approxima-
tion could be adopted. If the Rindler approximation is
dropped, the mathematics of these problems generally be-
comes more difficult. The spatial curvature which was
ignored in the transition from Schwarzschild to Rindler
makes the three-space vector operators, and thus
Maxwell’s equations, considerably more complicated in
the full Schwarzschild spacetime. However, it is instruc-
tive to investigate a model problem in the full
Schwarzschild black-hole background to verify that the
models we have made using the Rindler approximation
have not omitted any important features of the interaction
of electric and magnetic fields with a horizon and also to
develop intuition concerning the effect of spatial curva-
ture on those fields. ]
We consider the problem of a Schwarzschild black hole
of mass M, surrounded by a perfectly conducting concen-
tric sphere of radius R >2M into which an axially sym-
metric magnetic field is frozen. At time ¢=0, the mag-

netic field lines are momentarily static and purely radial,
pointing into the hole below the equator and out of the
hole above it, as shown in the upper left-hand diagram in
Fig. 10. Immediately after time ¢ =0, this initial configu-
ration is released and allowed to evolve dynamically in ac-
cord with the vacuum Maxwell equations, except that the
field lines continue to be held fixed in the conducting
sphere at radius R. We shall study the dynamical evolu-
tion of this field.

In Schwarzschild coordinates (¢,7,0,¢), where the lapse
function is a=VvV'1—2M /r, the initial electric and mag-
netic fields are

E=0,
4.1)

¥

S
—=B
cosd—~ 0

and the corresponding initial vector potential is purely
toroidal:

B=Bya cosfe; ,

/M =0 % ([@ /M =8 /M =2 % %unm
t/M =2 % N Q@) t/M =10 t/M =86 W @ t/M =28
/M =4 ( ) :/ﬁ =15 /M =12 a } t/M = 155
[
| (I
t/M =6 /M =20 t/M = 20 /M = 500
@ U ,
Cad b

FIG. 10. The vibratory time evolution of an initially radial magnetic field in Schwarzschild spacetime. The initial geometry of the
magnetic field lines is shown in the upper left-hand diagram of part (a) in 7-0 coordinates with ¢ =constant. The outer boundary, at
which a perfectly conducting sphere resides, is at radius » =R; the inner sphere is the horizon. The arrows show the direction of the
field: pointing into the hole below the equator and out of the hole above it. This is the view which would be seen by looking down
into the paraboloidal embedding diagram of Schwarzschild space. The field lines are frozen into the outer sphere, but are free to slip
through the horizon since its conductivity is finite. The tension of the field lines tends to straighten them out. Part (a) shows
representative magnetic-field-line diagrams in the evolution of the case R =3M. Since most of the field lines thread the horizon at all
times, the field settles down quickly to its final static configuration. Part (b) shows representative magnetic-field-line diagrams in the
evolution of the case R =10M. Since the horizon is small relative to the outer sphere, the field lines oscillate for a long time before
reaching their final static configuration. The diagrams in part (b) cover only the first oscillation in detail, and the beginning of the
second oscillation at /M =28. The last two diagrams are much further in the future and show that the oscillations have died out
substantially by ¢/M =155 and almost completely by /M =500. The kinks in the field lines for the case ¢t /M =12 are due to the
finite grid used in the numerical integration.
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where B, is the magnetic field strength on axis at the
outer sphere and eq;E(l/rsinB)a/ad). [Throughout this

A=

(4.2)

section, carets will be used to denote the orthonormal

basis (ey,e5€5).]

The field lines are fixed at their outer ends because they
are frozen into the perfectly conducting outer sphere, but
they are free to slip through the stretched horizon since it
has a finite conductivity. Qualitatively, one would expect
the field lines to pull themselves into a more vertical
orientation due to their tension.

