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The Born-Oppenheimer approximation for heavy quarks in the MIT bag is extended to the Q20"
system, where the glue plus volume energy becomes an operator in color space. Taking its lowest
eigenvalue as the approximate potential energy, the four-body Schrodinger equation is solved varia-
tionally for the ground-state energy. With this approximation, it is found that heavy-quark systems
such as ¢%¢” are stable against breakup into two 1 (c¢) mesons. It is necessary to solve the coupled-
channel (in color space) problem to confirm this result.

I. INTRODUCTION

For a system composed of slowly moving quarks and
antiquarks, it seems reasonable to use a Born-
Oppenheimer approximation in which the quarks are
treated, at first, as static, localized sources of the glue
field. If one were able to calculate the energy of the
ground state of QCD as a function of the positions of the
heavy quarks, that would become the potential energy in
the Schrodinger equation for the quark motion. If there
are excited states of QCD that are nearby in energy and
strongly coupled to the ground state via the quark motion,
then the Schrédinger equation becomes a coupled-channel
problem.

From lattice-gauge-theory calculations,” the ground-
state energy in the presence of one (each) static quark and
antiquark has been found as a function of the separation
of the quarks, and it varies like » ~! at small distances and
linearly with » at large distances. Unfortunately, at the
present time there does not exist corresponding ground-
state information for more complicated systems such as
Q’Q?, and certainly nothing about excited states.

The QQ system has also been studied in the MIT bag
model using the very same Born-Oppenheimer approxima-
tion.>® For fixed positions of the quarks the linearized
(classical) Yang-Mills equations are solved for the glue
field and simultaneously for the bag boundary. The ener-
gy found in this way also varies like »—! at small dis-
tances and linearly with r at large distances, and when the
Schrodinger equation is solved with this potential good
agreement is obtain_gd3 with the (spin-averaged) spectrum
of ¢ (¢¢) and Y (bb). The same approximation has been
applied to the s quark, and even though its motion is
becoming somewhat relativistic fair agreement is ob-
tained* for the masses of ¢ (s5) and Q™ (s*) (with just one
new parameter, m;). When the same procedure is applied
to the u and d quarks their motion becomes very relativis-
tic and this raises a serious question about the applicabili-
ty of a static potential to light quarks.

The success of this Born-Oppenheimer approximation
when applied to the bag model for heavy quarks en-
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courages us to try it on the Q>Q * system. There is brand
new physics here, due to the possibility of one QQ cluster
separating from the other, and this requires the ability to
deal with highly deformed bags. We have only handled
that aspect of the problem crudely, but expect that it is
not too serious in the search for true four-body bound
states, which is the subject of this paper. Provided the
bound state (if it exists) is such that all interparticle
separations are comparable, our treatment should be ade-
quate.

In Sec. II the bag-model potential energy is derived for
an arbitrary number of quarks and antiquarks and then
specialized to the Q0 and Q?Q? systems. The defect at
large separations resulting from the use of a spherical bag
is discussed and a simple modification proposed. The re-
sults are presented in Sec. III, first for the mesons and
then for the dimesons. Section IV compares the potential
energy derived in this paper with some others that have
been used in the Q?Q 2 system, and the results are sum-
marized in Sec. V. :

II. THE POTENTIAL ENERGY

A. The bag-model potential

For a set of static color charges Ff located at positions
r;, the energy for a bag of arbitrary shape described by
parameters R, is’

7 > (V¢ +B

a

W(F,r,Re)= [ dV

2
=%~ S Fi'FjGy(r;,1;,Ra)+BV(R,) , (1)
iLj

where
V1) = —pUr)=—g > F8¥(r—r1;) 2
i
and the boundary condition is
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-V¢%r)=0 . L 3)

Gy is the Neumann Green’s function for the surface, B is
the bag constant, and ¥V is the volume enclosed within the
surface. As in most applications of the bag model, the
nonlinear terms in the Yang-Mills equations have been
neglected.

