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Quantum relativistic oscillator. II. Nonrelativistic limit and phenomenological justification
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It is shown that the quantum relativistic oscillator with noncommuting internal momentum and
position has as its nonrelativistic contraction limit the usual three-dimensional oscillator. The non-
relativistic limits for representations with integer and half-integer spin are compared with the
quark-model picture. The spectrum predicted by the quantum relativistic osci11ator with rotations is
compared with experimental hadron spectra.

I. INTRODUCTION

This paper continues work on the idea—taken from
molecular and nuclear physics —that low-energy (mass)
hadron spectra and hadron structure can be described as
collective phenomena in terms of relativistic. vibrations
and rotations. As for the quantum relativistic rotator'
(QRR) we require also of our quantum relativistic oscilla-
tor (QRO) three distinct correspondences: (a) the classical
(Bohr) correspondence to the lowest mode of the classical
relativistic string, (b) the elementary correspondence to
the relativistic mass point, and (c) the nonrelativistic
correspondence to the nonrelativistic quantum oscillator.
(a) and (b) have been discusssed in I (Ref. 2); here we will
discuss (c).

Whereas the QRR in the nonrelativistic and classical
limit' could be interpreted as a rigid dumbbell (diquark
dumbbell), the QRO is to be interpreted as a diquark vi-
brator in this limit. To come as close as possible to the
conventional quark model the dumbbell angular momen-
tum j, i.e., the spin of the extended object, must have a
contribution from the quark spins. For the representa-
tions of the relativistic spectrum-generating group
SO(3,2) considered in I, s =j;„waszero and the nonre-
lativistic limit was the usual spinless three-dimensional
oscillator. In order to obtain relativistic oscillators with
spin, we will study in Sec. II certain other representations
of SO(3,2), for which s = —,', s =1, and s = —,'. In Sec. III
we derive the nonrelativistic limit of the QRO.

In the last section of the paper we give a comparison
between the predicted spectra and the experimental had-
ron spectrum. For the s =1 case the predicted spin spec-
trum is different from the s =0 case fitted in I, we will
get here different values for the v unit 1/a' and the j unit

Our best predictions from the representations with
s = 1 are very close to the linearly rising Regge trajectories
(with a'=1 GeV ) for the "yrast" states with v=j plus
small rotational corrections depending upon j (j+ 1),
whereas for the s=0 representations we had obtained
I/a'=0. 5 GeV and A, =0.12 GeV . Baryons are treated
on the same footing using the SO(3,2) representations with

1
S 2 '

II. SOME SINGLETON REPRESENTATIONS
OF SO{3,2) AND THEIR GROUP CONTRACTION

The Casimir operators of SO(3,2)i. s (p, v=0, 1,2, 3)
p7 p~

C(2) ——I„I"+—,
' S„S"

=r, —r, r, —s,p, ,+ —,s,,s,,
(summed over p, v=0, 1,2, 3 and i,j=1,2, 3) and

C(g) ———[W~W" +( , eq pQ" S—t' ) ],
where

8'p ———,ep„p~S "~I

For the singleton representations of SO(3,2) (Ref. 4),

@=eigenvalue of I o,

j (j + 1)=eigenvalue of —,
' SJSJ,

j3——eigenvalue of S~2,

(2.1)

(2.2)

(2.3)

(2.4)

p;„(p,„)=lowest (highest) value of p,
s =lowest value of j,

and the eigenvalues of the Casimir operators

—R =eigenvalue of C~q~,

P& ——eigenvalue of C~4~,

(2.5)

(2.6)

are given in terms of p;„and s. There exist the following
subclasses:

(a) s=0, p;„&—,', with

—R =(p;„——, ) ——, ,
3 2 9 (2.7a)

are a complete set of labels (quantum numbers) for the
basis vectors

~ pjj3 ) in an irreducible-representation
space. %'e will consider only unitary singleton representa-
tions for which ro is bounded from below (or from
above). The representations in this class are characterized
by the two numbers
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(b) s = —,', p;„)1, with

. —32—3
(pmin 2 ) 2

(c) s =1,—', ,2, —,', . . . , p;„=s+1,with

—R =2(p;„—1) —2=2s —2 .

