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Helicity amplitudes and Regge behavior for simple planar hadron amplitudes
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Helicity amplitudes for the simplest zero-entropy hadron amplitudes in topological particle theory
are constructed. The kinematic singularities and the Regge asymptotic behavior of such amplitudes
are studied in detail. The importance and effects of planar but nonzero-entropy corrections, which
are expected to bring the zero-entropy amplitudes into reasonable agreement with the physical
world, are discussed.

I. INTRODUCTION

Experience over a number of years with hadron scatter-
ing amplitudes p—articularlyw, ith various forms of dual
resonance models —has indicated the physical importance
of planar amplitudes. ' The approximate exchange degen-
eracy of observed Regge trajectories is one such indication
of the dominance of planar contributions. '

Topological particle theory (TPT), which gives a fully
relativistic theory of quark-constituted hadrons, has as its
basic approximation planar zero-entropy amplitudes.
Other planar contributions involving "chiral" and "color"
switches are expected to modify the zero-entropy approxi-
mation in an important way. Et is expected that, just as
earlier, ' the dominant planar contributions should provide
a reasonable approximation to the physical world in the
case of hadron processes.

To set the stage for calculating the general planar con-
tribution, we examine here the properties and the Regge
behavior of zero-entropy helicity amplitudes. As in ear-
lier work, the helicity amplitudes are very convenient for
studying Regge behavior and thus for examining the
asymptotic bounds on amplitudes.

We begin by showing how kinematic singularities arise
in the zero-entropy helicity amplitudes. Then we study
the Regge behavior of these amplitudes. At the zero-
entropy level there is only one stable particle of mass mo
and five degenerate elementary particles having mass mo
but different spins. Correspondingly, there are five
parallel, nonlinear Regge trajectories separated by a spac-
ing of —,. We indicate that the bilinear unitarity-type
self-consistency constraint does not suffice to ensure that
the zero-entropy helicity amplitudes satisfy the Froissart
bound. Higher-order planar corrections must accomplish
this. Further, we shall see that the zero-entropy Regge
trajectories do not possess the ranking which is observed
physically. Again we indicate the expected role of
higher-order planar corrections in breaking the above
mass degeneracy and reordering the trajectories.

in Fig. 1. If in the graph in Fig. 1 the lower part consists
of incoming particles and the upper part outgoing parti-
cles, the process represented is just meson-baryon scatter-
ing. The small arrows adjacent to the quark lines called
the patch structure determine the spin dependence. A
quark line for which the adjacent small arrow agrees in
direction with the quark line direction is called an ortho-
quark. If the adjacent small arrow disagrees in direction
with the quark line direction the quark is called a para-
quark.

An orthoquark has a spin dependence arising from a
scalar product of two two-component spinors with dotted
indices —upper dotted indices being associated with the
tail of the quark line and lower dotted indices being asso-
ciated with the head of the quark line. A paraquark line
involves scalar products of spinors with undotted
indices —lower undotted indices being associated with the
tail of the quark line and upper undotted indices being as-
sociated with the head of the quark line.

As an example the spin dependence associated with the
left-most quark line in Fig. 1 is the scalar product

where uD and uz are the four-vector velocities for parti-
cles D and A and PD and Pz are two-component rest

I' (

II. ZERO-ENTROPY HELICITY AMPLITUDES

A zero-entropy amplitude is represented graphically by
quark and diquark lines which have a planar structure
consisting of untwisted quark lines. An example is shown FIG. 1. Example of zero-entropy amplitude.
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frame spin states for the out-quark and in-quark. Had the
left-most quark been a paraquark the spin dependence
would have been the scalar product

f(7r or f) '(r

To find the form of the negative helicity state in the ex-
ample above we simply replace the rest-frame spinor (c)
by (() and find

9 (uD O'D)9 (uA 4'A ) (2.2)

The complete zero-entropy amplitude entails a product of
factors of the form (2.1) or (2.2) for each quark line to-
gether with a multiplicative Lorentz-invariant scalar func-
tion f(p„,p~,pc,pD) (Refs. 5 and 7).