Since there is no kinetic-energy term associated with
the motion of the surface, this is a system with con-
straints, P,=0, where P, is conjugate to R,. To
preserve this constraint in time requires

oW
¥ o, 4
3R, (4)

which, when solved for the R, as functions of F; and r;
gives the Hamiltonian

i’
H= ; oy +V, (5)
where
V=W(F;1;,R,(F;,1;)) . (6

As a result of the dependence of R, on r;, this potential is
a many-body operator. This will be seen explicitly below.
From Eq. (1) it is seen that the F; occur in V only as the
dot products F;'F;. The potential is translation invariant
since the bag develops around the quarks. Solving Eq. (4)
is equivalent to finding the surface on which

7 2 (V¢5)’=B . )

So far, the entire discussion has been classical, that is,
the F; are classical variables [eight-dimensional vectors
for SU(3)]. Once the Hamiltonian is known, the system
can be quantized by replacing the Poisson brackets by
commutators. For the color charges these are

[F{,FP1=i#8,fupc Ff , (8)

where the f,;. are the structure constants for SU(3).

When the number of quarks (and antiquarks) is 2 or 3,

only one color-singlet state is possible and the F;-F; be-
come numbers. For N =4 there are two independent
color-singlet states and therefore V as well as the R, are
2X2 matrices in color space. When it is necessary to
work in a particular representation we choose the basis
states to be

¥i=|[(12)'3)']")

and 9)
Ps= | [(12)%(34)%]") ,

where particles 1 and 3 are quarks, and 2 and 4 are anti-

quarks. In this representation

(-4 0
Fiy-Fy=F3Fy=+5 o 11°
2
0 =2
FrFs=FyFa=5|_»5 _1 |» (10)

and

0 V2
v2 -1
The equality F; F;=F;F; when all four indices are dif-

ferent is independent of the representation and follows
from

S F,=0, (11)

FI'F4=F2'F3:%

together with
F?=4%. (12)

In general, the solution of the set of Egs. (4) for the sur-
face can only be accomplished numerically. When all the
interparticle separations are comparable, and small on the
scale of B~!/4 with the consequence that the surface is
far away from the quarks, it is expected that a spherical
approximation to the bag shape should be good. Al-
though the Neumann Green’s function for a sphere is
known analytically, retaining only the dipole term from
the homogeneous part is quite accurate at small separa-
tions, and much /ess in error than the full spherical result
at large separations. Making this approximation

1 1
Gn(r;,1;,R) = 3T, 13
n(r;,1;,R) dmry + SR (13)
and Eq. (1) becomes®
Fi'F;, «
W(FirriyR):-;’asz L + S3 EF‘,'I',' 2+%7TR3B
i=j  Tij R i

(14)

with a; =g2/47. Imposing the constraint, Eq. (4), gives

R3=81/2ELA 1/2 ‘ (15)
k
and
Fi'F;  k

V(Fi,ri):%asgj#+—‘/—§—A‘/2 , (16)
where

A= [Elf’iri]zz—% S F; Fjry? (17

i i£j

and

k=(87Ba,+)! . (18)

Use has been made of Eq. (11) to obtain the final form of

A, which is the square of the color-dipole-moment opera-

tor. It is seen that the potential consists of a sum of two-

body Coulomb energies plus a confining term; the latter,

due to the square-root operation, is a many-body potential.
In the two-body (QQ) system, Eq. (16) becomes

Qs
V(Z)(r)-——'——%T—}-(%)'”kr (19)

and agrees with the numerical result, obtained from bags
of more complicated shapes [including the cusps that are
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required by Eq. (3)], to within 20 MeV for r <1 fm.>® It
is only at still larger distances that the confining potential
becomes

V(r)—kr+V,,

where k is called the string tension. Such very large dis-
tances are not relevant in the low-lying states of heavy-
quark systems such as charmonium, and are probably not
important in any hadron. Note, however, that the slope
of the confining term in Eq. (19) is already 80% of its ul-
timate value.