The symmetries of the problem, along with Maxwell’s
equations, ensure that all components of the four-vector
potential except A44(z,7,6) will remain zero. This com-
ponent may be written in terms of the “magnetic flux
function” ¥(¢,r,0)=2mA4(t,r,0) which, as shown in MT,
is equal to the total magnetic flux through the circle of
constant radius and latitude (r,0)=constant. The expres-
sions for the electric and magnetic fields in terms of ¥ are

1. vep
E a A 27rarsing ’
’ (4.3)
V1/1><e$
B=VXA=——"—",
2mrrsing

where the overhead dot denotes time differentiation. The
only nonvacuous Maxwell equation is Ampere’s law [MT
Eq. (2.17¢)], which, specialized to vacuum Schwarzschild
spacetime and expressed in terms of i, may be written as

1 ..
——_j=o0.
ar’sin’0 v

a
r2sin%0

v

Vy (4.4)

The covariant three-space derivatives in the vector opera-
tors in this equation may be expanded in terms of ordi-
nary derivatives, with the result

Yu 2M
——— 1 =
1—-2M/r + r Yorr
2M Y, t0
+ r2 ¢,r+ rge - C(:Z lp,G:O . (4.5)
By introducing the “tortoise coordinate” r* of Regge
and Wheeler®! defined by
w___dar
W=
(4.6)
*—rp2MIn | —1],
r ¥+ n M }
Eq. (4.5) can be put into the form
1 2M
——‘lﬁ’" +¢,r*r*+7 1———r— (¢,99—cot9¢,9)=0 . (4.7

In this equation, r is to be thought of as an implicitly de-
fined function of »*. '

The boundary condition of “no outgoing waves at the
horizon” [Eq. (2.9)] requires

[E”—nXBH],_,ZM—»O, (4.8)

where n is the unit normal vector e, to the horizon and

E| and By are the field components tangential to the hor-
izon. The tangential fields may be expressed in terms of
the potential ¢ as

18y

Bi=- 2rarsing ot %’
(4.9)
_Ivxely o ay
1= 27rsind ~  2mrsin® or 0’
so the horizon boundary condition (4.8) becomes
Y — 9y —0. (4.10)
o dr* |, om

The initial field

A =(27rsing)~'Y(0,r,0)e;=Bo(R*/2r)sinbe;

has the angular dependence of the /=1, m =0 vector
spherical harmonic?’ X, ((0,4)=iV'3/87 sinfez; and
since neither the differential equation (4.7) nor the boun-
dary conditions mix different multipoles, the field will
remain proportional to this harmonic as it evolves. It is
thus convenient to separate variables by defining a new
field variable u (¢,7):

W(t,r,0)=mBoR *u (1,r)sin’0 . 4.11)
Then the wave equation (4.7) for ¢ takes the form
2 2M
—U gtu PRk T TS 1—— |lu=0. (4.12)
’ ¥

This equation describes a one-dimensional wave subject to
a potential V(r*)=2(1—2M/r)/r?. This potentizil goes

. . 2
to zero at the horizon proportionally to a’~e nt

, goes
to zero as r ~2~(r*)~2 at large r, and has a global max-
imum at r=3M (r*=~1.61M), V,,,=2/(27M?%. The
inner boundary condition (4.10) written in terms of u (¢,7)

is just

Ou _ du

_ (4.13)
at  or*

—0,
r—2M

which has the form of a “perfectly absorbing” boundary
condition for the one-dimensional wave equation (4.12).
The outer boundary condition is u (¢,R)=1, and the ini-
tial conditions are u (0,7)=1 and u ,(0,r)=0.

The wave equation (4.12) was integrated numerically
subject to these initial and boundary conditions, and the
structure of the magnetic field lines was then reconstruct-
ed from u (z,r) using the relation (4.11) and the definition
of ¥(¢,r,0) as the magnetic flux function [Eq. (4.9)]. The
inner boundary condition (4.13) was applied not at the ac-
tual horizon r* = — «, but at a slightly stretched horizon
r* =—20M, which corresponds to the Schwarzschild ra-
dius r=(2+3.3X107%)M and ay=4.1x10"3. (Al
though this horizon stretching is motivated by numerical
considerations, it is the same stretching as occurs in the
membrane viewpoint.) Representative plots of the mag-



32 MEMBRANE VIEWPOINT ON BLACK HOLES: DYNAMICAL ... 865

netic field line structure are shown in Figs. 10(a) and 10(b)
for the cases R =3M and R = 10M, respectively.

