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Study of light baryons in the three-quark-cluster model: Exact calculations
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Within the nonrelativistic model, all the baryons built with three quarks of flavors, u, d, and s
(N, A, A, X,:",0) are studied with the Bhaduri-Cohler-Nogami potential. It is shown that the free-
parameter simplest model is able to reproduce most of the experimental properties and allows the
extraction of the rare effects which need a more elaborate model. The validity of the description in
terms of a harmonic-oscillator basis is also tested.

I. INTRODUCTION

At the beginning, the quark hypothesis was only a con-
venient mathematical tool for explaining classification
properties of elementary particles. Now, after the modern
developments of gauge theories and the advent of quan-
tum chromodynamics, the quark structure of elementary
particles is firmly established. Moreover, the quark
theory is no longer restricted to the domain of
elementary-particle physics, but reaches other fields, such
as nuclear physics. The simplest systems to be studied are
the mesons since they involve only one quark and one an-
tiquark. More complicated are the baryons built with
three quarks. Still more complicated is the description of
hadron-hadron interaction, and finally the properties of
atomic nuclei. Several theories are devoted to such stud-
ies. The most fundamental approach is probably the lat-
tice gauge theory, ' but there is very much progress to be
made in that direction and complicated systems are wide-
ly out of scope presently. Less ambitious and more
phenomenological are the descriptions in terms of bags or
of nonrelativistic quark-quark potentials. The various bag
approaches (MIT bag, little bag, cloudy bag, soliton bag,
etc.) are more satisfying from the relativistic point of view
but suffer from several drawbacks, such as a bad treat-
ment of the center-of-mass motion. On the other hand,
the nonrelativistic potential model is more rigorous for
this aspect but obviously lacks relativistic foundations.
Curiously, from all studies already done within this
model, it seems to explain a lot of situations even in cases
where relativistic effects are expected to be important.
Some explanations for such a success have been claimed
but, up to now, the understanding of the problem is far
from clear. Which theory to choose is essentially a matter
of taste. As nuclear physicists, we were naturally led to
work with the nonrelativistic model. Within that frame-
work, the Schrodinger equation for mesons is reduced to
the resolution of a differential equation which is exact in
principle. The study of baryons, which is typically a
three-body problem, is more involved and, to our
knowledge, was tackled only through variational prescrip-
tions or diagonalization within a restricted Hilbert space.
For the nucleon-nucleon interaction, one cannot avoid an
approximate treatment such as the Born-Oppenheimer ap-
proximation, the generator-coordinate method, or the

resonating-group method.
In this paper, we present a systematic study, in the

framework of the nonrelativistic model, of all the baryons
built with light quarks (u, d, and s valence quarks) i.e.,
the six systems X, 6, A, X, :-, and Q. All previous calcu-
lations, concerning both ground and excited states, were
performed within some approximation schemes; when
comparing the results to experimental data it was thus
difficult to interpret the discrepancies as the deficiency of
the used potentials or as a consequence of the truncation
in the Hilbert space. Here, we solve exactly the three-
body problem in terms of the Faddeev formalism. A first
aim of this paper is thus to test the validity of previous
approaches, such as the pioneering works of Isgur and
Karl, which relied on the expansion of the wave func-
tions in terms of an oscillator basis; the detailed compar-
ison between the exact and the approximate treatments
will provide a definite answer to the above-mentioned am-
biguity. A second aim is to know which kind of physical
information could be or could not be explained by the
very simple quark-quark potential, which proved to be
very successful in the description of many meson proper-
ties.

The paper is organized as follows. In Sec. II, the frame
of the model is described precisely. The next two sections
are devoted to the resolution of the three-body problem,
either exactly or by diagonalization in a harmonic-
oscillator basis. In Sec. V, the results of the above two
methods are compared carefully, while in Sec. VI are
presented and discussed the extensive results obtained
with the Faddeev formalism for the six considered baryon
systems. Finally the conclusions are drawn in the last sec-
tion.

II. DESCRIPTION OF THE SYSTEMS

In this paper, we consider a cluster of three valence
quarks of flavor u, d, and s. The u and d quarks are sup-
posed to be the two components of an isospin doublet.
Besides its isospin degree of freedom, each ith particle is
characterized by its constituent mass m; ( m„=md =m ),
its color c;, its intrinsic spin s;= —,, and its position r; in
ordinary space. Using the isospin degree of freedom, the
u and d quarks are treated as identical particles and con-
sequently each of the six systems considered here
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Concerning the space wave function, it is trivial to fac-
torize a center-of-mass function whose role is to ensure
the translational invariance (contrary to bag models) and
to give a center-of-mass energy. The internal coordinates
are chosen as the usual Jacobi coordinates

x;= 2mjmk

mj +mk

1/2

(rj —rk),

(2.2)
1/2

2m;(mj +mk )

m)+mj +mk
mjrj-+ mkrkr-

m +Plk

Each couple (x;,y;) is related to another one (xj,yj ) by an
orthogonal transformation. Considering, for example, the
(x~,y~) channel, we put the pair (2,3) in a relative angular

(N, b., A, X,:-,0) contains at least two identical particles.
The isospin formalism, although not necessary, is very
convenient especially for the description of systems with
three identical particles (nonstrange baryons N, A). The
total wave function. must be antisymmetric in the ex-
change of any two identical particles. Concerning the
color degree of freedom, there is only one possibility to
form a color singlet with three quarks in three color
states, namely, a Slater determinant, which is therefore to-
tally antisymmetric. Since the color wave function is
unique for all considered systems, we will ignore it once
all for all and require for the rest of the wave function—
which will be called simply the wave function —to be
symmetric in the exchange of identical particles. Since
each quark has spin —,', one can form three spin wave
functions X s ——[ —,( —,