As mentioned above, when the number of particles
N 24, A becomes a matrix, which is clearly positive def-
inite. Using the idempotent formula yields a particularly
simple expression for its square root for the four-body
(Q%Q % system, where the matrix is 2X2:

1

A1/2=—
di+d,

(A +dd,I) . (20)

The d, are the square roots of the eigenvalues of 4, and
are the color-dipole moments of the system. Combining
Egs. (16), (17), and (20) gives

kd
VOF,1)=—+ 3 FFjw;+—=1
irti = \/i
with
O )
v \/2 d1+d2 r,-j

and

2n

d,d
d=—1"2
d+d,

In our calculations of spectra, no arbitrary constants are
added on to ¥ nor ¥4,

Due to the structure of these equations, it is useful to
study a general matrix of the form '

X=—5 3 Fi'Fx; (22)
Iy
with xij Zin .
In the ¥ —1f5 representation of Eq. (10) this can be writ-
ten

4y, V2(y13—yi14)

X=+
P IV20i—yis) —3yntyntiye

,  (23)

where
YVij=Xij +Xp1 =Ykl

with all four indices unequal. The matrix X depends,
therefore, on only three combinations of the six x;;. The
eigenvalues of X, e,(y;;), a=1,2, are found to be

eaVi)) =1 {112 +y1a)+2y13
F[81(y1, —yia)?
+36(y1—y13) e —y1i3)1'2} . (24

Note that the eigenvalues are symmetric under the inter-

change of the spatial coordinates of any pair of identical
particles, 1<>3 or 2«>4. The eigenvectors of X are also in-
variant under the simultaneous interchange of the spatial
and color coordinates of any pair of identical particles.
(A continuity argument eliminates the possibility that the
eigenvectors might be antisymmetric under this inter-
change.)
From Eq. (17), the color dipole moments are

do=[eq(s;)]'"?

with (25)
Sij =rij2+rk12 )

and they are plotted in Fig. 1 for two geometric arrange-
ments of the four particles. The smaller moment ap-
proaches a limit as the separation of the quark-antiquark
pairs increases, and the larger moment increases linearly.

For these same geometries the elements of the potential
matrix ¥ in the ¥;—s representation are plotted on
Figs. 2 and 3. The eigenvalues and the mixing angle, de-
fined by

VX =X, ,
X,=cos6 ¢, +sinb 3 , (26)
X,=—sinfy;+cosb i3 ,

are also shown in these figures. From Eqgs. (21)—(24) the
v, are given by

(o] [Ke) 20

FIG. 1. The color dipole moments of Q?Q 2 for two rec-
tangular geometries. d; and d, are the eigenvalues of 4!/2 Eq.
(17), and d =dd,/d,+d,. The solid curves correspond to the
case in which the identical particles are located at opposite ver-
tices of the rectangle, and the dashed curves to the case in which
the identical particles are at adjacent vertices. The point A
shows the degenerate value of d,/a =d,/a for the tetrahedral
geometry.
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Gev

-3 AL
FIG. 2. The elements of the potential matrix V in the ¢;—3
representation, and the eigenvalues v, and mixing angle 6 are
shown for Q20 ? from the dipole approximation to the spherical
bag model. The scale for 0 is on the right-hand side.” The rec-
tangular geometry of the four particles is shown with the identi-
cal particles at opposite vertices. The point A shows the degen-
erate value of v, =wv, for the particles at the vertices of a regular
tetrahedron with side 0.3 fm. The parameters are a;=0.747,
B'/4=0.145 GeV, and a =0.3 fm, appropriate for the charmed
quark. The dashed curve labeled v shows the modified potential
from Eq. (32) with ¥ =1, and its limiting value at b = .

kd
vafea(uij)+ >

with ‘ (27)

Ujj =W+ Wiy -

! T T T T T T 100°
16
(b fm) | o
0.6 0
4
-3 s 1 1 | ' L

FIG. 3. Same as Fig. 2 with the identical particles at adjacent
vertices.

At very small separation of the two quark-antiquark pairs
(b—0) the lower eigenvalue corresponds to a state in
which the two close particles have a definite total color.
For Fig. 2 this is the state | [(QQ")(Q'0Q)!]!), for which
tand=—V'8; and for Fig. 3 it is the state
[ [(QQ")*(Q0")*]"), for which tanf=V"2. As the pairs
separate the mixing angle 6 undergoes a transition to the
state in which X,=1,;, with the change occurring fairly
rapidly in the region where all the interparticle separa-
tions are comparable.