The qualitative behavior of the solutions, as depicted in
r-0 coordinates, is that the field oscillates for a time be-
fore settling down to a final static configuration consist-
ing of precisely vertical field lines. The final static con-
figuration could be derived directly by setting the time
derivatives in Eq. (4.12) to zero, and solving it subject to
the boundary conditions u(r=R)=1 and
u «(r=2M)=0; it is the solution ¥(r,6)=mByr’sin’0
found by Wald*? and by Hanni and Ruffini.*?

As the field lines oscillate, they leave behind discon-
nected- field-line loops near the horizon, such as those
shown in the diagram for ¢/M =28 in Fig. 10(b). These
loops drop toward the horizon at the locally measured
speed of light, dr*/dt~1 or dr/dt~a® Thus, as
described qualitatively in Sec. II, the field has a layered
structure at the horizon which reflects the entire past his-
tory of its evolution. However, these layered horizon
fields do not affect the overall large-scale structure of the
field outside the horizon; the position of the stretched
horizon in the numerical integration could be moved out-
ward considerably without changing the diagrams in Fig.
10 in any noticeable way.

The complex, multilayered nature of the near-horizon
fields is illustrated graphically in Fig. 11. In the top part
of this figure, the magnetic field lines are plotted on an
embedding diagram for Schwarzschild spacetime, which
consists of a paraboloid of revolution.!! In this part of
the diagram, the Schwarzschild radial coordinate r is
measured radially outward from the axis of cylindrical
symmetry of the embedding diagram, and the angular
coordinate € is measured around this axis. The ignorable
coordinates ¢ and ¢ are suppressed. The diagrams in Fig.
10 are what one would see if one were looking down into
the paraboloid along the axis of symmetry. The para-
boloid of the embedding diagram is cut off at a stretched
horizon which is taken to be at a radius r=2.15M. [As
will be explained later, this would be a poor choice of
stretched horizon at which to apply the boundary condi-
tion (4.13), but it is chosen here for illustrative purposes.]
In order to make the fields between the stretched horizon
and the true horizon visible, they are plotted on a cylinder
matched to the paraboloid at the stretched horizon. In
this part of the diagram, the vertical distance, i.e., the
cylindrical “z coordinate,” is equal to the tortoise coordi-
nate 7*, and the previous identification of 6 with the
cylindrical angular coordinate is maintained. Plotting the
near-horizon fields in this way as functions of r* has the
effect of expanding the radial scale so that the field struc-
ture is visible.

The data plotted in Fig. 11 show the field-line structure
at the time r=92M for the case R =10M. At this time,
the field lines have sprung outward and snapped back in-
ward four times and are beginning to spring outward for a
fifth time. The relic field-line loops left by each of these
oscillations are visible running down the cylinder, and the
partially formed loops at the top of the cylinder may be
seen to connect to field lines outside the stretched horizon.
The field lines are vertical in the lowermost region of the
diagram due to the fact that the field was held stationary

FIG. 11. Embedding-diagram view of the vibrating magnetic
field of Fig. 10 at time z=92M for the case R =10M, with the
near-horizon fields expanded for visibility. In the top part of
the figure, the magnetic field lines are plotted on the para-
boloidal embedding diagram of Schwarzschild space. The para-
boloid is cut off at a stretched horizon which is taken to be at a
radius »=2.15M, and a cylinder is matched onto it there. In or-
der to make the near-horizon fields visible, the distance along
this cylinder is measured by the tortoise coordinate r*. We
view the diagram from an elevation angle of 18° and a rotation
angle of 45°. At the time shown, the field lines have sprung out-
ward and snapped back inward four times and are beginning to
spring outward for a fifth time. The relic field-line loops left by
each of these oscillations are visible running down the cylinder,
and the partially formed loops at the top of the cylinder may be
seen to connect to field lines outside the stretched horizon. In
the lowermost region of the diagram, the field lines are vertical
due to the fact that the field was held stationary until its release
at t=0. As one proceeds up the cylinder, one finds successively
fewer concentric loops in each set of field lines, since the oscilla-
tions are dying out and fewer field lines snap back to the
stretched horizon with each oscillation.

until its release at t=0. As one proceeds up the cylinder,
one finds successively fewer concentric loops in each set
of field lines since the oscillations are dying out and fewer
field lines snap back to the stretched horizon with each
oscillation.