The spinors in (2.1) and (2.2) can be written as boosts
applied to rest-frame spin states. ' For example,

V 0
rP(u, P) =exp —A, (2.3)

g+—(u, n(8, $)}=R($,8, g)B,(A.)P—+, ' (2.4)

where r}-+(u,n(8„$)}are + helicity states for the momen-
tum direction n(8, $) and &II&~ are rest-frame spin states
with a z spin projection of + —,. B,(A, ) is a boost along
the z direction Q, &0) and R($,8, —P) is a rotation with
the parameters corresponding to the three Euler angles.
Equation (2.4) is a general expression and we have
suppressed labels indicating whether q

—is an in- or out-
state and whether its indices are upper or lower, dotted or
undotted. The detailed form of R, B, and P+ will, of
course, depend upon these properties. For example, for an
in-state with upper dotted indices and positive helicity
(2.4) will take the form

T

—iso'3/2 —i Ha 2/2 i go 3/2 —A,cr3/2
(u n)=e e e e 0

cos8/2
e '&sin8/2 (2.5)

A distinct advantage of the conventions we have used in
(2.4) is that if we wish to consider a helicity state moving
in the opposite direction (i.e., n~ —n), the form of that
state written in terms of 8 and g will be the same whether

p=mv sinhA. ,

where we shall conventionally take A, & 0 and thus v is the
direction of the three-momentum p.

We now wish to introduce helicity states and then con-
struct center-of-mass helicity amplitudes for four-particle
amplitudes of the general type shown in Fig. 4 where
A+B~D+C. It is convenient to adopt the more or less
standard convention for helicity states, namely,

~ ( —)( n) &(./2
—e '&sin8/2

cos8/2 (2.6)

cos8/2
( + )

( u ~n ) e A, /2 (2.7)

( —) (u ~n)
—A./2

—e'~sin8/2

cos8/2 (2 g)

For incoming ortho-antiquarks we must use lower un-
dotted indices. The positive-helicity state is given by

~+ ~ ~ ifu3/2 —i8cr2/2 —ifo3/2 A,o3/2 0
,.„(u,n) =e e e e

J

—e '"sinO/2

cos8/2 (2.9)

The negative-helicity state for an incoming ortho-
antiquark is obtained by replacing the rest-frame spinor
(() in (2.9) with the spinor (o), which gives

cos8/2
'II ~; (u&11).=e (2.10)

The outgoing states corresponding to (2.9) and (2.10)
have upper dotted indices and have the form

r

a(+ )( ~n) e k. /2
—e '("sin8/2

cos8/2 (2.11)

cos8/2
rjout (u&n) =e

&&t 2
~

e slQO j (2.12)

The states (2.5) and (2.6) correspond to incoming ortho-
quarks. Incoming paraquark states are spinors with lower
undotted indices and have the same form as (2.5) and (2.6)
except that the sign of A, in. the exponent is reversed. This
turns out to be a general rule: paraquark or para-
antiquark states can be found by simply changing the sign
of &((, in the corresponding orthoquark and ortho-antiquark
states. So for simplicity we shall restrict our. discussion
and examples to orthoquark and ortho-antiquark states.

The outgoing states corresponding to (2.5) and (2.6)
have lower dotted indices and have the form

TABLE I. Helicity states for orthoquarks and antiquarks with momentum direction n(8, $).
s=sin8/2, c=cos8/2.

Antiquark

In
C

e —A, /2
e'&s

—e-'@s
e A, /2

C

—e+'&s
e —A,/2

C
e A./2

C

e -'&s

Out e A, /2
C

e -'&s e —A./2
—e'&s

e A, /2
—e-'@s

e —A, /2
C

e'&s
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TABLE II. Helicity states for orthoquarks and antiquarks with momentum direction —n(8, $).
s =sin8/2, c =cos 8/2.