(2.7b)

(2.7c)

s+ 1

j =s+Z

+ 1,
l I

"" iI . +2, s
III in

+2, a+i
IIIin

!
+2, s+2

IIIin

I

I
l""
) u

] min

l I

s
l

For all of these representations the value of the fourth-
order Casimir operator is given by

P& ——s (s + 1)[—R —(s —1)(s +2)] . — (2.8)

P;=P;, (2.9a)

The multiplicity pattern or E type [reduction with respect
to the maximal compact subgroup SQ(3)SQ(2)] for the
representations of subclass (a) is given in Fig 3.of I, ex-
cept that for p, ;„=—,

' the representation splits into two ir-
reducible representations, one consisting only of the boxes
along the first diagonal p=j+—,

'
(a Majorana representa-

tion) and the other, consisting of the remaining boxes,
which is equivalent to the representation s =0, p;„=—,.
The multiplicity pattern for subclasses (b) and (c) is given
in Fig. 1, except that for s= —, and p;„=1this pattern
also splits into two irreducible representations, one con-
sisting only of the first diagonal p=j+ —, (again a Ma-
jorana representation) and the other being equivalent to
the representation s = —,', p;„=2.

Inonii-Wigner group contraction of some SO(3,2) repre-
sentations' with respect to SO(3), in which SO(3,2) goes
into the semidirect product of the rotation group SQ(3)
and two translation groups, has been considered before for
a different class of representations. That the oscillator
algebra in n dimensions can be obtained from SO(n +2)
has been discussed in Ref. 6. The contraction of represen-
tations of subclass (a) through a sequence of representa-
tions has been described in detail in another paper. Here
we review it briefly together with the contraction of repre-
sentations of subclass (b).

Before we can do this in a physically transparent way
we have to introduce the Galilean mass obtained in the
group contraction of the Poincare group into the extended
Cxalilei group. It was summarized in Sec. I C of Ref. 1(c)
and entails the relations

FIG. 1. Multiplicity pattern for the representations of sub-
classes (b) and (c), except that for s =

2 and p;„=1 this pattern
splits into two irreducible representations. The two values in the
boxes are [(eigenvalue P„I"),j] wherej (j + 1)={eigenvalue fV).

Instead of {eigenvalue P@I &) we use later in Fig. 4 v=eigen-
value I'„I"—1 and in Fig. 5 we use v= eigenvalue P„I""
+1—p;„.Thus v has always the values v=1,2, 3, . . . .

o
STD , I;,mc cx

(2.10b)

S,J
——S,J .

(2.10c)

(2.10d)

1/c is the contraction parameter, and the factors m of di-
mension mass and a' of dimension (mc) [which is the
parameter occurring in the Hamiltonian (2.33) of I] have
been chosen so that h is an operator of dimension 1, g; an
operator of dimension cm, and m; an operator of dimen-
sion momentum. The powers of c in (2.10) are such that
SQ(3,2) is contracted with respe'ct to SO(3)s„.

1J

The contraction 1/C~O of the representation is now
performed in the usual way by going through a sequence
of irreducible representations in which the contracted gen-
erators I;, S;o, I o grow to infinity in such a way that

(2.11)

where P ', ~ i ', h ' ' are finite nonzero operators which
together with SIJ fulfill the commutation relations of the
algebra for the three-dimensional oscillator. In order to
achieve this, one has to let the eigenvalue ( —R) of the
operator Ciz) of Eq. (2.1) go to infinity such that

Pp ——mc+ —H+01 1

c C
(2.9b)

1 1 1
eigenvalue of Ciz) ——— R ~finite value as ——+0 .

c4 c' C

(2.12)

PpP" =Po —P

=(mc) 1+ z (2mH —P )+0
(mc) C

p 1
gI = SOI

mc
(2.10a)

(2.9c)

Here m is the Galilean mass, H the nonrelativistic energy
operator, and the nonrelativistic momentum on the right-
hand side of (2.9a) has again been denoted by P;.

We can now define the generators go, m, , h, and S;J
(i,j=1,2, 3) in terms of the generators of SO(3,2):

p ~oo such that —p~m =Galilean mass .2 1

c
(2.13)

m is a finite value which we are free to choose and we

Using (2.7a) or (2.7b) this means one has to let p;„~oo

such that —(1/c )R goes to a finite value, which we can
choose and which characterizes the representation of the
group obtained by the contraction.

Occurring simultaneously with the contraction of
SQ(3,2) is the contraction process of the Poincare-group
representations characterized by the eigenvalues of
P„P"=p=p (v) into the extended Galilei group repre-
sentations. This proceeds via the sequence of representa-
tions
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choose one and the same value m for every p (v).
We now couple the two contractions (2.12) and (2.13)

by requiring that ( —R) be taken to infinity such that

It was already shown in Ref. 1(c) that

(3.4)

—R =P (mc)"a' (2.14) Using (2.10), (3.2), (3.3), and (3.4) one sees therefore that
(3.1) goes into the identity 0=0 for p or v=0 and into

where /3 is an arbitrary dimensionless number which we
will fix later. That the condition (2.14) is reasonable fol-
lows from the fact that —R goes to infinjty like c and p
goes to infinity like c.