Two criteria need to be considered in choosing the posi-
tion of the stretched horizon in a problem of this sort.
The potential ¥ (r*) in Eq. (4.12) acts as a barrier to in-
coming waves, partially transmitting them and partially
reflecting them. Application of the “perfectly absorbing”
boundary condition at the stretched horizon rather than at
the true horizon is equivalent to neglecting waves reflect-
ed from the part of the potential barrier (spacetime curva-
ture) between the two horizons. Since ¥V (r*) goes to zero
proportionally to a? near the true horizon, this approxi-
mation becomes better and better as the stretched horizon
is moved inward toward the true horizon. In the problem
at hand, it was found that moving the stretched horizon
from its original location r*= —20M out to r*=—10M
or 7=(2+4.9x 10~3)M made no noticeable difference in
the numerical solutions obtained. On the other hand, put-
ting the stretched horizon at »=2.15M, as was done in



866 DOUGLAS A. MACDONALD AND WAI-MO SUEN 32

Fig. 11 for illustrative purposes, should not be done in the
numerical solution of the problem since V(r*) still has
41% of its maximum value there.

The other criterion affecting the choice of the stretched
horizon is the requirement that it be close enough to the
true horizon that important features of the field are not
neglected below the stretched horizon. More specifically,
we demand that ay be small enough that the field does
not evolve substantially along any null ray between a=ay
and a=0. In terms of the Eddington-Finkelstein time
coordinate 7 of Eq. (2.4), the equation of such a null ray is
dr/df=—1. If At is the (universal) timescale of evolu-
tion of the field, the above criterion translates into the re-
quirement that ay <1 2gyAt. This condition is certainly
satisfied in the present problem for either of the choices of
the stretched horizon mentioned above, since the timescale
of variation of the field is At ~ M.

The only dissipation in this problem comes from the
horizon boundary condition. If the stretched horizon had
a surface resistivity of either zero or infinity, rather than
presenting incoming waves with the vacuum impedance
Ry =41~377 Q, the field lines would oscillate forever.
The damping timescale of the oscillations is determined
by the size of the horizon relative to the perfectly con-
ducting outer sphere: for the case R =3M, the field lines
almost settle down to the static configuration after spring-
ing outward just once, while for the case R =10M, they
oscillate many times.

The magnetohydrodynamical decay time of a field slip-
ping through a conducting medium with surface resistivi-
ty Ry may be shown®* to be roughly equal to 4L /Ry,
where L is a length comparable with the dimensions of
the region where current flows. For the present problem,
where L ~2M, this timescale is just 2M, the light-travel
time across the hole (which, as claimed in Sec. 7.5 of MT,
is the approximate annihilation time for a field loop with
both feet in the hole). Not all of the field lines are dissi-
pating their vibrational energy in the hole at a particular
time, however. One would therefore expect the timescale
t, of the relaxation of the field lines to be roughly equal
to 2M divided by the time-averaged fraction of field lines

which thread the horizon, which is approximately
4M?/R? that is
R? R?
ty ~2M = 4.14
* RYE M ( )

The time t, is the timescale of the loss of magnetic field
energy into the hole, so it will be instructive to elaborate
further on the nature of the transfer of electromagnetic
energy into the hole.

Following MT, one may define a density €z and flux
density Sg of “red-shifted energy” or “energy at infinity”:

- |
=(a/8m)(E2+B)=—2% | ¥ L (vyp|,
€p =la/8m)(E"+B") 3273r2%in%0 | o? +(V)
(4.15a)
Sp=(a/4mExB=— —¥¥ _ (4.15b)

167°r%sin%0

These satisfy the conservation law

757 [,exdv+ [, aSp-da=0, (4.16)
for any time-independent three-dimensional region ¥V ly-
ing entirely exterior to the horizon and having the two-
dimensional boundary surface dV. Here dA is the
outward-pointing normal area element vector.

One may also write the charge and current densities on
the stretched horizon as defined in Sec. II. If we take the
stretched horizon to be at 7y, the charge density vanishes
and the current density (2.6b) is

1 3

Py I T
8m2rysind or* ¢

/H‘—‘Le;‘XBH=_ (4.17)

41
where By, the stretched-horizon magnetic field, is defined
by Eq. (2.5). The stretched-horizon current density is thus
purely toroidal, and from Eq. (4.11) one may see that it
varies with latitude proportionally to sinf.