'
—,
'

) )s with different symmetries:
Lp ——Xp1/2 is of mixed symmetry, antisymmetric in 2~3;
X~ ——X»&z is of mixed symmetry, symmetric in 2~3; and
X2 —g 1 3/2 is totally symmetric. When all the particles
have isospin —,, one can adopt the same coupling for the
isospin wave function and note

1 1 1

9tT [2 2 2)t)T

For nonstrange baryons it will be very useful to define a
wave function in the isospin-spin space with a definite
symmetry. The list of the various possibilities is as fol-
lows: Totally symmetric,

1
(&pro+&ini), I

~ & =&202 i
2

mixed symmetry, symmetric in 2+-+3,

1
I
MS ) = (&ovyo —&,g, ),

2

ms & =X2g~~
I

m~'& =&~g2 (2.1)

mixed symmetry, antisymmetric in 2~3,
1

I
MA ) = (Xpg)+X)rjp),

2

I
ma ) =X,r)p,

I

ma') =Log, ;

totally antisymmetric,

1 K 1J
V; (rt )=—— +"D—

2 r- g2
IJ

2
0'fi v exp( r"/rp)—lj

2 2 . .mI mJC rp r J
(2.3)

The mass of the u and d quark m =337 MeV is fitted on
the magnetic moment of the proton and the other parame-

momentum 1 and the last particle 1 in an angular momen-
tum A, relative to the center of mass of the pair. Finally
the total orbital angular momentum L is obtained by
summing l and A, , and the total spin J by coupling L and
S. It is easy to show that the parity of the state is
( —1 )

+"
( H being invariant under parity, l +A, is either

odd or even); moreover, if the particles 2 and 3 are identi-
cal the symmetry of the wave function imposes the con-
straint o+t +$ even.

After this geometrical description of the system, let us
come to its dynamical description. A number of quark-
quark potentials were proposed in the past. The central
part contains usually a Coulombic term (1/r) coming
from one-gluon-exchange contributions and a
phenomenological confining term which is either quadra-
tic (r ), linear' (r), logarithmic" [ln(r/ro)), or power-
like' (r~). In addition, there is also a hyperfine (or spin-
spin) term. Contrary to atomic or nuclear potential, the
quark-quark hyperfine term is very strong and, in fact, it
is responsible for many important features in hadron
properties, such as the ~-p and Ã-6 splittings and the
hard core of the nucleon-nucleon interaction. ' In most of
the potentials, this term is derived from one-gluon ex-
change through the Fermi-Breit approximation of the
Bethe-Salpeter equation. This approximation gives a con-
tact 5(r) term. This Fermi-Breit expression was widely
used in previous perturbative treatments, but it makes no
sense in an exact actual calculation —such as the one per-
formed here —since it leads to a collapse. In fact, in situa-
tions where the contact term is attractive and where there
is no centrifugal repulsion between two particles (1=0),
the potential energy can become more and more negative
when the particles come closer and closer (with a depen-
dence in —1/r ); the kinetic energy becomes more and
more positive (with a dependence in 1/r ) but is not able
to compensate this effect and the total binding energy
tends to negative infinity. Thus, in actual complete calcu-
lations, it is absolutely necessary to use potentials with
finite range. On the other hand, there exist also a spin-
orbit and a tensor force; there are not essential for the
gross features of the spectroscopy but they have to be tak-
en into account for a finer analysis. Here, our philoso-
phy is to retain the simplest potential as long as it gives
results compatible with other approximations.

For all these reasons, we believe that, among others, the
potential proposed by Bhaduri, Cohler, and Nogami' is a
good one. In their original paper, Bhaduri, Cooler, and
Nogami give the form of the quark-antiquark potential.
However, as long as the color scalar is of the form A, ; AJ.

and we deal with the color singlet, it is trivial to show that
the quark-quark potential is half the quark-antiquark po-
tential. Thus the quark-quark potential used in this paper
is defined by
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ters a =a = 102.67 MeV fm, a =0.0326 (MeV ' fm) '

D=913.5 MeV, ro ——0 4.545 fm are fitted on the char-
monium spectra and on the ~-p splitting; last, the
strange-quark mass m, =600 MeV is deduced from the
energy value of the 'P(1020). It is remarkable that this
very simple potential, obtained essentially from charmoni-
um, is still good for b-quarkonium and even for light
mesons (including the pion). The ground states of the
baryons, calculated in the work of Bhaduri, Cohler, and
Nogami with a variational method suggested by Fesbach
and Rubinow, are also nicely reproduced. It is our aim to
test this simple potential, with the same parameters (we
have no free parameters), on the excited states of light
baryons. All our calculations were performed with poten-
tial (2.3) without any change. Since this potential does
not include spin-orbit and tensor force, L, and S are good
quantum numbers and levels occur in (L,S) multiplets. It
is also important to stress that there is no coupling with
continuum channels (such as those induced by the pion
field or the quark-antiquark sea) and hence our eigenstates
are bound states with definite energy whtch do not exhibit
a resonance feature.

f=0i+6+43 (3.1)

Each one obeys a coupled partial derivative equation
which reads

(E —T —V~)p; = V~(QJ+pk), (3.2)

where E is the total energy of the system, T the total-
kinetic-energy operator, and V; is the potential-energy
operator between particles j and k. Since V; depends on
the x; Jacobi distance only, it is natural to express each of
the components P; with the corresponding (x;,y;) coordi-
nates. By summing the three Faddeev equations (3.2) for
i=1,2,3, one obtains the Schrodinger equation for the
wave function g, as defined by (3.1).