From the second-order Casimir operator (2.1) we obtain
using (2.10) and (2.14)

I o ——p m c a' +(mca') (n ) +(mc) (g ) —,S—~S&

[g,' ', gj ']=0 for ij =1,2, 3 . (3.5)

1 1
u—, i, y2 g„PP)P

(P&P" )

one obtains using (2.9) and (2.10)

(3.6)

For the intrinsic momenta, which according to (2.44) of I
are given by

I o /3m——2c'a' 1+, , ~
(n)'+. , 2, (P)'

m; = m. , +P; mc+ —[a'pm c +O(c )]a'(mc) c

1/2
1 1

p'm 'c'a'
Expanding the [ ]' in powers of I/c we obtain

r, =ma' I Xpmc'+ (wo)'+, (pop02 1 02
2Pm 2Pma' '

or

+0 1

C

r

ir; =~;+PP;+0p 1

c2
(3 7)

+0 1

c

Thus in the nonrelativistic limit

(3.8)

=(mc)a'p 1+ (m ) + (g)
2P (mc) 2P a' (mc)

where according to (4.3a) of Ref. 7, and the CR of P;, the
' commute. For the p =0 component we obtain using

(2.9) and (2.10)

+0 1

C
(2.15)

7Tp-
A mc

mcP'
I p

—I 0— mco. 'm —+0 .
(mc)

(3.9)

III. THE NONRELATIVISTIC LIMIT
OF THE QRO

Using (3.8), (3.9), and (3.4) one thus sees that the CR [cf.
(2.46) of I]

We shall now consider the nonrelativistic limit of the
relativistic observables g'& ———dz, m.

&
and their relativistic

commutation relations. For d& and the commutation re-
lation (CR)

1[~„,~,]= i-a' '(P„P")
goes into the identity 0=0 for p or v= 0 and into

(3.10)

l
[d~,d„]= — X„,,(PpP" )

(3.1)
[m'; ',

m& ']=0 for ij =1 2 3 .

For the CR [cf. (2.45) of I]

(3.11)

this was already done in detail in Ref. 1(c). One obtains
[gp, n.„]=i(g~ P—„P),—

C
(3.12)

P P Pi
P„P" P„PI' P„PI'

r

p mc 1= —mcg; +0
(mc) c

where we have used (2.9) and (2.10). Thus

ko= —do (3.3)

—d, =g, =g,'+0 —~f,""'=fI"', . (3.2)
C

where according to (4.3g) of Ref. 7 the g,'
' commute.

Similarly one shows

one obtains in the nonrelativistic limit using (2.9), (2.10),
(3.2), (3.3), (3.8), and (3.9)

[g,'"',m'"']= ig; =i5;— (3.13)

Therewith we have shown that in the nonrelativistic
limit, the relativistic noncommuting intrinsic coordinates
and momenta of the extended object go into operators that
fulfill the conventional three-dimensional Heisenberg CR.
The relativistic CR (3.1), (3.10), and (3.12) are therefore
relativistic generalizations of the usual three-dimensional
canonical commutation relations.

We shall now consider the relativistic Hamiltonian
(2.33) of I,
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A =U(P„P" —,P„I"),
0!

(3.14) (P~P&) =(mc) 1+ (2mH —P )+01 2 1

(mc) C

3/2

and the constraint relation [(2.34) or I] that follows from
it, = (mc) 1+—

2 (2mH —P )
2 (mc)

(P P~)'" —P 1~=0.'1
|M C

From (2.9c) we obtain

(3.15)
(3.16)

1+0
c

Inserting this, (2.15), (2.10), and (2.9) into (3.15) we obtain

(mc) 1+—
2

(2mH —P ) —mc+ H(m—c) p 1+ (m ) + z 2 (g ) —mcP, .2r, +O — =() .
2 (mc)2 c 2(mc) p 2(mc) (a'p) ' ' c c

Rearranging terms this goes into such that %.; and g'; fulfill again the canonical CR (3.13).
Inserting this into (3.18) we obtain

(mc) (1 —P)~(mc) —(2mH —P )—PmH
2

p2

2m 2p (4m a')2 (3.20)