If we take the region ¥V in Eq. (4.16) to be the spherical
shell between the stretched horizon and the outer radius
r =R, then the only contribution to the surface integral in
Eq. (4.16) comes from the stretched horizon, since there is
no energy flux through the perfectly conducting sphere at
r=R. The rate of mass increase of the hole per unit
universal time is equal (“="”, in the sense of Sec. II) to the
rate of energy flow, per unit universal time ¢, through the
stretched horizon. Using Egs. (4.6), (4.9), (4.15b), and
(4.17), this may be expressed as

aM

Lo [ aSpdA= fSH/H-EHdA,

dr SH (4.18)

in agreement with Eq. (2.11). Here the area element vec-
tor d A points along the outward normal to the region V
and hence along the inward normal to the horizon. By in-
tegrating Eq. (4.16) over time, one may obtain the differ-
ence between the total energies of the field in the initial
(E;) and final (Ej) configurations:

E;—E;=A fVeEdV=— fo“’ [fSH/H-EHdA dt

=—(M;—M,), 4.19)
where M; and M; are the initial and final masses, respec-
tively, of the hole.

The quantities E; and E; may be obtained explicitly by
integrating the energy density € over the region V using
the initial and final fields: v;=wByR%sin%0 and
Yy =1Byr’sin’6, respectively. The results are

B2R*

2M
e~ 1222
E; 12M R ’
- (4.20)
B
6 R

The rate of energy flow through the stretched horizon can
be calculated from Egs. (4.11), (4.13), (4.17), and (4.18) to
be
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BIR*

dM Ju
e fSH/H EpdA=—

= (421)
,

SH

The quantity (du /dr*)%y, which by Eq. (4.21) is pro-
portional to the energy flux through the stretched hor-
izon, is plotted in Fig. 12 for the cases R =3M, R =10M,
and R =100M. The displacement of the first peak from
the origin in these diagrams is due to the finite time re-
quired for the waves to propagate down to the stretched
horizon. It has been verified numerically that the area
under these curves satisfies the energy balance condition,
Eq. (4.19),1i.e.,

BiR* = [ 3y
Ef—E,-:— 6 fO ar SHdt
BiR* wm |
= 12M | R
2
© | du (1—2M /R)?
L == 422
= [, || =5 (4.22)

The curve for R =100M in Fig. 12 seems to be a super-
position of two oscillations of distinct periods, a fact
which may be confirmed by Fourier transforming it. The
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period of the longer-term oscillation is approximately
twice the radius R of the outer shell, i.e., roughly the
light-travel time across the shell. This just corresponds to
the time necessary for a particular field line to spring out-
ward and then back inward. _

The period of the shorter-term oscillation is roughly
equal to 10M. This value may be justified by an argu-
ment similar to that used by Press® for gravitational
waves. An argument precisely analogous to that given by
Press predicts that u(z,7) should have a peak in its fre-
quency spectrum corresponding to a period

T~ 2T —30VEM ~23M .
vV,

max

(4.23)

Since the energy flux curves in Fig. 12 are proportional to
the squares of du /9r*, they should have roughly half this
period, or about 10M as observed. This argument could
also be couched in terms of the gradual decay of a packet
of electromagnetic waves in spiral orbits close to the un-
stable photon orbit at »=3M, as Goebel*® does for gravi-
tational waves.

Thus, the short period might be characterized as the
“sticking time,” during which the oscillating field lines
are caught and held by the effective potential, while the
long period is the natural vibration time of the field lines.

0.03

0. 02 R = 100M

0.01

0.00 - k ~ M ~ A, = dhai— /M
& 2 8 &

FIG. 12. The rate of flow of magnetic energy through the horizon as a function of time for the vibrating magnetic field of Figs. 10
and 11. Plots are shown for three different values of the radius of the outer conducting sphere: R =3M, R =10M, and R =100M.
Plotted vertically is the dimensionless quantity M*du /dr*)%y which, as shown in Eq. (4.21), is proportional to the energy flux
through the horizon. The curve for R =100M shows a clear double periodicity corresponding to the two different length scales in the
problem: R and M.
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The double periodicity noticeable in the R =100M
curve of Fig. 12 is not evident in the R =3M and
R =10M cases since the two periods are too close together
in the R =10M case and the oscillations die out too soon
in the R =3M case.

