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A complete amplitude analysis is presented of the 579-MeV data set for p-p elastic scattering. Al-
though all continua of ambiguities are eliminated by the extensive nature of the data, discrete ambi-
guities remain, as expected from general criteria for such ambiguities. In particular, four solutions
are found. Further experiments are specified which can resolve this remaining ambiguity also. A
comparison is also made with previous amplitude results at this energy.

I. INTRODUCTION

The two-nucleon interaction up to about 6 GeV is the
best explored strong interaction by a long shot, and thus it
constitutes a firm data base for our concrete knowledge of
strong interactions. In the lowest energy range a program
of partial-wave analysis carried out over several decades!
has provided the best phenomenological description of
this process. Beyond 500 MeV, however, the phase-shift
description is not necessarily the most convenient formal-
ism, since it has some difficulties in dealing with inelastic
processes, and because it requires an increasingly more
complete angular distribution of observables in order to
function, and since the number of angular momentum
states keeps growing.

Thus at these higher energies an analysis into complex
reaction amplitudes (which are functions of energy and
angle) is preferable. To perform this in the simplest possi-
ble way, with the smallest possible uncertainties, we have
to find a polarization formalism in which the relationship
between observables and the bilinear products of ampli-
tudes (“bicoms”) is as simple as possible. Such a class of
formalism is the optimal formalism,? in which this rela-
tionship can be described by a matrix which is as diagonal
as Hermiticity allows: The matrix consists only of a
string of small submatrices along the main diagonal.

The optimal formalism has been used to analyze data
on reactions of various kinds,>~ and to draw various con-
clusions from these data concerning the dynamics under-
lying the reaction, such as one-particle-exchange mecha-
nisms,® Regge-pole mechanisms,” QCD models,® as well
as possible novel mechanisms.*

The aim of the present paper is to use the optimal for-
malism to provide a phenomenological description of the
amplitudes for p-p elastic scattering at 579 MeV. At this
energy a very impressive set of experimental data®!© is
now available which is extensive enough to allow a deter-
mination of the amplitudes at various angles without a
continuum of ambiguities. In fact, a solution has been
given by the experimental group® which carried out the
measurements. Our aim therefore was to attain the same
solution via the use of the optimal formalism and also to
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explore the extent to which there remain discrete ambigui-
ties in the amplitude solution at this energy with the
present set of data. This is of importance since if one is to
deduce dynamical conclusions from such measurements,
such discrete ambiguities can seriously diminish the con-
clusiveness and unambiguity of such conclusions. Indeed,
this is the case for the results already obtained from p-p
scattering at other energies.” Such an analysis of ambigui-
ties also contributes to a more systematic design of future
experimental programs which are expected to unfold on
many of the intermediate- and high-energy accelerators.

II. THE ANALYSIS

Experience with other reactions and with p-p scattering
at other energies has shown®~>!! us that for any parity-
conserving reaction the optimal formalism most suitable
for the phenomenological determination of the amplitudes
is the transversity formalism, since it “naturally” blends
with the constraints imposed on the reaction amplitudes
by parity conservation. We will therefore use this formal-
ism to determine the amplitudes from the measurements.

The observables that have been measured at this energy
and their expressions in terms of transversity amplitudes
are given in Table I. The results of this table were adopt-
ed from Table VI of Ref. 12. We used all these data in ar-
riving at the amplitudes: o, P, Cyy, Dyy, and Kyy gave
the magnitude of the transversity amplitudes; then Cy;,
Css, and Crg provided ¢(a), ¢(B), and ¢(y)—¢(e) up to
some ambiguities; and finally the rest of the observables
were used to determine ¢(y) and ¢(€) and to eliminate
some ambiguities. This is described in detail below.