(m ) —,(g' ) —P;m.;
02 1 02 0

2P Pa'
1+0 —=0.
c C

(3.17)

+ —(~')'+, (g')'+2P, ~',
3P 1 1 02 1 02

c 4m 2m 2

From this we conclude that the arbitrary factor in
(2.14) has to be chosen p= 1. Then the second term on
the left-hand side of (3.17) gives

1 nr Os r8 0
'

TeonrgS m' me+ (3.21)

This is the energy operator of the vibrating dumbbell
with g being the distance between the two masses and
k =p/(2ma') is the potential constant. Thus the nonre-
lativistic limit of the QRO can accommodate the picture
of a vibrating diquark system, but it does not predict it,
because the n'; ' and g,'

' in (3.18) could also be interpret-
ed differently.

To interpret the angular momentum of the QRO we
consider the fourth-order Casimir operator in the nonrela-
tivistic limit. If we insert (2.10) into (2.3), we obtain

If we use (3.8) with p= 1 and (2.2) this can be rewritten in
the limit c—+~ as

p2
~( co )2+ g( 00 )2

c 2m 4m 4mo. '2 (3.18)

We have thus obtained for the Galilean energy the ener-

gy operator of a harmonic oscillator with translational de-
grees of freedom that moves as a whole with momentum
I'; and has a total mass m.

To make this more explicit we will now think of a vi-
brating dumbbell, i.e., two masses m& and m2 that in-
teract with a harmonic potential characterized by a con-
stant k. Its reduced mass

and using also (2.15),

II m =~mnro(T)S""I +S "I ) (Emnro =~mnr)

=em„ro( , S"" g "m. ")(m—c)a—'+O(c ) .

pe po mn ro
8 ~pvpoS 2 ~mnro 2 Smnro mn ro

1 0 0
2 ~mnrSmngrmC SrkrmC

where

1

Sr =
T. ermnSmn

(3.22)

(3.23)

m)m2p=
m(+m2

m)m2 Inserting this into the fourth-order Casimir operator C(&)
we obtain

is used to define a new momentum %.; in terms of the n.,'

by
1 0 0

C(4) ~mnr
2

Snr kn ~r
(mc) a'

2

+0 1

c

(ao)

4m

2p
g(ao)

and then a new position
1/2

(3.19a)

(3.19b)

(3.24)

The eigenvalue P) of C(4) is given according to (2.8)
and (2.14) by

P( ——s (s + 1)[(mc)"a' —(s —1)(s +2) ] .

Inserting this into (3.24) we obtain
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eigenvalue[em„„( —,
' S„„—g„m„)]=s (s + 1)+0

C2

3
s —0 —1 —.. -

2 2

This result suggests that we define an operator

Sm =Emnr( 2 Snr gn re ) =Sm Emnrgn err

(3.25)

After contraction, 1/c~0, we obtain from (3.25) that the
square of this vector operator SmS =S is an invariant
and has the eigenvalue

S =s(s+l)I . . (3.27)

It is anan'gular momentum operator, i e , f. u.lfills the CR

( Sm Sn 1=~ ~mnrSr (3.28)

(3.26) therefore says that the spin of the extended object is
the oscillatory orbital angular momentum e „,g„'
plus the angular momentum S

0(oo) O(oo)
Sm =~mnrkn )rr +Sm (3.29)

This new angular momentum Sm must therefore be the
total spin of the constituents.

Using (3.8), (3.2), and (3.4), the relation (3.29) can also
be expressed as

(g(aa)~(aa) g(aa) (aa) g(aa)p +g(aa)p )

y ( oo ) p( oo ) ( oo ) + g( oo ) ( oo )
nr hn ~r +br ~n (3.30)

which again says that (for P„&0)the spin of the extended
object X( ' is the sum of the orbital angular momentum
and the total spin of the oscillating constituents:

(3.31)

The value s of the angular momentum S; has a mean-
ing already before contraction, i.e., for the relativistic
model. It is the number which together with ( —R)
characterizes the representation of SO(3,2); only for its in-
terpretation in terms of the constituents of the extended
object does one need the nonrelativistic limit. We will,
therefore, call s the total constituent spin of the QRO also
before contraction.

For the subclass of representations (a), s =0 and there-
fore the operator S =0. Thus the QRO model with rep-
resentations given by the multiplicity pattern in Fig. 3 of

which follows immediately from the CR of S„„andfrom
the CR of g„' ' and m

'"' obtained in (3.5), (3.11), and
(3.13).