One procedure for solving the Schrédinger equation
that follows from Egs. (5) and (21) is to expand the solu-
tion in terms of the eigenstates of V,

2
V= E ¢a(ri )Xa,rl- ’ (28)

a=1

where we have indicated explicitly that the X, depend
parametrically on the coordinates of the particles. In the
present paper we employ the strict Born-Oppenheimer ap-
proximation by neglecting the derivatives of X that are in-
duced by the kinetic-energy operator. According to the
discussion in the Introduction, this corresponds to the as-
sumption that only the ground state of QCD needs to be
taken into account. When this approximation is made the
Schrodinger equation becomes

2
p.
> 2rln o

i i

o1=E¢;, (29)

where v, is the lower eigenvalue of V#,

B. Modification of the Q20 ? potential at large distances

The bag-model potential derived above is valid provided
the bag is approximately spherical in shape. This breaks
down whenever the particles begin to cluster into distinct
groups and the bag becomes deformed. Although we do
not have a solution of the bag-model equations at inter-
mediate separations of the clusters,’ the physics at large
separations appears to be straightforward, at least insofar
as the lower eigenvalue of the potential energy is con-
cerned.® As we now show that the error (at large dis-
tances) due to the use of the spherical approximation is
quite modest, a simple patching together of the theoretical
potentials at small and large separations is more than ade-
quate. ‘

If one quark-antiquark cluster (ij) is well separated
from the other (kl), then we expect that the lower eigen-
state of ¥ corresponds to the situation in which each clus-
ter is in a singlet state with no interaction between them.
That is to say, as R;; xs, the separation of the two clusters,
gets large, the lower eigenvalue, v, should become

01 =VPAry)+VPry)
1,1

2
;;-i—;;d— ’-*-(T)mk(’ij-f-"kl) , (30

—_ 4
=—30

where V? is the quark-antiquark potential given in Eq.
(19), and

Ryju=7(f+1;—1p—17) . (31



Since the bag must be highly deformed in this region one
could not have expected a single spherical bag to yield the
correct energy. The surprising thing is that the dipole ap-
proximation to a spherical bag yields an energy that is not
so far wrong. It can be shown from Egs. (21) and (27)
that the confining term of v, is just kd;/v2, and from
Eqgs. (24) and (25) d1—>2(r,-j2+rk12)1/2/\/§ in this region.
Consequently, v; does not decouple into a sum of terms
referring to the separate QQ systems. While the Coulomb
terms in v, are correct, as in Eq. (30), in place of the fac-
tor (r;;+ry;) appearing in the last term of that equation,
v; acquires a factor (rij2+rk12)‘/ 2. For the parameters
used in Fig. 2 this leads to a discrepancy, v] —v, of only
80 MeV.

The other clusterings, such as (QQ')(QQ") or
(QNQ'QQ"), are expected to be less important because the
potential energy becomes large. Furthermore, the dipole
approximation to the spherical bag gives the correct slope
for the confining potential between these clusters. To
make an estimate of the importance of the small defect
mentioned above concerning the clusters that can separate
without being confined, we take the potential energy to be
a weighted average of v, and v that reduces to v,(v}) at
small (large) intercluster separation. For each configura-
tion of the four particles, all possible clusterings into two
groups are examined and the largest of the intercluster
coordinates, R, is found. Whenever R corresponds to a
confined configuration, the four-body potential energy is
simply taken to be

vW=yp, . (32a)

If R corresponds to either (12)(34) or (14)(23), that is, to
separating quark-antiquark pairs, then the potential is
taken to be

(4) —R/YR, ’ (1

vV '=v;e “+v;

—R/YR
—e h,

(32b)

where R; is the minimum eigenvalue of the bag radius

from Eq. (15),

asdl 173
k

>

R1=81/6

and y is an adjustable parameter. v'* is plotted on Fig. 2
for the rectangular geometry shown with ¥ =1. There is
nothing fundamental about Eq. (32), but by examining the
results of the next section as y is varied we obtain an esti-
mate of the uncertainty in the binding energy. As expect-
ed from the discussion above, it is quite small.

III. RESULTS

We want to compare the energy E® of the ground
state of the Hamiltonian
4 2
Di
HY— > 2
Z 2m,~

i=1

+v'®, (33)

with the sum of the energies of two separated mesons.
For equal-mass quarks, the latter energy is 2E?, with
E@ the energy of the ground state of the Hamiltonian
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2
H®— é ;’i
m;

i=1

+V@ (34)

V) is the quark-antiquark potential obtained from the
very same bag model, Eq. (19). With E‘® obtained from
an exact numerical solution of the Schrédinger equation, a
variational calculation of E), if it shows the existence of
a four-body bound state, is sufficient. All of our calcula-
tions of E'¥ are variational, but we will present one com-
parison with an exact numerical evaluation of the binding
energy of the four-body system that shows the variational
calculations to be very accurate.