Each Faddeev component is expanded in terms of states
labeled by the quantum numbers A, l, o, t defi, ned in the
previous secti.on. One can write the Faddeev equation
(3.2) as

(E —T)P; = Vg . (3.3)

The source term V;f has roughly the spatial expansion
Ro of the baryon. Its contribution to the P; amplitude is
negligible, due to the centrifugal barrier, as soon as angu-
lar momentum l is greater than &2mERolfi (in practice
for l) 2).

Simplifications arise due to identity of at least two
quarks. Let us consider first the nonstrange (X and b, )

system or the 0 system. The isospin formalism makes the
three particles indistinguishable: Pz and P3 are deduced

III. EXACT SOLUTIGN
OF THE THREE-QUARK PROBLEM

Among the various approaches to an exact treatment of
the three-body problem, the Faddeev-Merkuriev equations
are numerically the most tractable, at least for local
currently used potentials. In this method, the wave func-
tion g is written as the superposition of three Faddeev
components P;

IV. HARMONIC-OSCILLATOR BASIS

Unlike the Faddeev equations, which solve the three-
body problem directly in the configuration space, one may
be tempted to develop the wave function on basis states.
An harmonic-oscillator (HO) basis is proved to be a very
convenient one since most of the calculations can be done
analytically. Moreover, contrary to the nuclear three-
body problem where one needs several hundred basis
states, the expansion of the wave function in terms of the
HO basis is expected to be rapidly convergent in case of a
confining -potential. In the past, most baryon calculations
were performed within this framework. We define the
HO wave functions $„1 (r) with the usual phase conven-
tion (see, for instance, Ref. 16). The size parameter
b =(%Imago)'~ can be chosen arbitrarily a priori, but the
numerical determination of b is a crucial problem and is
discussed in detail in Sec. V. For a three-body problem,
since the center-of-mass function is factorized, we are left
with two internal Jacobi coordinates x&, y& [or other sets
(xq, yq) or (x3,y3)] and it is natural to introduce the basis
states as the coupling of P„t(x~) and P,~(y~) to the total
orbital angular momentum L. Thus we define the space
wave function

I
«»;L &

=[0.~(xi)0.dyi) )L . (4.1)

Now the problem of permutations of particles (especially
when the three particles are identical) is of crucial impor-
tance. Traditionally it is solved by group-theoretical argu-
ments. We prefer to have a more physical and palpable
representation. Since a cyclic permutation transforms
(x~, y~), into (x2, y2) by an orthogonal operation, the prob-
lem is solved for a long time by atomic and nuclear spec-
troscopists. Let r& and r2 be two coordinates and r, R two
rotated coordinates,

r =cos—r~ —sin —r2, r, &

——cos—r+ sin —R,

R=sin —r +cos—r, r = —sin —r+cos —R .P l3 L3 L32' 2' ' 2 2

(4.2)

The HO basis functions in the two sets of coordinates
are related by an orthonormal matrix

from P& by cyclic permutations and we are left with only
one relevant Faddeev equation. On the other hand, for
the other three systems (A, X, and:-), P3 is deduced from
p2 by transposition of particles 2 and 3, and hence there
remain two coupled Faddeev equations. More details
about the formalism or the numerical solution can be
found in Ref. 15. Usually, the energy reference corre-
sponds to the case where all particles are infinitely
separated. For confining potentials this makes no sense
and there exist Faddeev components for each energy refer-
ence, with different asymptotic behaviors. One can take
advantage of this freedom by choosing an energy refer-
ence which makes the Faddeev component rapidly de-
creasing. The stability of the eigenenergy versus the ener-

gy reference has been checked numerically.
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t I z. ?tT~ s[4.~(xi)4.z.(yl)]L
o, t, n, l, v, A,

(4.4)

with H @;(1,2,3)=4&;(1,2,3) where H is any (1,2,3) per-
mutation. The d',„l ~ numbers are universal geometrical
coefficients derived with the help of BM coefficients. The
correct symmetrized functions @;(1,2,3) are given in the
Appendix up to four-quanta excitation energies. In our
applications, we calculated analytically all the N; up to
four quanta and diagonalized the Hamiltonian in the
space spanned by these states. The resulting wave func-
tions are given directly in terms of HO functions. The
wave functions calculated with the Bhaduri-Cohler-
Nogami potential are also given in the Appendix.

V. COMPARISON BETWEEN HO
AND FADDEEV CALCULATIONS

We consider in this section the nucleon, which is the
system with three identical particles and T = —,. It con-
tains much physical information and allows an interesting
comparison between the exact Faddeev treatment and the
diagonalization in a spaced spanned by HO functions.
The first problems which arise in the approximate model
are: how fast is the convergence with the number of basis
states and which size parameter b to choose for actual cal-
culations'? In fact, both problems are related since at the
limit of an infinite basis, the results are independent of b.
However, once the basis is truncated, they acquire special
numerical importance. One possible way of determining
b is the variational constraint

(5.1)

where
~

0'0(b)) is the ground state in the truncated Hil-
bert space; this is the procedure usually employed. If N
stands for the maximum number of quanta in the HO
basis, the value of b] thus obtained is a priori depending
on ¹ For N=4 (there are 7 states with L=0 and S = —,

in that case) b~ is found equal to 0.58 fm and the
ground-state energy Eo(b, ) =1040 MeV to be compared
to the exact one Eo ——1024 MeV. This result seems en-