' and mJ' ' are the intrinsic position and momen-
tum of the three-dimensional oscillator at rest (i.e., when
the momentum of the system as a whole is PJ ——0).

is therefore the orbital angular
momentum of the oscillating constituents. The intrinsic
orbital angular momentum of the oscillator, S, is-
according to (2.26) of I—in the rest frame the spin of the
extended object,

Xmn =Smn
rest

paper I has as its nonrelativistic limit the ordinary three-
dimensi. onal oscillator with constituent spin equal to zero.
The spin of the extended object, j, is equal to the oscillato-
ry angular momentum and in the nonrelativistic limit
j(j+1)is the eigenvalue of (p '&&n ( ') .

The multiplicity pattern in Fig. 1 with s = —, describes
the QRO model with total constituent spin equal —, (spin-
ning relativistic string). It would be a candidate —after
parity doubling to include the antiparticle spaces —for the
description of baryon resonances with the j~= —,

' baryon
as the oscillatory ground state. The contraction limit of
the QRO does not tell us anything about the number of
constituents, it says only that they are oscillating and that
the sum of their spins is —,

' .
For the vector mesons p, co, E*-, the quark model

requires that the total constituent spin be 1, with the
masses m~ and m2 having spin —,

' each. Thus the p,
co, . . . towers should be described by a QRO with multi-
plicity pattern given by Fig. 1 with s =1. The lowest
state of this QRO, the ground state with oscillatory angu-
lar momentum g' 'Xm ' ' equal to zero, is the state with
)M=2, j=s=1. p (or co or K' ) is assigned to this
state and there is no state in this representation with mass
lower than the p mass. Negative values of m cannot
occur in this representation. We will see in Sec. IV that
this representation gives an equally good fit to the normal
j and positive C„Presonances as the fit shown in Fig. 4
of I, but the values of the empirical parameters 1/a' and

are now different with a' being about 1 GeV without
causing the problems of negative mass squared.

The physical intepretation of the nonrelativistic con-
traction process is not clear to us. In general one would
always require of a new theory describing a new domain
of physics to correspond in a certain sense to the old
theory when the new domain of applicability is restricted
to the old familiar domain. Thus the quantum oscillator
should become the classical oscillator when the observ-
ables are commuting and the theory of the relativistic os-
cillator should become the theory of the nonrelativistic os-
cillator when the I/c~0 limit is taken. For the contrac-
tion limit of the symmetry group there exists a physical
counterpart: one can arrange the velocities such that the
motion of the mass point becomes nonrelativistic. How-
ever, this need not be true for the intrinsic dynamics. It is
not clear whether one can by any manipulations make a
relativistic oscillator into a nonrelativistic one. So the vi-
brating dumbbell is not an attainable limit, but just an ap-
proxirnate theoretical picture, and this picture is the better
the less uncommuting the "intrinsic" position and
momentum coordinates are. From Eqs. (2.10a) and
(2.10b) or (3.1) and (3.10) one sees that this approximate
picture is better for larger values of the hadron mass mc.

A =U(P„P" , P„I"m() ), ——(4.1)

IV. EXPERIMENTAL EVIDENCE FOR THE QRO

We have derived two mass formulas for two different
models. For the QRO model we obtained from the Ham-
iltonian
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the mass spectrum'

2 —2 1
m =mo +,v„v=0,1~2~. . . ,

A'

j=0 or 1, . . . , v. (4.2)

mo and mo are arbitrary constants with mo depending
upon mo and the choice of the value p;„for the SO(3,2)
representation in Fig. 3 of I or in Fig. 1. [In I we have
omitted the irrelevant constant mo and absorbed it in
(I/a')p;„.] v and therewith m is degenerate and the
different values of spin j for which (4.2) gives the same
mass are given by the columns of the pattern in Fig. 1 or
Fig. 3 of I.

For the QRR model we obtained from the Hamiltoni-
an

A =u(P&P" A, W —mo ),—
the mass spectrum

m =mo +A, j(j+1), j=0, 1,2, . . . .

(4.3)

(4.4)

j is nondegenerate and the values of j are given by the pat-
tern in Fig. 2 of I (and a corresponding pattern for half-
integer spin with j= —,, —, , —,, . . .). One may combine both
models in the same way as one combines the rotator and
oscillator of molecular physics to obtain the vibrating ro-
tator.

If one takes for this model the Hamiltonian

A = u (PqP" , Pq I "——A, W —mo ),
A

then one obtains the mass spectrum

(4.5)

m =mo +, v+A, g(g+1) .
CX

(4.6)

%'e have not yet constructed such a model and do not
know whether there would be theoretical difficulties
which may prevent this. But we want to give here an
empirical test of (4.6) and determine the j mass unit

(j un) k and the v mass unit (vun) I/a' from the experi-
mental data. (4.6) includes (4.2) as the special case A, =0.