A. 00

The potential energy from the bag model depends upon
two parameters, the bag constant, B, and the coupling
constant, o, and the latter runs with the size of the sys-
tem. In addition, there are the masses of the quarks, m;.
In previous calculations of QQ and Q3 spectra,>* the bag
constant was kept fixed at the value obtained in the origi-
nal fit® to the light hadron spectrum, namely,
B'/*=0.145 GeV. The present calculations began with
this same value, but we also vary B to see if the binding
energy of the four-body system is sensitive to it. For sys-
tems composed of ¢ or b quarks, which are the main ones
in the present study, our procedure for choosing the con-
stants is as follows. For each assumed value of B, a; and
m; are adjusted so that the first two S states of a given
QQ system have their energies at the experimental 35,
values.!® The correlations amongst these parameters are
shown in Fig. 4. Note that «a; is required to be smaller in
the heavier system if B is kept fixed.

Some idea of the reliability of the potential energy V2.
can be obtained by calculating the energies of the higher .S
states in the ¢¢ and bb systems and comparing with the
experimental values: The largest discrepancy occurs for
Y(10570) where the calculated energy is 109 MeV too
large. The fact that the potential energy is too large at
larger distances is probably not serious because the dimen-
sions of the Q?Q ? states that we discuss below are much
closer to those of the 1. state than the 4S5 state of the Q0
system.

We have calculated the ground-state energies of the Q0
systems variationally as well as by numerical integration
of the Schrodinger equation. Simple exponential wave
functions, ¥(r)=N exp(—ar), yield extremely accurate
energies, within 1 MeV of the correct values. Gaussian
trial wave functions are much poorer.

We have also studied the s3 and # systems using the
very same potential energy. As mentioned in the Intro-
duction, the s quarks are somewhat relativistic, and in ad-
dition, spin effects are much more important for them.
We have, nevertheless, simply repeated our calculations
for this quark. The bag constant is kept at the value
B'/4=0.145 GeV, and the coupling constant held at its
value in the ¢C system, a;=0.747; with these choices,
ms=0.319 GeV puts the ¢(1020) at its correct energy.'?

The parameters are even more arbitrary for the ¢ quark,
and we have chosen B!'/#=0.145 GeV, a,=0.2, and
m, =40 GeV. This value for «; is roughly what is expect-
ed for a system of this size based on the logarithmic varia-
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FIG. 4. Relationship of coupling constant, bag constant, and
quark mass needed to fit the first two s states of quarkonium,
using the potential energy from Eq. (19). The lower portion
refers to ¢z and the upper portion to bb. The vertical lines cor-
respond to B'/4=0.145 GeV. k is the slope parameter appear-
ing in the confining term of the potential energy.

tion with distance. With these values, the ls state of 7
has an energy that is 0.699 GeV below the sum of the
quark masses. _

Table I summarizes the results for the QQ systems with
the fixed value B'/#=0.145 GeV. Comparison of s¥ and
c¢ shows the effect of varying the quark mass with all
other parameters fixed. The small dependence of
M(2S)—M(1S) on quark mass has been noted before. It
appears to arise from two causes: the changing impor-
tance of Coulomb and confining terms, and the variation
of coupling constant with the size of the system.

It is seen from Table I that the masses of the 1s states
are less than the sum of the quark masses [ E (1s) < 0] for

all mesons heavier than s5. This is a confirmation of the
Born-Oppenheimer approximation described in the Intro-
duction, provided the quarks are sufficiently heavy, for
the following reason. In the fixed-cavity approximation®
to the MIT bag model, where the quarks are put into the
lowest mode, the sum of quark energies and volume ener-
gy is greater than the sum of the masses. By localizing
the quarks in space the small increase in kinetic energy is
more than compensated for by the saving in color
Coulomb potential energy.” The s quark is a borderline
case for which neither approximation is very accurate.’