= g (nlNL'„A,
~
n&l~nzlz, 'A, )p[P„~(r)P~L (R)]zz .

nlNL

(4.3)

The (nlNL;k
~
n&l~nzlz , A)'p , are called the Brody-

Moshinsky (BM) coefficients with angle P (or Smirnov
coefficients). It is important to note that the summation
in (4.3) is restricted to a finite number of terms due to
conservation of energy and angular momentum. The con-
ventions in (4.2) and (4.3) are those of the original paper
by Moshinsky. ' The BM coefficients can be calculated
by recurrence relations. For identical particles, the cyclic
permutations generate BM coefficients with angles
P=+2m/3. It is then possible to construct basis wave
functions completely symmetric in the exchange of parti-
cles in terms of HO functions defined with the set (x&,y&)
only:

4;(1,2, 3)

couraging; however the quantum energy Ace resulting
from this b& value is equal to 687 MeV, a value too high
leading to a dilated spectrum. For instance, the first and
second I =0, S=—, states are located at 898 and 1012
MeV, respectively, to be compared to the exact values 762
and 917 MeV. This criterion for determining b& is thus
valid for the ground state but not for the excited states.
This is a serious drawback if one is interested in the whole
spectrum. Moreover, since I. and S are good quantum
numbers the same procedure can be used for each (L,S)
band leading to a b parameter depending also on L, and S.
If the b& value determined from the ground (L=o,
S = —, ) band is retained for other excited (L,S) bands,
these will be badly reproduced (this is the case effectively).
If, on the other hand, we select the b values minimizing
each band head the original simplicity of the model is lost
and the calculations of transitions between different bands
become more complicated. One is interested in a criterion
for determining a unique value of b which gives an overall
agreement for the whole spectrum. This is closely related
to a good convergence versus the number of quanta N in
the basis. If we find a b value which decouples as much
as possible the states with different number of quanta, this
convergence criterion will be fulfilled. In particular, one
can require that the overlap of the ground state

~

'Po(b))
with the 0 quantum state

I
S & [0'oo(xi b)4'oo(y&») lo

is maximum:

R (b)=(%' (b)
~

S;OOOO;O(b)) max .

For N=4 the bz value obtained from this criterion is
bz ——0.66 fm for which Eo ——1046 MeV and 8 (b) =0.988.
Since the ground state is practically the pure 0 quantum
state it is obviously decoupled from other states and, con-
sequently, this b value is practically independent of N.
One sees that although b2 is quite different from b&, lead-
ing to quite different spectrum, the ground-state energies
do not differ significantly indicating that Eo is a flat
minimum versus b. However, the correlations in the
ground state, although small, are not negligible; in fact
Eo(N=O, bz)=1087 MeV, Eo(N=2, bz)=1065 MeV,
Eo(N=4, bz ) = 1046 MeV. The quantum energy
Ace=530 MeV obtained with this new criterion is quite
realistic and the spectrum is much better in that case,
even in a more restricted space. For example, the first
and second excited L =0, S = —, states are now Eo (N= 2,
bz)=837 MeV and Eo*(N=2, bz)=971 MeV. To have
an idea of the convergence, we give the same quantities
calculated in a space built with all states up to %=4
quanta Eo(N=4 bz)=808 MeV Eo*(N=4 bz)=936
MeV. These values are close to the exact ones and it ap-
pears that, with the criterion (5.2) for determining b, the
spectrum for states up to %=2 is well reproduced with an
HO basis up to %=4. This is clearly shown in Fig. 1

where the whole relative spectrum (up to N=2) of the nu-
cleon is displayed both with an exact calculation and with
an HO basis up to N=4 [remember that the potential
does not include spin-orbit and tensor force and conse-
quently the states J appear in multiplets (L,S)]. We see
that the HO basis is a good one, especially for negative-
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E (GeVj (5.8)

IO— Among two-body observables the Coulomb energy, calcu-
lated by perturbation, is of special importance,

0 4

Denoting

(1+3r,' )(1+37, )

l (j IJ

(5.9)

0.5—
(5.10)

8=% % T,

one can show that
2

Ec= [18(A B)Tz +(6A 3B)Tz ——
2 A] . (5.11)

I/2+ 3/2+ 5/2+ 7/2+ l/2 3/2 5t'2

FIG. 1. Comparison between an exact treatment (solid line)
and an approximate one using a harmonic-oscillator basis
(dashed line) for the nucleon spectrum ( T =

2 ). The HO basis

contains states up to four quanta and uses a size parameter
b=0.66 fm. All levels up to two quanta are reported.

parity states; the differences with the exact calculations
are more pronounced for low values of L ( L=0).
Nevertheless the overall agreement is remarkable. Con-
cerning the energies, the HO approximation is certainly
meaningful. One can now ask the question: Does this va-
lidity remain for other observables? To answer this ques-
tion we select one-body and two-body observables.
Among the one-body observables we calculate the mass
square radius (R ) with

The numerical values of these quantities, calculated both
with the HO basis (N=4 and b2) and with exact Faddeev
formalism, are reported in Table I for the two isospin
components T, = —,

'
(proton) and T, = ——,

' (neutron) of
the nucleon. It is clear that for one-body physical quanti-
ties ((R ), (R, ), ply~) the harmonic-oscillator ap-
proximation is a really good one, while the discrepancy on
Coulomb energy is more pronounced [curiously the differ-
ence Ec(p) Ec(n) is a—lso well reproduced].