In molecular physics j un is about three orders of mag-
nitude smaller than vun and in nuclear physics jun is
more than one order of magnitude smaller. One may,
therefore, expect that A, will be much smaller than 1 fo.".
If the analogy with molecular physics prevails one may
also expect to have correction terms to (4.6) of the form v
(anharmonicity) and vj(j+1) (vibration-rotation interac-
tion); we will not include these terms in our fits.

In order to make fits of the meson and baryon reso-
nances we have to group them into towers whose members
are considered as different states of the QRO with dif-
ferent quantum numbers v and j. Each tower is described
by the reducible representation space of the Poincare
group,

the representation space (3.11) of I which belonged to the
pattern of Fig. 3 of paper I. Whereas the value of j for
each resonance is known from experiment, the problem is
the assignment of the new vibrational quantum number v
to the observed resonances. Assigning the resonances in
order of increasing mass to boxes of Fig. 3 in paper I, for
which v increases in steps of 2 for a fixed value of j, will
lead to a different empirical value for I/a' than assigning
them to boxes of Fig. 1 (with s =1), where v increases in
steps of 1. Here we will do the latter, expecting for I/a' a
value approximately twice that of the value obtained for
Fig. 3 of paper I.

%'e choose first the mesons with nonstrange quarks and
with CP=+1 and normal j . As the I =0 masses (co

tower) are almost degenerate with the I= 1 masses (p
tower) we have fitted them jointly to (4.6) (exchange de-
generacy). The result of this fit is given in Fig. 2. Each
box gives on the left-hand si'de (I.HS) the mass value (in
GeV) predicted by the fit and on the right-hand side
(RHS) the particle symbol with the mass that has been
used as input for the fit. If the rhs of a box is empty then
no input for the corresponding values of .(j,v) has been
used. The values of the parameters determined by this fit
are

A
, =1.03+0.05 QeV

k =0.02+0.01 GeV

mo = —0.45+0.04 GeV

The lowest state in this representation is the one with

j= 1, v=—eigenvalue I'&I "—1= 1 so that
m (1,1)=0.78 GeV is the lowest mass predicted for this
model. The "yrast" states with j=v lie on an almost
linearly rising Regge trajectory because A, && I/a'. In ad-
dition there are "daughters" with j=v—1, v —2, . . . , 1

with only slightly lower masses. (For the representation
of Fig. 3 of paper I every second daughter is missing, i.e.,
j=v—2, v —4, . . . , 1 for v=odd and j=v—2,
v —4, . . . , 0 for v=even. ) Every well established reso-
nance with I =0 and I= 1 which does not contain s, c, or
b flavor and for which CP =+1 and j is natural has
been included in Fig. 2, except those with j =0+. On the
other hand, there are places in Fig. 2 for which no reso-
nance has been established experimentally, but none of
these seem to be an embarrassment. The X /nD ——2/16 is
better than the one for the representation of Fig. 3 in I
(which is 8.6/18 for mesons only) but this is really not
relevant. The important advantage of this fit over the one
in Fig. 4 of I is that it assigns to p and co the total constit-
uent spin s = 1 as required by the quark model.

The K tower is interesting because of the recently found
1 resonances" at 1410 and 1790 MeV. Figure 3 gives a
comparison between the experimental resonances and the
masses predicted by (4.6) with the values

A =geA' (m(v, j),j), (4.7) 1/a'=1. 11+0.08 GeV

where g . runs over the values given by, e.g., the pattern
in Fig. 1. In I we have made a fit associating a tower to

k =0.02 GeV

mo ———0.25+0.04 GeV

(4.9)
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3.00j=8

2 ~ 78
'

(2 75), 2 ~ 96/=7

r (2.51)2 ~ 54
g (2 45) 2 ~ 73 2.92

2-28 P(2 35) 2 50 2-. 70 2.88j=5

2.24 &" "'jl(2.03)
g (2.04) 2.66 2.85

1.69 ' 1 97
g (1.69) 2.21 P(2. 20) 2.44 2.832.64j=3

6 e(1.69) 1 94 2 19 ~ 2 41f (1.27)
A (1.31)

2
2.812.62

0 78 1 28
P (0.77)

~
P (1.26) ' P(1.60) 2.61 2.802o18P(218)2 ~ 40

V =7

We see that the new X 's fit in very well.
The comparison for the P or s s tower is given in Fig. 4.