B. Q2a 2

Since we deal only with the lower eigenvalue of the po-
tential matrix in the present paper, Eq. (29), only one
component of the wave function, ¢;, need be specified.
For the ground state of the four-body system we choose a
cluster trial wave function consisting of a product of
internal wave functions for the mesons and a wave func-
tion in the intercluster coordinate, the latter also chosen to
be an exponential,

¢(r,-)=exp[ —a(‘rlz +r34)—BR12,34] (35)

with a and B variational parameters. For systems with
identical quarks such as ¢?¢?, the Pauli principle must be
imposed. As spin interactions are being neglected, the
spin wave function can be chosen as required to make the
overall space-color-spin wave function antisymmetric
under the interchange of any pair of identical particles.
This means that we are at liberty to choose the spatial
symmetry that gives the lowest eigenvalue of Eq. (29).
(The color coordinates occur only in the X, which are
themselves symmetric under the interchange of identical
particles.) Expecting this to occur for the symmetric case,
we take

Y1) =N (1+P3)h(1;) , (36)

and verify that the antisymmetric choice (or the unsym-
metrized one) gives a higher variational energy. The spin
wave function going with Eq. (36) has both pairs of iden-
tical particles in .S =0 states.

The six-dimensional integrations required to evaluate

EW=(y|HY [4)/($|¢)

are performed by first making a change of variable for
each of the three coordinates having infinite range, ri,,

TABLE I. Results for the Q0 mesons with the fixed value B'/#=0.145 GeV. All energies and
masses are in GeV. The first column specifies the meson by quark flavor; a; is the strong coupling con-
stant; mg is the quark mass; E(1S) is the eigenvalue of the 1.5 state; M ( 1S)=2mg + E (18) is the mass
of the 15 state; M (2S) is the mass of the 2.5 state; and the final column is the variational parameter a
in the exponential trial wave function for the ground state. The numbers for the ¢ quark are merely il-

lustrative.

Meson ag mg E(1S) M(1S) M(28)—M(1S) a (fm™Y)

¢ (s5) 0.747 0.319 0.382 1.020 0.598 1.5

¥ (cT) 0.747 1.685 —0.275 3.095 0.590 . 4.9

Y (bb) 0.495 4.970 —0.479 9.461 0.551 8.8
(#1) 0.2 40 —0.699 79.301 0.569 29
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r34, and Ry 34, to variables defined on the unit interval,
via :

14+x

1—x’

r=cln

and then using a Gauss integration procedure. Typical
values are ¢ =3, and eight integration points per variable,
and the numerical results are stable under changes about
these values.

For all four systems, Q20 2, with Q =s, ¢, b, and ¢, and
for all the parameter values considered in Sec. IIIA
above, we find that the dimeson is stable (bound) against
breakup into two mesons. The results are shown in Fig. 5
where it is seen that the binding energies are in the range
0.16—0.22 GeV if the unmodified spherical bag potential
is used [y = « in Eq. (32)]. The binding energies are only
slightly smaller from the modified potential with y=1,
with the largest difference occurring, as expected, for the
lightest quark. These energies are also shown in Fig. 5.
As the quark mass increases and the size of the system de-
creases, the bag surface moves relatively farther away
from the quarks, and the spherical approximation be-
comes better. R /R, in Eq. (32b) decreases and the differ-
ence between the modified and unmodified potentials be-
comes smaller. Assuming the validity of the approxima-
tion that only the smaller eigenvalue of ¥V need be con-
sidered, the difference between the larger and smaller
values in Fig. 5 is a measure of the uncertainty in the
dimeson binding energy.

For the unmodified potential, the results are also
presented in Table II, including the values of the varia-
tional parameters a@ and . Note that the values of a are
the same as in Table I, or nearly so, suggesting that there
is very little distortion of the individual mesons in the

% T T T
[oX]

= 26@ - g@ (Gey)

o
LS
T

Binding Energy

Qs

FIG. 5. Binding energy of the dimesons Q2Q ? with respect
to the sum of the energies of two separated mesons. All results
are based on the approximation of using only the lower eigen-
value of the potential energy matrix. For each quark flavor, the
more deeply bound result arises from the spherical bag potential
without any modification, i.e., ¥ = oo in Eq. (32); the less deeply
bound value results from setting the cutoff parameter y=1.
For the ¢ and b quarks, the binding energies are shown as a
function of the coupling constant «a,, with the bag constant and
quark mass adjusted as in Fig. 4. The vertical lines correspond
to B74=0.145 GeV.