This double periodicity somewhat complicates the task
of finding an “experimental” relationship between the
damping timescale ¢, and the cavity radius R to compare
with the “theoretical” relationship (4.14). The curves con-
sist of periods of oscillation interspersed with periods of
quiescence, so a good fit to an exponential decay is impos-

(a)

sible. However, rough fits to the envelopes of the curves
yield decay times which conform approximately to a
power law relationship of the form ¢,/M=B(R/M)".
The values of y given by a least squares log-log fit ranged
from 1.6 to 1.8 depending on the assumptions made in
the fits to the envelopes, and the values obtained for S8
ranged from 0.4 to 0.6. The theoretical relationship (4.14)
would predict the values $=0.5 and y =2.

The results of this model problem and those considered
in Sec. III suggest some very general conclusions concern-
ing the nature of a stationary electromagnetic field outside

(b)

FIG. 13. Qualitative illustrations of the “cleaning” of a complex electromagnetic field by a black-hole horizon. Part (a) shows the
dispersal of a localized concentration of magnetic flux threading the horizon. Part (b) shows the annihilation of a field-line loop,

marked “L,” with both feet embedded in the horizon. In both cases, the horizon

dicated by arrows on the horizon.

currents, which dissipate excess field energy, are in-
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a black hole. In paper II of this series (MT Sec. 7.5), an
analysis of the equations of structure for a stationary,
force-free black-hole magnetosphere showed that no mag-
netic field loops can extend out of the horizon and then
back in. King, Lasota, and Kundt’’ showed that a sta-
tionary magnetic field in a vacuum cavity between a black
hole and a surrounding plasma shell must be ‘“nearly uni-
form,” i.e., similar to the final configuration of the field
in this section. These results all suggest that, in stationary
situations, regardless of the complexity of the electromag-
netic fields produced by external (accretion disk) currents
in the vicinity of a black hole, the field which actually
threads the horizon will be “clean;” it will have no loops
or complicated tangential structure near the horizon, and
no localized concentrations of magnetic field will exist on
any region of the horizon.

Insight gained from the above model problems suggests
the mechanism by which a black hole gets rid of such
structures (i.e., cleans its field) if they try to form. Figure
13 shows two examples based on the scenario of a magnet-
ic field threading a black hole and held on it by an accre-
tion disk.”® The material of the disk is slowly spiraling
into the hole and dragging its imbedded field, which may
be chaotic, onto the hole. In Fig. 13(a) (top), a localized
concentration of magnetic flux has formed at a particular
point on the horizon. As was observed in the model prob-
lem of this section, the field lines will spring outward,
driving toroidal currents (shown by arrows on the middle

diagram) in the stretched horizon which dissipate the elec--

tromagnetic field energy. The field lines may oscillate
several times, but within a timescale of order M, the com-
plex, dynamical tangential field will disappear beneath the
stretched horizon, leaving just the uniform field shown in
the bottom illustration. In Fig 13(b) (top), a loop of mag-
netic field (labeled “L”) has been carried onto the horizon.
Tension along the field lines will cause the loop to shor-
ten, bringing itself close to and parallel to the stretched
horizon (middle diagram). The loop will then sink into
the stretched horizon, driving currents as shown in the
middle diagram to dissipate its field energy, until it is
completely gone (bottom). :

V. DISCUSSION AND CONCLUSION

One of the main strengths of the membrane view of
black-hole horizons is the cogent and self-consistent men-
tal picture it provides of the interactions of a horizon with
an electromagnetic field. As demonstrated by the model
problems in this paper, the membrane viewpoint often al-
lows the qualitative results of calculations to be guessed
before they are done. It is important to emphasize,
though, that the membrane viewpoint is completely con-
sistent with other viewpoints of black holes, the “black-
hole viewpoint” based on Penrose and Eddington-
Finkelstein spacetime diagrams, for example. But the
membrane viewpoint emphasizes those phenomena which
are important in the electromagnetic interaction of a hor-
izon with the exterior universe, and deemphasizes those
phenomena, such as the. relic tangential horizon field,
which are not.