Quark Antiquark

—A,/2 —e'&c

e-'&c
e A, /2

S

+e+'&c
e —A,/2

S
A, /2 —e-'&c

Out k./2 —e-'&c
e +inc

e —A, /2
e -'&c

e A, /2 e
—A./2

S

—e+'&c

We have given here the complete set of spin states for
orthoquarks and ortho-antiquarks. To obtain the corre-
sponding states for paraquarks and para-antiquarks we
simply (i) change the sign of A, in (2.5)—(2.12), and (ii)
make all indices undotted and raise lower indices and
lower upper indices in (2.5)—(2.12).

The results of this section are summarized in Table I.
Again, if the sign of A, is everywhere reversed in Table I
the spin states for paraquarks and para-antiquarks will re-
sult.

Since in the succeeding sections, we shall use the helici-
ty states in Table I in the center of mass of 2 particle —+2
particle amplitudes of the type shown in Fig 1, w.e have
recorded in Table II the corresponding helicity states for
the momentum direction —n(8, $). Table II is derived
from Table I by making the transformation:

(2.13)

III. KINEMATIC SINGULARITIES
OF HELICITY AMPLITUDES

We shall now verify that the kinematic singularities of
the zero-entropy helicity amplitudes are of the expected
form. s We assume a scattering amplitude of the general
type shown in Fig. I corresponding to the process
3 +B—+D+ C, although we shall also consider more gen-
eral quark structures with either single quarks or diquarks
connecting particles A, B, C, and D. We work in the
center-of-mass frame and assume particle 3 to be moving
along the positive z direction. We assume particle D
emerges in the x-z plane and thus take /=0, with 8 the
scattering angle as shown in Fig. 2.

The helicity amplitude we consider can be written

have kinematic zeros of the form

T(s,cos8)-(sin8/2) "' "' (cos8/2) "'

Pi=Pa —Pa

p2=pD —pc
Helicity amplitudes of the form (3.1) can be written

T&"„& (s,cos8) = I S "' ' ' ' f(s,cos8),

(3 2)

(3.3)

where I is a phase factor discussed fully in Refs 5an.d 9.
S "'' '

is the spin structure factor which simply con-
sists of pairs of Lorentz-invariant spin factors for each
quark line of the type (3.1) for each quark line in the dia-
gram and f is a Lorentz-invariant scalar function. Al-
though the right-hand side of (3.3) is valid for any type of
spin states, by inserting the helicity states from Tables I
and II into the spin structure factor S "' '

we generate
helicity amplitudes.

We first establish a general rule for horizontal quark
lines occurring either at the top or the bottom of zero-
entropy amplitudes of the type we are considering (Fig. 1).
Such horizontal quark lines correspond to either incoming
or outgoing quark-antiquark associated with opposite mo-

z&z&zDze
Tij p p p (s,cos8), (3.1)

where the p~, . . . ,pc are particle helicities and are deter-
mined by summing the helicities of the constituent quarks
and antiquarks. The superscripts zz, . . . , z~ designate
the particular spin patch structure —i.e., which quarks are
orthoquarks and which quarks are paraquarks. Due to
rotational invariance the helicity amplitudes (3.1) should FIG. 2. Momentum diagram for process A +8~C+D.
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FIG. 3. Nonvanishing horizontal-quark-line contributions. Of si COS el2 &~ Of && Sill 8/2

menta since we are in the center of mass. The spin-
dependence of such lines is one factor in S "'' ' ' of the
general form (2.1) applied to a horizontal quark line using
helicity spinors from Tables I and II. We find that such
quark lines give a zero contribution if the helicity is
flipped and a nonzero contribution only when the helicity
of the quark and antiquark are the same. These nonzero
contributions are indicated in Fig. 3. Furthermore, there
is no 8 dependence coming from spinor factors for the
horizontal quark lines in Fig. 3.