TABLE II. Results for some dimesons QQ 2, using the un-
modified spherical bag potential v;. For each flavor, the pa-
rameters are the same as in Table I. Energies are in GeV. E“
is the ground-state energy of the four-body system; E? is the
ground-state energy of the two-body system [the same as E (1S)
in Table 1.]; a and 3 are the variational parameters in the four-
body wave function, Eqgs. (35) and (36).

Flavor E® 2E®_E®W a (fm™1) B (fm~1)
s + 0.563 0.201 1.5 14
c —0.729 0.178 49 3.3
b —1.119 0.161 9.1 6.2
t —1.561 0.164 29 18

dimeson, in spite of the fact that S~ %a. The variational
wave function, on the other hand, is probably not nearly
so accurate as the variational energy.

The question arises whether a better wave function may
not yield significantly more binding energy, and we have
tried a couple of other forms for the trial function but
with no appreciable gain in energy. In addition,
Schmidt!! has obtained an exact numerical solution for
the binding energy that shows the variational results are
very accurate. Using a Monte Carlo technique on the
c’c? system, both variational (with the parameters in
Tables I and II) and Green’s function (exact), he finds that
the exact binding energy is only 7+2 MeV greater than
the variational energy. The uncertainty is purely statisti-
cal.

1IV. DISCUSSION

In the Introduction a calculation was described that we
wish we knew the answer to, namely, what are the eigen-
states and eigenvalues of QCD in the presence of a collec-
tion of static, localized quarks and antiquarks. This
would provide the basis for a coupled-channel
Schrédinger equation treatment of slowly moving quarks.
One question of immediate interest concerns the number
of low-lying states that are important for the quark
dynamics. From lattice gauge theory for two quarks and
two antiquarks, one might have guessed that the answer is
three, since there are three topologically distinct kinds of
gauge-invariant connections that can be formed. (This in-
cludes contraction of three links with the antisymmetric
tensor €,,..) The bag model as we have used it, however,
or indeed any potential model would say that there are
two states, since that is the number of independent color
singlets that can be constructed from the color generators
of (just) the four quarks.

The derivation of the potential energy from the bag
model according to Eq. (4), 3W /dR,=0, is the standard
procedure for a system with constraints (P,=0), as
described, for example, by Dirac.!? It represents the phys-
ical statement that since there is no inertia associated with
the surface, it adjusts instantaneously to the values of the
other dynamical variables.!> This procedure was used for
light quarks by Rebbi and De Grand,'* and for heavy
quarks in Refs. 2—6 and 15. The spectra obtained in this
way are different, in general, from those obtained from
d(H ) /3R, =0, where {H) is the energy for a fixed sur-
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face and the surface is varied as the last step rather than
the first.”>!® We now compare our potential energy with
some others that have been used.

Ader, Richard, and Taxil'’ also start with a spherical
approximation to the bag, using the full Green’s function,
but then follow a procedure that is different from both of
those just mentioned. At one point they find the
minimum eigenvalue of W(F;,r;,R) with R treated as a
number, and then find its minimum with respect to R.
Although the eigenvalues and eigenvectors obtained by
this procedure are different, in general, from ours (even if
the dipole approximation is made in both treatments), it
turns out, at least in the 2X2 matrix case, that they are
only slightly different.'® The fact, therefore, that %2
was found in Ref. 17 to be bound by only 35 ME€V is ei-
ther the result of their having used the full spherical
Green’s function rather than the dipole approximation, or
else of an inadequate wave function.

With regard to the latter point, we find that a trial
wave function that is symmetrized in space and color, as
in Eq. (36), produces considerably more binding energy
than an unsymmetrized wave function. For ¢%¢ 2, for ex-
ample, an unsymmetrized wave function gives a binding
energy that is only ~% that shown in Table II. The ex-
planation for the effectiveness of symmetrization for
equal-mass particles is just that the potential energy is
symmetric under interchange of space and color. For
identical particles the Pauli principle merely fixes the spin
wave function for the lowest-energy state.