Since the membrane viewpoint is based on a 3 + 1 split

of spacetime, it is particularly well suited to calculations
in static or stationary spacetimes. If the spacetime is
highly dynamical, however, it loses much of its power
since there is then no preferred family of spacelike hyper-
surfaces with respect to which to make the 3 4 1 split. In
this case, it is more efficacious to view physics in terms of
the spacetime diagrams of the black-hole viewpoint. The
class of problems for which the membrane formalism is
most useful, however, includes most problems of real as-
trophysical interest. Astrophysical models involving
black holes usually assume a nearly stationary and ax-
isymmetric hole interacting electromagnetically, gravita-
tionally, and materially with a complex astrophysical en-
vironment (accretion disks, magnetized plasmas, stellar
companions, etc.), and for these types of situations the
membrane viewpoint is ideally suited. See Ref. 18 for a
fuller comparison of the membrane viewpoint with other
viewpoints. ’

In Sec. III, we studied the interaction of external elec-
tromagnetic fields with a Schwarzschild horizon in the
Rindler approximation. In Sec. IV, a dynamical magnetic
field problem in the full Schwarzschild geometry was
solved and studied in detail. In both cases, we have illus-
trated the evolution of the electric and magnetic fields
with field-line diagrams. It is the 3 4+ 1 formulation in
terms of which the membrane formulation is couched
which enables such field-line diagrams to be drawn, and
this feature contributes greatly to an intuitive understand-
ing of the fields. It was also emphasized in both problems
that the concepts of the stretched horizon and its surface
charge and current were very helpful in understanding
how the presence of the black-hole horizon affects the
electromagnetic fields in its vicinity, and in understanding
the entropy, energy, and momentum transfer between the
field and the hole. In the model problem done in Sec. IV,
the criteria governing the choice of the stretched horizon
were elucidated: the desire to ignore the relic, near-
horizon tangential electromagnetic field, the necessity of
making reflection from the electromagnetic potential bar-
rier negligible, and the requirement that the evolution of
the field during its propagation from the stretched hor-
izon to the true horizon be negligible. These criteria, al-
though they were derived from consideration of a very
specific problem, do not depend on the precise details of
that model. This of course is to be desired if the concept
of the stretched horizon is to have applicability beyond
this limited problem.

The stretched-horizon charges and currents, even
though they are entirely imaginary, enter as source terms
into Maxwell’s equations in exactly the same way as do
ordinary charges and currents (although, in the model
problems of Secs. III and IV, they turned out to give no
contribution to the external field since the black holes
under consideration were uncharged). We have seen from
the model problems that these concepts facilitate an intui-
tive understanding of the interactions of a black-hole hor-
izon with external electromagnetic fields. By use of the
membrane formalism, both the distortion of an elec-
tromagnetic field by the presence of a horizon and the
field’s effect on the dynamics of the black hole can be un-
derstood in close analogy with flat-space electrodynamics.
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To elucidate these points more explicitly, we will briefly
discuss several black-hole electromagnetic problems in
terms of the surface charges and currents. (For further
detail on these problems see Ref. 18.) First, we consider
the question of how the electric field of a charge very
close to, and stationary outside, the Schwarzschild hor-
izon will be distorted by the gravitational field of the hole.
This problem was considered in mathematical detail in
Sec. IIIC, but here we are interested in the qualitative
features of the solution which can be derived intuitively.
Immediately we see that, since the stretched horizon
behaves like a conductor, the horizon will be polarized so
that charges of the opposite sign are induced in the region
under the charge, and the electric field lines will bend to
strike the stretched horizon normally.