It is thus clear that the kinematic singularities (3.2)
must arise from the dependence on the spinor factors in

S "' ' '
coming from the vertical quark lines connect-

ing initial to final states. How this can result in the singu-
larity structure (3.2) is not at first obvious since the 8
dependence of each vertical quark line is independent of
the helicity values of the other quark lines, yet the
behavior (3.2) gives a 8 behavior which involves a correla-
tion of the helicity states on the left- and right-hand side
of the amplitude diagram

To see how this works out we give the general rules de-
duced from Tables' I and II for calculating the 8 depen-
dence of vertical quark lines. The rules are as follows: all
vertical quark lines (connecting incoming and outgoing

l

FIG. 4. The 0 behavior of vertical quark lines.

states) give a behavior cos8/2 if the helicity does not flip
between the head and tail of the quark line and a behavior
sin8l2 if the helicity does flip. These results are indicated
in Fig. 4. We emphasize that these results about the 8
dependence apply equally to orthoquark and paraquark
lines.

It is, of course, convenient to use the quark helicity
states as a basis in forming the particle helicity states of
which the quarks are constituents. The helicity of the
particle state is then just the sum of the constituent quark
helicities since at zero entropy all quark states are boosted
from rest with a velocity corresponding to that of the par-
ticle.

From the general results in this section as displayed in
Figs. 3 and 4, we can immediately deduce the kinematic
zeros of the zero-entropy helicity amplitudes to be as fol-
lows'

Xv IPAV PDV I +XV IPBV PCV I

TIr It (S,COS8) sin
8 Xv II Av+PDV I +XV IPBV+PCV I

cos—
2

(3.4)

0 Xv I tuwv+I'Dv~ tI'Bv+I'Cv~ I

' cos
2

where gv indicates a summation over the helicities of the vertical quark lines. The required kinematic zeros are those
indicated in (3.2), which when written in terms of the vertical quark helicity variables become (bearing in mind the re-
sults embodied in Fig. 3)

( T)required
8 Xv~t&~v &Dv~ tPBv—I'cv~~

2
(3.S)

We see that the zeros of (3.3) and (3.4) do not, in general,
exactly agree. The form of the zeros in (3.S) can be writ-
ten somewhat more compactly as

(T)reotred(1 z)(1+z)yz:cos8 (3.6)

where nI and nz are non-negative and are either both in-
tegers or both half integers. The form of the zeros of the
actual zero-entropy amplitude (3 4) can be written in the

rm:
I

( T)zero entropy ( 1 z) ( 1+z ) (3.7)

where n ~ and n2 have the same restrictions as those given
above for nI and n2 Compari. ng (3.S) [and (3.4)j we see
that the quantities (n'& nI ) and (n2 —n—2) may be either

zero or a positive integer. Thus the zero-entropy hehcity
amplitudes have all the kinematics zeros and branch
points required but may, in addition, have extra zeros in
(1+z) or (1—z). However, no kinematic branch points
exist in the z variable for the zero-entropy amplitudes
beyond those indicated in (3.2) or (3.S).

IV. REGGE BEHAVIOR OF HELICITY AMPLITUDES

In this section, we shall investigate the Regge behavior
of the zero-entropy helicity amplitudes. The hehcity am-
plitudes have the virtue of possessing the asymptotic
behavior of true J-plane Regge poles. This situation is to
be contrasted with, e.g., the case of kinematic-singularity-
free amplitudes whose asymptotic behavior is displaced
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from that given by the J-plane poles.
From the form of the zero-entropy helicity amplitudes

(3.3) we shall show that all the Regge trajectories are
parallel displacements of the trajectories found in the sca-
lar function f. The factorized spin dependence shown in
(3.3) assures that stable elementary particles occurring at
the zero-entropy level all have the same degenerate mass

4
PB p.

As a first step we examine in the s channel the asymp-
totic behavior of the helicity amplitude (3.1) for fixed s
and large cosO. This is an unphysical region but it indi-
cates most directly the form of the asymptotic behavior as
related to the J-plane poles. This is because (3.1) has the
expansion (suppressing spin-patch-structure labels)