There are not many meson resonances of this kind known
and some of the assignments to this tower may be ques-
tionable. The values of the parameters for this tower are

have no theory for the flavor dependence of a' we would
expect from the nonrelativistic limit (3.20) that 1/a in-
creases with the quark mass, in particular if the potential
constant k is independent of fiavor. This seems to be ful-
filled for all other meson towers, except the P.

There are not enough particles in the c c tower or the
b b tower to provide a meaningful test of our model. But
there are a sufficient number of 1 states to check wheth-
er one can find an assignment for the v quantum number
such that the oscillator spectrum will result.

In (4.11} we give in the last line the experimental
masses in GeV of the c c mesons used in the fit and in the
first line the values of v assigned to them. The second
line gives the values for the masses predicted by the fit
with the parameter I/a'=2. 0007+0.0002 GeV:

I /a'= 1.00+0.09 GeV

k =0.05+0.02 GeV

mo ———0.06+0.04 GeV

(4.10}

Compared with the p, co, and K* towers, we would have
preferred a slightly larger value for I/a'. Although we

2.54
2 ' 41

2.22 2.44
2. 372. 12

K* (2.06) 2.131.88
0 (1.85)

2. 35
1.80

K*(1.78)
2. 342.08

1.80 ' 2.06
f(1.81)

,
c{T (2.16)

2.291.50
f ' (1.53)j=22.06 I 2. 311.41

K* (1.43)
1.76j=2

2.242.011.74
)tl(1.69)

1.02
)tl(1. 02)

1.43
F 04 ' 2.291.38 I 1.74

(("'(1.41)
I

K*(1.79)
0.89

K* (0.89)
v =1 v =3

v =4 v =5=3v =1

FIG. 4. Comparison between experimental data and predic-
tions for the CP =+1,j =normal mesons which are suspected
to be s s. None of the resonances used here have been included
in Fig. 2.

FIG. 3. Comparison between experimental data and predic-
tions of the QRO model for the l(, * mesons. K*{1.41) and
K*(1.79) are from Ref. 12.

FIG. 2. Comparison between experimental data {for the CP =+1, jp=normal mesons) and predictions of the QRO model. The
boxes are as in Fig. 1 except that j now increases upward whereas in Fig. 1 j increases downward. The particle symbol with the mass
value (in GeV) gives the data that have been used as input in the fit to (4.6). The values of the parameters (4.8) have been obtained by
minimizing g with m fitted and with an error taken as Am =I'm, where I is the width of the resonance. When a particle with
I=0 and a particle with I= 1 are listed in one box corresponding to the pair of numbers (j,v), both their masses have been used as in-

put for the place (j,v). The values of the masses predicted by the fit (in GeV) are given on the left side of the boxes. They should be
compared with the values in brackets on the right side of the box. If there is no evidence for a particle with that mass and spin the
right side of the boxes is left blank. Most experimental values are taken from Ref. 13, M(2. 75) is from Ref. 14.
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3.0960
3.0960+0.0001

3.404 3.6860
3.6860+0.0001

3.948
4.030+0.052

4.194
4.160+0.078

4.425
4.415+0.043 (4.11)

For the b b tower the comparison between experimental masses and the mass values predicted by the fit is the follow-
ing (all masses in GeV):

9.4825
9.4600+0.0440

9.771 10.051
10.025+0.030

10.323
10.355+0.017

10.585
10.575+0.014 (4.12)

1/a'= 1.052+0.061 GeV

A, =0.004+0.02 GeV (4.13)

These values are essentially identical with the values for
the nonstrange meson towers.

The fit of the 6 tower is displayed in Fig. 6. The
values of the fitted parameters are

I /a' = 1.19+0.16 GeV

I, =0.00+0.02 GeV (4.14)

and are nearly the same within errors as those for the X
tower.

The vun obtained from this fit is 1/a'=5. 550+0.097
GeV . In both cases there is no experimentally observed
mass for the v=2 state. Were it not for this discrepancy
one could consider the agreement excellent (in spite of
large X due to the small errors). It is remarkable that the
same place (j = I,v=2) is also vacant for the (() and 0)
towers; p(1250) which is assigned to this place in the p
tower also needs more experimental support.