Having in mind that the correlations between two parti-
cles in the cluster may be a crucial test, we introduce the
correlation function p(xo) which gives the probability per
volume unit to find two particles separated by the dis-
tance xo, independently of their direction. More precise-
ly,

10

3

R = gm(r; —R)
3

gm;, (5.3)

&R ') = —,
' &e [y,'( e) . (5.4)

We also study the charge square radius (R, ), where

3

R, = pe;(r; —R) (5.5)

then

( R, ) =—(4'
~

( I +3r,')y)
~

'll )
6

(5.6)

which can be recast, through the Lande theorem, in the
form (R, ) =A +T,B. Another interesting quantity is
the magnetic moment in units of the quark magneton, L I

0.8 0.4 0.6 0.8 1.0 1.8 1.4
x(fm)

3

P/P& ——
6 + z I,'+sr,' 1+3w,

'

i=1
(5.7)

which, for the ground state I.=0, S = —,, takes the form

FIG 2 Correlation function as defined by (5 12) calculated

in an exact treatment (solid curve) and in an approximate one

using a harmonic-oscillator basis (dashed curve). The two most
important channels o.=t=0 and o.=t=1 are plotted.



748 B. SELVESTRE-BRAC AND C. GIGNOUX 32

p, (x0)= I dxo(V (x,y)
~

P P,5(xo —x)
~

'P (x,y) ),
. (5.12)

where P and P, are the projectors on states where the
particle pair is coupled to o for the spin, to t for the iso-
spin. In Fig. 2, the p(xo) correlation is plotted for the nu-
cleon in the two important channels o.= t=O and 0.=t= 1.
The channel o =t= 1 (for which the spin-spin interaction
is repulsive) is correctly described by the HO approxima-
tion. On the other hand, the channel a =t=0 (for which
the spin-spin interaction is strongly attractive) in the HO
basis deviates more and more from the exact one as the
particles come closer and closer. At origin the discrepan-
cy reaches a factor of 2. This effect may be very impor-
tant for quantities which need the correlations for small
distance, such as the leptonic decay of strange baryons; in
that case it is necessary to make a full Faddeev calcula-
tion. We hope that this lengthy and detailed comparison
between the exact treatment and the diagonalization in a
restricted space spanned by harmonic-oscillator functions
sheds some light on the validity of previous works, more
particularly those of Isgur and Karl, dealing with the
same subject.

VI. RESULTS AND DISCUSSION

In this section, the study of baryons built up with u, d,
s quarks is presented. All the calculations are performed
with the Bhaduri-Cohler-Nogami potential discussed in
Sec. II, and with the Faddeev formalism presented in Sec.
III. To our knowledge, this paper is the first one report-
ing such extensive and precise calculations. These
represent the following six systems: nonstrange baryons
with T= —,',

p (uud), n (udd);

nonstrange baryons with T = —,',
5++(uuu), 6+ (uud), b, (udd), 6 (ddd);

strangeness-1 baryons with T=O,

TABLE I. Comparison between an exact treatment and the
approximate one using a harmonic-oscillator basis for the nu-
cleon system The on.e-body ((R ), (R, ), pip~) and two-
body (Coulomb energy Ec) observables are calculated with the
Bhaduri-Cohler-Nogami potential. The HO basis contains
states up to four quanta and uses a size parameter b=0.66 fm.

A (uds);

strangeness-1 baryons with T= 1,

X+ (uus), X (uds), X (dds);

strangeness-2 baryons ( T = —,),

(uss), :- (dss);

strangeness-3 baryons ( T=O),

0 (sss) .

For each system, the static properties (R~ ), (R, ),
p/p~. E, already discussed in the previous section are
given for the ground state, and the relative spectrum up to
two-quanta excitation energy is plotted in Figs. 3—8.
These systems are those for which the nonrelativistic
model is expected to be worse; they are also those for
which the experimental data are more abundant.

A. Absolute energies

The calculated mass for the nucleon is found to be 1024
MeV. This value is 85 MeV higher than the experimental
one, but this is not significant. We employed the potential
without changing any parameter and the constant term D
in (2.3) can be used to fit exactly the nucleon mass. This
term has no influence on the wave function and conse-
quently on the nucleon structure. What is more impor-
tant for testing the potential are the masses of the ground
states of the -systems relative to the nucleon mass. These
are listed in Table II. The overall agreement is quite
good; however the discrepancy increases with the system
mass. To remedy this effect, Bhaduri, Cohler, and No-
gami proposed to include in the potential a three-body
constant term depending on the quark masses. On the
other hand, Ono' preferred to use a spin-spin range r0 in
(2.3) depending on the quark masses.

Relative energy spectrum

The energy spectra of the six considered systems rela-
tive to their own ground state are plotted in Figs. 3—8.
All states up to around 1-GeV excitation energy, corre-
sponding roughly to two quanta, are reported. Calculated
values are given by horizontal bars while experimental
data are drawn through their full width. The comparison
between experimental spectra (resonance energies) and our
calculated results (discrete bound states) should be taken
with caution, indeed, our model cannot include the cou-

(R ) (fm)

HO basis

0.227

Faddeev calculations

0.218
TABLE II. Ground-state masses in MeV for the considered

systems relative to the calculated nucleon mass (Mq —M&);
these results were obtained by an exact three-body treatment.