It is as an aid to intuition rather than as an explicit cal-
culational tool that the membrane viewpoint may find its
greatest utility. Although this paper has done no calcula-
tions in Kerr spacetime, it is possible to guess the qualita-
tive features of some results which have been derived in
the past:

Consider a Kerr hole immersed in a uniform magnetic
field aligned with its spin axis. It is natural to regard the
stretched horizon of a Kerr black hole as behaving essen-
tially like a rotating conducting surface. A spinning con-
ducting sphere in a magnetic field will develop a charge
separation, positive at the equator and negative at the
poles, which by Eq. (2.6a) tells us that there will be a nor-
mal electric field coming out of the equatorial region and
going into the polar regions. Hence we see that the rota-
tion of the Kerr hole couples with the magnetic field to
produce a quadrupolar electric field structure. This is
verified by the field explicitly calculated by Wald®?, and
the analogy is discussed further by Phinney>® and in Ref.
18.

As another example, one which enables us to examine
the effect of an electromagnetic field on the dynamics of a
black hole, we consider a Kerr hole immersed in a mag-
netic field inclined obliquely to its spin axis. For a rotat-
ing conducting sphere in an oblique magnetic field, we
know that the electromagnetic torque on eddy currents in
the sphere would tend to slow the spin of the sphere and
also to align the spin with the field. Hence we would ex-
pect the spinning hole to line up gradually with the mag-
netic field and the entropy of the black hole to be in-
creased by the Joule heating due to the stretched-horizon
currents. This result was conjectured by Press*® and prov-
en by King and Lasota*®® and interpreted in terms of hor-
izon currents by Damour.’

The interaction of rotating holes with electromagnetic
fields is treated in considerable detail in other papers of
our series: paper II (MT) and the review paper'® which
our group is now writing.

This paper has tried to motivate the adoption of the
membrane viewpoint not only as a calculational tool in
solving problems, but also as an aid to intuition in think-
ing about these problems. As was emphasized above,
there is no difference in the physical predictions of the
membrane viewpoint and other viewpoints; they are both
consequences of general relativity and are thus mathemat-
ically equivalent. They differ solely in the aspects of the

physics which they emphasize and in the array of mental
pictures they present as aids to intuitive understanding of
physical problems. This paper has attempted to show
that, for problems involving dynamical electromagnetic
fields around black holes, the mental pictures conjured up
by the membrane viewpoint are much more apt for a
physical description of the problem than are those con-
jured up by older viewpoints of black-hole horizons.
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APPENDIX

. For a point particle of charge Q and mass m moving in
flat space with four-velocity u*, the equations of motion
including radiation reaction are*!
F* = Dp* _ B__ 202 H v

et = =mat—5Q%a" —uta‘a,), (AD
where F*, is the external four-force, p* is the total four-
momentum of the particle and its electromagnetic field,
at*=Du"/ds is the four-acceleration, and the overhead
dot indicates differentiation with respect to the charge’s
proper time s. Since Eq. (Al) is generally covariant, it
must be valid in Rindler coordinates. We choose
kinematic quantities appropriate to a charge moving with
constant ZAMO-measured velocity dx/dr=[3e,:

ub= (V/ao,Yﬁ,O,O) >
a*=(0,0,0,g572/ ) ,
a*=(ghv?/a3,0,0,0) ,

where ’]/E(I—BZ)—I/ 2, and where aq is the value of the
lapse function at the position of the particle. When con-
verted to a ‘“per wunit universal time” basis,
d /dt =(ay/y)d /ds, the rate of change of the x momen-
tum of particle plus field as computed from Eq. (A1) is

dp* @ dp* @ 2 022 ¥'B
—— = :—F‘x=— M
dt v ds v 3 Q 8H o ’

and the rate of change of “energy at infinity” — p, of par-
ticle plus field is

(A2)

—dp, ao dp: A dp! g t 2.2 2, 402
dt ~  y ds vy ds_7F~3QgHYB'

(A3)

By conservation of momentum, Eq. (A2) gives the rate of
flow of x momentum into the horizon, and the corre-
sponding rate of flow of angular momentum into the hor-
izon is
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dJ . dp* 2 Q%h
E=(2Msm90)75—t—=(2M51n60)§ o VB (ad
[Eq. (3.29)]. By conservation of energy at infinity,

—dp,/dt is the rate of flow of energy at infinity into the
horizon, i.e., the rate of increase dM /dt of the hole’s mass
[Eq. (3.26)]. The results derived here agree with the re-
sults obtained from explicit evaluation of the surface in-
tegrals (3.25) and (3.28).
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