T (s,cos8)= g (2J+1)
I=M

xTp p p p (~)dye(8)

(4.1)

aO(s)+n/2
T~ ~ ~ p (s, cos8)~(cos8) (4.3)

where n is the number of vertical quark lines in the zero-
entropy amplitude. The possible values of n for zero-
entropy amplitudes and the corresponding Regge poles are
as follows:

where Misthelargerof ~p&~ and ~p2~. AReggepole
at J=a in the T amplitude in (4.1) gives rise to the
asymptotic behavior (cos8) independent of the particular
values of p& and pz.

Assuming the presence of a leading Regge trajectory
ao(s) in the scalar amplitude f of (3.3) we deduce a lead-
ing asymptotic behavior of the form

f(s,cos8)~(cos8) (4.2)

Now we consider the asymptotic behavior of the spin
structure factor S"'' ''

in (3.3) in order to determine
the Regge behavior for the zero-entropy helicity ampli-
tudes. We recall from the discussion regarding Fig. 3 that
horizontal quark lines in S "' '

have no 0 dependence.
Further, from Fig. 4 we have that the behavior of each
vertical quark line is either sin8/2 or cos8/2. So, in gen-
eral, the zero-entropy helicity amplitude has the asymp-
totic behavior

( + )' 'r+
+~ ~+ +~ ~+) & )

(

+ + + +

FIG. 5. Sum of amplitudes corresponding to scattering of
spin-zero mesons.

We consider the sum of meson amplitudes shown in
Fig. 5. The + and —denote helicity states and the sum
shown gives an amplitude (up to a normalization con-
stant) where all external mesons are spinless. It may be
verified that this sum of amplitudes in Fig. 5 has no 8
dependence if all quarks have the same patch structure
(either ortho or para). Thus n =0 in (4.3). A similar type
sum can be made involving a diquark in place of a single
quark in one of the vertical positions leading to n =1 in
(4.3). (In the latter case an amplitude is formed in which
all the external states are spin zero when one of the quarks
in the diquarks is absent. ) We also note the following
facts: (i) If one horizontal line in Fig. 5 has a different
patch structure than the other three, then we still have
n=0 in (4.3). (ii) If either or both vertical quark lines in
Fig. 5 have opposite patch structure to the horizontal
quark lines, again n = 1 in (4.3).

In Fig. 6 are shown the five Regge trajectories that will
be present at the zero-entropy level. Each trajectory gives
the leading Regge behavior for some combination of
zero-entropy amplitudes. The lowest-lying trajectory in
Fig. 6 occurs as the leading trajectory in the scalar func-
tion f. The s=0 intercepts are not known although they
are, in principle, determined by the zero-entropy bootstrap
problem' which determines ao(s). However, no particles
or tachyons exist below mo so if trajectories pass through
physical values for s &mo', the residues will vanish. As
we shall discuss, it is not inconsistent at the zero-entropy
level to have trajectories lying above one at s =0. Also
we mention that the flavor dependence of zero-entropy
amplitudes completely factorizes [like the spin structure
factor in (3.3)j and there is complete flavor symmetry.

The Regge behavior we have discussed so far and have
used in determining the Regge trajectories has been in the
unphysical region (cos8)—+ ao. Ordinarily one would have
to invoke the crossing properties of helicity amplitudes in

n =2, meson Regge pole,

n =3, baryon Regge pole,

n =4, baryonium Regge pole .

The highest-spin stable particle in each case is as follows.
The meson trajectory has a stable spin-1 particle on it, the
baryon trajectory a stable spin- —, particle, and the
baryonium trajectory a stable spin-2 particle.

We shall now see that certain combinations of zero-
entropy amplitudes with definite spin for the external par-
ticles will also generate asymptotic behavior correspond-
ing to n=0 and n = 1 in (4.3). These cases correspond to
Regge trajectories whose highest spin stable particles are a
spin-zero meson and a spin- —,

' baryon, respectively.