(R,')
(e fm~)

Ec
(MeV)

0.247
—0.020

0.990
—0.657

—0.098
—0.884

0.240
—0.025

0.987
—0.653

—0.152
—0.947

System
S Experiment

293
177
254
379
733

Theory

306
174
237
355
660
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I/2+ 3/2+ 5/2+ 7/2 I/2 3/2 5/2

FIG. 3. Relative spectrum for the nucleon system {uud and
udd) calculated with the Bhaduri-Cohler-Nogami potential and
within an exact three-body treatment. Positive-parity levels are
displayed in the left-hand side, while the negative-parity levels
are on the right-hand side. The calculated values are indicated
by a solid line; the experimental data are shown through their
full width, while uncertain experimental levels are denoted by
dashed lines.

pling to the continuum channels. Thus we have no pre-
diction for the energy shift and the full width, which may
be of the same order of magnitude. Sometimes, uncertain
experimental levels are indicated with dashed lines. As al-
ready stated, the calculated states appear in (L,S) multi-
plets. These multiplets can be split by the introduction of
spin-orbit or tensor forces. Nevertheless, from an overall

)() E(GeV)

FIG. 5. Same as Fig. 3 for the A system {uds).

view of Figs. 3—8, the simple potential of Bhaduri,
Cohler, and Nogami looks quite able to reproduce the
main features of the spectra for all six considered systems.
In particular, the negative parity levels are fairly well
described. However, one cannot interpret, within this
model, the challenging discrepancy of the b, (1900)—, and
b;(1930)—', states which lie experimentally far too low as
compared to our three-quanta excitation levels (which ap-
pear at around 1.1-GeV excitation energy). Moreover
another discrepancy concerns the A(1405) which is
theoretically too high. However, our feeling is that taking
into account the spin-orbit or tensor force in the potential
~ould improve the situation in this peculiar case. On the
other hand, most of positive parity states are correctly lo-
cated. Nevertheless, in each system there is a dramatic

(0 E(GeV)

p/g 4/p ~YY8 p'

0.5

I/2 3/2 5/2 7/2 I/2 3/2 5/2

FIG. 4. Same as Fig. 3 for the 6 system (uuu, uud, udd,
ddd).

I/2 3/2 5/2 7/2, I/2, 3/2 5/2

FIG. 6. Same as Fig. 3 for the X system {uus, uds, dds).
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E (GeV)
basis. From our study, we can conclude that, if it is
true, they cannot be understood as the deformation of the
mean field coming from the quark-quark potential. Per-
sonally, we. think that the structure of these puzzling lev-
els is more complicated than the simple three-quark struc-
ture studied in this paper. Maybe the polarizability due to
the quark-antiquark sea is especially important in these
special cases. In any event, the mechanism responsible for
the lowering of Roper and analogous resonances is still
not understood and no doubt that extensive works will be
done on this subject in the near future. Since the experi-
mental spectrum of the = and Q systems is practically un-
known, we hope that our results could serve as a theoreti-
cal reference for future experimental determinations.

l/2 3/2 5/2 7/2 I/2 3/2 5/2

FIG. 7. Same as Fig. 3 for the = system ( uss, dss).

E(seV)

I/2 3/2 5/2 7/2 3/2

FIG. 8. Same as Fig. 3 for the Q system (sss).

exception concerning the first excited state with the same
quantum numbers as the ground state, namely, the Roper
resonance X(1440) and the analogous levels b, (1600),
A(1600), and X(1660). The puzzle comes from the fact
that they are lying experimentally in the first negative
parity energy range. This cannot be unde&stood in terms
of HO states. Our complete calculations clearly show that
this phenomenon is not a consequence of truncating the
Hilbert space. Our deep impression is that this puzzle
cannot be solved by changing the potential and/or intro-.
ducing spin-orbit and tensor forces. If the potential is
determined in order to fit these peculiar levels, the
description of the rest of the spectrum (especially the neg-
ative parity states) would fail in counterpart. ' It was ar-
gued that these levels could be constructed on a deformed

C. Physical observables

In this subsection we consider the one-body and two-
body observables mentioned in the previous section; they
are calculated for the ground state of each system and
displayed in Table III. Experimental values, when known,
are indicated between parentheses. The mass square ra-
dius is a decreasing function of the system mass (compar-
ing systems with the same spin-space symmetry); this is
intiuitively understood when one realizes that for heavier
systems the kinetic energy is reduced allowing quarks to
be closer to each other. These values give particle size
around 0.4 to 0.5 fm. Charge square radius varies signifi-
cantly from one system to the other due to different elec-
tric charges of the quarks; if the spatial wave function
were completely symmetric, one would have the exact
identity (R, ) =Z (R ) . This is practically the case for
all systems, even when the masses are different. The cal-
culated values are smaller than the measured ones. It is
traditionally claimed that the difference is due to the pion
cloud, or equivalently to the coupling of the valence
quarks to the quark-antiquark sea; quantitative calcula-

'

tions in that direction would be very instructive. Since,
for all the systems, the ground-state wave function has
practically pure X=I=0 components, the orbital contribu-
tion to the magnetic moment is quite negligible and the
spin contribution gives the values derived by "the naive
quark model. " The general trend is well reproduced ex-
cept the anomaly of the = . The calculated Coulomb en-
ergies are of order of one MeV, that is small as compared
to the total mass. However, they are rather different from
one system to the other (ranging from 0.8 MeV for n —p
to 2.5 MeV for = —=o) showing the importance of an
exact calculation. From a glance at Table III, it is clear
that the Coulomb energy alone is not able to explain the
mass splitting of the isospin multiplets (the neutron is
more bound than the proton); the only way to recover the
correct masses is to break the fundamental SU(2) isospin
symmetry for u and d quarks and to assume a small
difference md —m„=Am. Apart from this constituent
mass correction, there exist also correcting terms coming
from kinetic energy and flavor dependence of the color
magnetic force. ' These terms are, in first order of per-
turbation, proportional to Am but with destructive in-
terference in the coefficients. Thus they need a careful
and proper treatment which is out of the scope of this pa-
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TABLE III. One-body and two-body observables calculated by an exact treatment with the Bhaduri-
Cohler-Nogami potential for the ground states of the six considered systems. Experimental values,
when known, are written w'ithin parentheses.