For the baryon resonances one uses the representations
of Fig. 1 with s= —,

' for the X and s= —,
' for the h. We

have made fits to the N, A, X, and 6 towers and have ob-
tained reasonable results. Here we shall only reproduce
the fits for the X tower starting with —,

' and the b, tower
starting with —,

' . The vun and j un values for the A and
X towers are 1/a'=0. 7 GeV, A, =0.08 GeV . The fit
9' /nD ——7.4/9) of the N resonances is given in Fig, 5.
The values of the fitted parameters are

In the fit of the X tower we have only used the reso-
nances with —, , —, , —, , . . . . To all of these reso-&+ 3 — 5+

nances (except the ground state) there is listed in the Par-
ticle Data Group table a partner with opposite parity: —,

In most cases the masses of partners with3 + 5

the same spin and opposite parity are almost degenerate.
This is reminiscent of the I-type doubling in molecular
physics which would suggest that the angular momentum
is not only rotational but contains also—except in the vi-
brational ground state N(939) which is nondegenerate-
vibrational angular momentum. %'ith this degeneracy all
existing low-lying nucleon resonances are accommodated
in the representation of Fig. 5. However, since the masses
of the nucleon resonances, determined by phase shift
analysis, are not well defined and have a large error
(width), the correctness of this fit should not be overes-
timated.

If the slope parameters for the p, co, X, and b tower
agree as indicated by Eqs. (4.9), (4.13) and (4.14), then the
mass-squared splittings within these four towers is the
same (within the large errors), i.e., if we adjust the lowest
m of all tower to the same lowest level, then the vth ex-
cited states of all tower lie roughly also on the same excit-
ed levels. Thus we have one j=—,', two j=1, and one
j=—, state for which the m levels have been adjusted to
be the same and then we have for every @=1,3,5, . . . ,
one j=p/2 state (K ), two j=(p/2+1/2) states (p', 0)"),
and one j=(p/2+1) state (b,*) for which the adjusted m
levels are the same. In nuclear physics such a picture, in
which different nuclei (corresponding to different towers
here) have the same level structure and level spacing, is
taken as evidence for supersymmetries. ' There the inter-

N (1680)

N (1520) N(1700)

N (939) N (1440) N (1710)

N (2 190)

N (2000)

N (2080)

N (2100)

N(2220)

2. 26

2.26

N (2600)

2. 50

Z. 4S

2. 4S

'4'

2.72 2.91

2.71 2.90

2.70 2, 89

2.70 2. 88

2.69 2. 88

2.69 2.&7

2.68 2.87

FIG. 5. Comparison between experimental data and predic-
tions for the nucleon resonances. The resonances used in the fit
have spin-parity j = 2, 2, 2, 2 . . . . Most of them are

~ p 1+ 3 — 5+ 7—

degenerate in mass with a resonance of the same j and opposite
parity.

6 (1232) 6 (1600)

g (1950)

6 (1930)

& (1920)

A (2400)

LL (2390)

d, (2350)

9=4
V

I, (2420)

2.St

6 (2750)

2. 74

2.95 3.15

2.95 3.15

2.95 3.14

2. 95 3.14

2.95 3.14

2.94 3.14

2.94 3.14

FIG. 6. Comparison between experimental data- and predic-
tions for the 6 resonances.
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pretation for this feature is that the additional nucleon of
the even-odd nucleus which is added to the core of the
even-even nucleus couples only weakly to the core. This
would correspond here to the interpretation that an addi-
tional quark is added with weak coupling to the diquark
core to make the baryon, which is not a very plausible ex-
planation.

We have presented in this section the best evidence in
favor of our model. Except for the missing v=. 2 state the
agreement is very nice. An important point is that for the
classes of resonances that we fitted into towers we have
essentially exhausted the existing experimental values and
not just chosen a suitable subset of data. But there are
other mesons, e.g., the ~ and K, which could not be ex-
plained as ground states of an oscillator tower. Masses
and widths often have large errors and as we have total
freedom in the assignment of the new quantum number v
all experimental evidence may be accidental. Still, that
such a simple model can accommodate so much experi-
mental data is remarkable.

So far we have not included electromagnetic or other
external interactions. This one could introduce by
minimal coupling

I'p ~P~ —ed'
leading to an interaction term in the Hamiltonian (4.1) of
the form

As this has the usual form, with I'& corresponding to the
current operator, one could hope to develop a program to
calculate transitions and other interaction properties.
They may provide further experimental tests of our
model.

At the moment evidence can only be provided by the
hadron spectrum, and there the model has not failed. The
greatest point in favor of this model is however not the
magnitude of experimental data that it can reproduce, but
its theoretical beauty. It is simple and soluble and the
mass that it predicts is really the relativistic mass by
which a hadron is defined.
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