4m,

FKr. 6. Leading Regge trajectories at zero-entropy level.
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order to determine the exact form of the Regge behavior
in a physical region such as s~ao, t fixed. However, in
the case of zero-entropy amplitudes we can determine this
behavior directly through the use of Tables I and II and
from the fact that

f(s,cos8) ~ s '",
S~ ao
t fixed

(4.4)

out
where t is the momentum-transfer in the s channel.

First we note that at high energy the boost parameter
and A, are related by

s ~ 4mo'e'~.
A~00

(4.5)

Also at high energy, we have the relation between cosO
and t

2t
cos8 ~ 1+—.

S—+00 s
(4.6)

From these two relations (4.5) and (4.6) we can conclude
immediately that all vertical quark lines contribute a lead-
ing asymptotic behavior in s of order unity or less. In
fact, the results can be summarized by saying all vertical
quark lines give an asymptotic s behavior of order unity
except that in the case of orthoquarks

1

s s
(4.7)

and in the case of paraquarks

it ——s, s
(4.8)

Thus any promotion of the Regge behavior from that of f
given by (4.4) is determined by the horizontal (or ex-
changed) quark lines as one would expect. As mentioned
earlier the horizontal quark lines do not allow helicity
flip. The contribution of these horizontal lines for various
cases is shown in Fig. 7 for orthoquarks. The lower part
of Fig. 7 gives the results for incoming quark-antiquark
states and the upper part gives the results for outgoing
quark-antiquark states. For the case of paraquarks the
sign of A, is reversed in Fig. 7. Since e ~Vs as s~ oo,
we see that each exchanged quark line is capable of pro-
moting the asymptotic Regge behavior by a maximum
amount of a factor v s. This is consistent with our earlier
results in this section such as (4.3) and Fig. 6 where Regge
behavior was determined in the crossed channel. Here we
have been able to determine the Regge behavior in the
physical region without resorting to the use of helicity
crossing matrices.

FIG. 8. Closed loop involving quark lines with same patch
structure.

For the results embodied in Fig. 7 we can also under-
stand why Regge trajectories which exceed unity in the
forward direction [a(0) & I] and, hence violate the Frois-
sart bound are not inconsistent with the nonlinear
bootstrap condition for zero-entropy amplitudes. As has
been discussed previously the zero-entropy amplitudes are
not unitary although they do obey a discontinuity equa-
tion which would be equivalent to the unitarity condition
if the individual zero-entropy amplitudes were Hermitian
analytic, However the individual zero-entropy amplitudes
are not Hermitian analytic so they are not unitary.
Nonzero-entropy corrections are required to enforce uni-
tarity. From Fig. 7 we see that any quark loop contained
in the intermediate state for a zero-entropy discontinuity
relation will always involve a power of both e and e
as long as the two quark lines making up the loop have
the same patch structure, (i.e., are both ortho or para).
This is illustrated in Fig. 8. Thus the bilinear constraint
on the amplitude does not limit the Regge power and
therefore the Froissart bound is not obeyed.

However, as higher-order corrections are included of
the type shown in Fig. 9, which corresponds to a chiral
switch (the quark line in one half of the loop being ortho
and in the other half being para), the bilinear constraints
will eventually force agreement with the Froissart bound.

out

out states

X -X,

in states c M +r ~+ r

FIG. 7. The A, behavior of horizontal quark lines. FIG. 9. Loop involving chiral switch.
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Further contributions which are now being studied in-
volving both chiral and so-called color switches but still
corresponding to planar-type analyticity will not only
shift the trajectories in Fig. 6 but will also reorder the tra-
jectories and split the mass degeneracy. Results on this
problem will be reported elsewhere.

The requirement of the Froissart bound does apply to
the scalar function f but this will happen automatically

since the leading trajectory in f is the lowest trajectory in
Fig. 6, ao(s), and clearly ao(0) & 1.
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