(z ')
(fm )

0.218

(efm )

0.240
(0.66)

—0.025
( —0.108)

2.752
(2.793)

—1.822
( —1.913)

Ec
(MeV)

—0.152

—0.947

0.289

0.578
0.289

0
—0.289

5.579
2.789

0
—2.789

2.894
0

—0.723
0.723

0.179 0.040 —0.522
( —0.613)

—0.866

0.193

0.334

0.059
—0.217

2.653
(2.379)
0.794

—1.414
( —1.10)

0.029

—0.756
0.749

0.161
0.091

—0.177

—1.316
( —1.25)
—0.386

( —1.85)

—1.412

1.218

0.175 —0.175 —1 ~ 567 0.945

per and which is postponed for a future' publication.
However for the X system the combination
—,'(X++X ) —X cancels exactly these dangerous terms
and we are left with the Coulomb correction only. The
calculated value for this peculiar case is 1.145 MeV to be
compared to the experimental one 0.89 MeV; the agree-
ment is satisfactory.

VII. CONCLUSIONS

In this paper we solved exactly the three-body problem
for baryons composed of u, d, and s quarks. The quark-
quark potential employed in our calculations is due to
Bhaduri, Cohler, and Nogami; we took it without modifi-
cation and thus our results are obtained without any free
parameter (except the mass difference md —m„necessary
to fit the members of isospin multiplets). On the other
hand, the nucleon properties were also investigated in
terms of a harmonic-oscillator basis. This way of truncat-
ing the total Hilbert space was abundantly used in the
past (see, for instance, the extensive pioneering works of
Isgur and Karl ); thus a serious comparison with an exact
reference is highly instructive. From our study it appears
that the current prescription for determining the oscillator
size b by minimizing (0'~ H ~%') gives good results only
for the ground state but leads to a dilated spectrum. A
better choice for b is to impose that the ground state is as

pure as possible on the zero quantum state. En that case
the different levels are rather decoupled from each other
and convergence is faster. For example, a space restricted
to states up to four quanta is large enough to reproduce
nicely the spectrum of states up to two quanta. VA'th

these prescriptions to restrict the Hilbert space, the energy
spectrum as well as one-body properties are very well
described. However two-body properties such as
Coulomb energies or quark correlations in the cluster can
be seriously different from their exact values. This effect
is important for the leptonic decay of strange baryons for
which one needs to rely on an exact Faddeev calculation.

The Bhaduri-Cohler-Nogami potential has a very sim-
ple form; in particular it does not contain spin-orbit or
tensor forces. Nevertheless the spectrum obtained with it
is in rather good agreement with the experimental data
concerning the studied baryons. This shows that the most
important part of the physical content is already included
in it. However, the Roper and analogous resonances- can-
not fit in this framework. Our feeling is that this is not a
matter of potential but rather a matter of structure.
Changing the potential would not modify qualitatively the
general features of the spectra; we think that the structure
of the Roper resonance is more complicated than the
three-quark structure studied in this paper. Probably
there is an important coupling of the three valence quarks
to the quark-antiquark sea. En the same spirit the
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g(19()O)—,
' and Q(1930)—,

' are calculated much too high
compared to their experimental values. Even a complete
exact treatment maintains them in the three-quanta re-
gion, while experimentally they lie below the two-quanta
region. This phenomenon is not understood up to now.
Finally the nonrelativistic model applied to systems for
which (U/c) is around unity works quite well as if the
relativistic effects were masked. This is also an interest-
ing puzzle.

APPENDIX

In this appendix, we want to report some technical as-
pects concerning the nucleon wave function in terms of an

harmonic-oscillator basis. The correctly symmetrized
basis functions N; up to N=4 quanta and the eigenvec-
tors 4 (up to two quanta) obtained with the Bhaduri-
Cohle'r-Nogami potential are presented for L=0,1,2 with
S= —, and —, in Tables IV—X. As explained in Sec. IV,
the N; were deduced from the use of Brody-Moshinsky
coefficients with angles P=+2vr/3. In order to simplify
the notations let us put, as in (4.1),

l

n»~ L ) =[4.I(x1)9 A, (yl)]L .

Since separate tables are presented for each L value, the L
index in (Al) will be omitted in the tables. The color
wave function is antisymmetric and was purely forgotten

TABLE IV. Correctly symmetrized basis functions @; up to %=4 quanta and the eigenvectors II

(up to two quanta) obtained with the Bhaduri-Cohler-Nogami potential, for L =0, S = 2, positive pari-

ty.

i
S)

i
0000)

~
S)(

~

1000)+
(
0010) )

2
—,'[(Ms&(~ looo& —~0010&) vz~Ma& ~0101&]

0.988 —0.062 0.087

0.112 0.263 —0.920

—0.019 —0.932 —0.293

4 (S)[V5(
~

2000)+
~

0020))+V 6
~

1010)]

(s&[v6( )2ooo&+ (oo2o&) —2v 5 )1olo&+8
I
o2o2&]

96
T~[

i
MS)(

i
2000) —

j
0020) ) —i' )(

i
0111)+

i
1101))]

[ /
MS )[V 6(

f

2000 ) +
/
0020 ) ) —2V 5

f

1010) —4
[
0202 ) ]

96
—2V 6

~

MA )[
~

0111)—
~

1101&]J

0.089

0.042

0.162 0.084

0.084 —0.055

0.036 —0.148 0.215

0.030 0.054 —0.054

TABLE V. As in Table IV, for L=1, 5 = 2, negative parity.