In spite of theoretical arguments against using two-
body potentials to describe the confining part of the in-
teraction,® and the additional defect that they lead to van
der Waals forces between separated hadrons, they have
been used for multiquark systems.!® Following the stan-
dard procedure, one writes

V2= _3 3 F,-Fw(r;) ' 37)
i#j
and choose“s w28 to correspond to the QQ system where
E 'E]' =73

wB(r)=2v2(y) . (38)

By examining v?%, the lower eigenvalue of V25, it is
straightforward to show that the four-body system is at
least as attractive as two QQ pairs that are not interacting
with each other. By this we mean that for any configura-
tion of the four particles, and for any choice of the func-
tion v22,

v <min(w2(r1,) +v2Q(r34),09%(r14) +09%%rs3)) .
(39)

The proof follows by finding the maximum of e, (y;) [the
lower eigenvalue from Eq. (24)] with respect to y;3, which
occurs at y3=max(y,,y14) and yields the inequality

e1(y;) < fmin(y2,p14) - (40)

Setting y;; =w?5(r;;)+w?(ry,) with i, j, k, and /, all dif-
ferent, the left side of Eq. (40) is just v13, thereby proving
Eq. (39).

We now show that the additional attraction is sufficient
to produce binding, by including the kinetic-energy terms
and solving the Schrodinger equation (still using the one-
channel approximation). In order to make the compar-
ison of the two-body potential approach_with the bag
model as meaningful as possible, we set v29(r) in Eq. (38)
equal to V'?(r) from Eq. (19), since that is the QO poten-
tial coming from the bag model. With this choice the ma-
trix elements and eigenvalues of V22 are qualitatively very
similar to those of V¥, with numerical differences Z0.1
GeV. This similarity is partly due to the importance of
the two-body Coulomb terms. In addition, the lower
eigenvalue v3? is guaranteed to go to the correct limit as
the QQ pairs separate. This can be seen from Eq. (23) by
choosing the clusters to be (12)(34), since the matrix ele-
ment V37 only involves interaction within the two clus-
ters, and V7§ vanishes at large separation. Taking v3Z to
be the single-channel potential energy, and the same
choices for a; and B as in Tables I and II, the c%? sys-
tem is bound by 0.115 GeV, which is considerably less
than the value obtained from the bag-model potential.

We take note finally of a phenomenological many-body
potential that was inspired by the string model. van der
Waals forces are avoided by the simple expedient of mak-
ing the off-diagonal matrix element vanish discontinuous-
ly as one QQ pair separates from the other.® As no
Coulomb potential was included it is not meaningful to
compare their numerical results with those of the present

paper.
V. SUMMARY

We have used the potential energy coming from the
MIT bag model to describe a system of two heavy quarks
and two heavy antiquarks; for the reasons presented in
Sec. IV we believe this is the best static potential that is
available. The separations of the particles in the bound
state turn out to be sufficiently small that a spherical ap-
proximation to the bag shape is adequate. Even at large
distances the dipole approximation to the homogeneous
part of the Green’s function gives a value for the lower
eigenvalue of the potential matrix that is fairly accurate.

In this paper, we have taken the lower eigenvalue of the
2X2 potential matrix (in color space) and have solved the
four-body Schrédinger equation variationally. Using a
wide range of bag-model parameters and quark masses
chosen to fit the ¢¢ and bb spectra, we find that the
dimesons ¢?¢2 and b2b ? are bound. The binding energy
is in the range 0.16—0.22 GeV and depends on the bag-
model parameters. Similar results are obtained for 272
and s»zi 2, although the approximations are less reliable for
lighter quarks.

We have made a rough estimate of the hyperfine in-
teraction using our c2¢? wave function, and find that it
lowers the energy of the ground state by ~0.02 GeV.
Since the ground state of ¢ is lowered by ~0.09 GeV,
the binding-energy estimate made in this paper must be
lowered by 2(0.09)—0.02=0.16 GeV. This could unbind
the system, but the answer must await the solution of the



two-channel problem. _

The range of the variational wave function in the QQ
separation is very similar to that in'a single meson; and 1_s
approximately 50% larger in the separation of one QQ
pair from the other. The color wave function in the
single-channel problem is already very interesting since X
varies considerably with the positions of the particles;
some of this variation is shown in Figs. 2 and 3 where the
mixing angle from Eq. (26) is presented for two
geometries. In the coupled-channel problem, the color de-
gree of freedom becomes truly dynamical, no longer fac-
torizing in the wave function.
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