(
~

Ms )
~

ooo 1 &
—

~

Mw )
~

oloo) & 0.978

(S)(—V 3
~

0011)+V 5
(
1001)+2

~

0201) )
12

~

~ &( —v'31»00&+V5
~

o11o&+2
~

olo2&)
V'12

4 [ ~

MS ) ( V 5
~

0011) +V 3
~

1001 ) ) —
~

MA ) ( V 5
~

1100) +V 3
~

0110) ) ]

[ i
MS ) (V 3

i
0011 ) —V 5

i
1001 ) +4

i
0201 ) )

V'48
—

~

MA )(V3
~

1100)—V 5
~

0110)+4
~

0102) )]

0.128

—0.031

—0.145

—0.067

TABLE VI. As in Table IV, for L=1, S = 2, positive parity.

~

a) ~0101) —0.966

~

3 )(
~

1101)+
~

0111))
2

2 [ ~

MS )
~

0202 ) +
~

MA ) (
~

1101) —
~

0111) ) ]

0.253

0.047
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TABLE VII. As in Table IV, for L=2, S = 2, positive parity.

i
S)(

i
0200)+

i
0002) j

2

2 [ ~

MS ) (
~

0200) —
~

0002) ) —W2
)
MA ) )

0101)]

0.780 —0.564

—0.570 —0.777

[A &[V 3(
f
1101)—

f
0111)) —V7( [0301)—f0103&)]

V 20

~

S ) ( (
1200 ) +

~

0012 ) +V 3
~

0202 ) )
5

~

S&[V21(
~

1200)+
~
0012&)—2V 7

~

0202&+5{
~

1002&+
~

0210&)]
V 120

[ ~
MS)[V 3(

~

1200) —
~

0012) )+V 7(
~
1002) —

~
0210))]

40
—V 10

~

MA ) (
~

0301 & +
~

0103 ) ) I

[ (
MS ) [—V 7(

)
1200) —

~

0012 }) +V 3(
~

1002 ) —
~

0210) ) ]v4o
+~io

~

Mw &(
~

iio»+
~

oiii) )I

[ ~

MS ) [V 15(
~

1200) +
~

0012 ) ) —V 35{
~

1002 ) +
~

0210 ) ) —2V 5
~

0202) ]
V 240

+ )
MA )[V 42(

(
1101) —

)
0111) ) +3W2(

)
0301 ) —

(
0103 ) )] I

—0.010 —0.020

—0.148 0.100

—0.114 0.141

0.107 0.015

—0.121 —0.219

—0.069 0.010

TABLE VIII. As in Table IV, for L=O, S= 2, positive parity.

—[
~

ms )( )
1000)—

~

0010) ) —V 2
~

ma )
~

0101 ) ]

—,
'

[ ]
ms ) (

(
2000 ) —

(
0020 })—

(
ma ) ( [

0111) +
(
1101 ) ) ]

{ (
ms & [V'6(

[
2000 & + [

0020) )—2V 5
[
1010)—4

)
0202 ) ]

96
—2V 6

~

ma )[ ~

0111)—
~

1101)] I

—0.322

0.013

TABLE IX. As in Table IV, for L=1, S = 2, negative parity.

(
~

ms ) (
0001 ) —

~

ma )
~

0100) )
2

—„[~

ms ) (~5
~

0011) +V 3
~

1001 ) ) —
~

ma ) ( V 5
~

1100)+ V 3
~
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[ ~
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~

0011 ) —V'5
[
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~

0201 & )

—
[

ma )(V 3
)
1100)—V5

)
0110)+4)0102))]

0.966

—0.257

—0.022

TABLE X. As in Table IV, for L=2, S= 2, positive parity.

T~[
(
ms)(

~

0200) —
~

0002) ) —V2
~

ma ) (
0101)] 0.949

j ~

ms )[V 3(
~
1200)—

~

0012) )+V 7{
~

1002) —
~

0210) )]
40

—V 10
~
ma & [ ~

0301 & +
~

0103 ) ] I

v4o [ ~

ms & [ —V 7{
~

1200) —
~

0012) )+V 3(
~

1002) —
~

0210) )]

+V 10
~

ma ) [ ~

1101)+
~

0111)] I

[ )
ms )[V 15(

~

1200 ) + )
0012 ) ) —V 35(

)
1002 ) + (

0210 ) ) —2V 5
(
0202 ) ]V 240

+
~

ma ) [V 42(
~

1101) —
~
0 1 1 1 ) ) +3V 2(

~

0301 ) —
~

0103 ) ) ] I

—0.034

0.313

0.006
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in the tables since it is the same for each function. The
rest of the basis functions @; is thus completely sym-
metric. The notations for the spin-isospin functions,
which appear in front of the spatial functions (Al), are
those defined by Eqs. (2.1). The eigenvectors 4 are ex-
panded in the N; basis and were calculated with %=4 and

b=0.66 fm, as was discussed in detail in Sec. V. The
components of II are also listed in the tables. The wave
functions are intended for the readers who want to make
calculations more sophisticated than the usual ones, with
a harmonic-oscillator basis.
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