A. Determination of magnitudes

We see that five observables already measured deter-
mine the five magnitudes of the five amplitudes. We will
ignore the angular dependence of the differential cross
section and normalize the latter to be always unity, so that
we have

o=|a|*+ B2 +2(]|y|*+|8|*+ |e|H=1. (.1

Thus we need only four observables, namely P, Cyy,
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TABLE 1. Observables for pp elastic scattering in various notations and their relationships to transversity amplitudes. Legend: (1)
The Argonne name for the observable in the c.m. system (see Ref. 12, Table VI). (2) The Argonne c.m. observable notation (see Ref.
12, Table VI). (3) Our observable notation in the c.m. system (see Ref. 12, Table VI). (4) Expression for the observable in terms of bi-
linear products of transversity amplitudes (see Ref. 12, Table VI). (5) CEN Saclay and SIN Geneva laboratory observable notation.

(6) Laboratory observable in terms of c.m. observables.

1 2 3 4 5 6
o (0,0:0,0) (4,4;4,4)  |al>+|BI2+20[y P+ [8]%+ €| o o™
P —(0,;0,0) (A,A;4,A4) la|?—|B|? P pem
(oYY —(»,;0,0) (A,A;4,4) la |2+ | B2 +2[— |v >+ |8]*—|€|?] Cnnoo Chrinoo = AGoNN
Crr —(z,2;0,0) (R,R;4,4) 2Re[(a+B)8* +2y€*] Aookk AGokkx = CkKoo
Css (x,x;0,0) (I,I;4,4) —2Re[(a+B)8* —2ye*] Aooss AG5ss = Cssoo
Cst —(x,2;0,0) (I,LR;A4,4) 2Im[(a—PB)6*] Aoosk A5osk =Cskoo
Dyy (0,y;0,9) (4,8;4,8)  |a|>+ B> +2[|7|*—18]|*—|€|*] Dyono Do
— Dgy (0,x;0,x) (A,I1;A4,I) 2Re[(a+B)y* —26€*] Dgoso — D§M™cosO; + Dyssin0;
D’ (0,2;0,x) —(A,R;A,I 2Im[(a—B)y*] : Dgoko — D§&™cosO; — D™ sinf;
Ky —(»,0,0,y) (A,4;4,4) la|?+ | B2 +2[—|v|*—|8]*+ |€]|?] Konno KGNwo
Kgs —(x,0;0,x) —(I,A;A,I) —2Re[(a+pB)e* —2y8*] Kos so K&™cosO, — K™ sinf
— Kt —(x,0;0,2) (I,A;A,R) 2Im[(a—pB)e*] — Kos xo K&™cosO, — K™ siné,
Hyss —(,x;0,x) —(A,I;A,I) —2Re[(a—PB)r*] Mg osn — H58 cosB; — H Sy sinf,
Hyrs (y,2;0,x) —(A,R;A,I) 2Im[(a+B)y* —26€*] — Mgoxn HEscos0; + H55%sinf,
Hgys (x,y;0,x) —(I,A;AD) —2Re[(a—B)e*] Nossn HgyscosOr — Hgyy sinfg
HLNS (z,y;O,x) ***(R,A,A,I) 2[m[(a+ﬁ)€*+2'}/8*] NOS”KN Hf']{;“s'cosek -—H§1\'}_'gsm0R
Dyy, and Kyy to determine the magnitudes of the ampli- Crr. —Css
tudes. Note that this determination of the magnitudes (as U= 48] = |a|cosp(a)+ | B| cosp(B) 2.2)
opposed to the phases) can always be done without any
discrete ambiguities, since such magnitudes are of course and
always positive, and hence determining the magnitude Crs
squared from the equations which are linear in them gives V= =5 = | a | sing(a)— | B|sing(B) , (2.3)
also a unique value for the magnitude itself.
The values of the magnitudes thus determined are given and from these we get
in Table II
. U4+ V23— |a|?— 2
coslp(a)+¢@] =LtV =1al = 1Bl" (4

B. Determination of the phases

We will now describe the algebraic procedure that can
be used to determine the relative phases between the am-
plitudes. It is at this point that all discrete ambiguities
enter, since the measurements provide the sine and cosine
of these relative phases, and the angles are multivalued

2|l |B]

We note that Eq. (2.4) indicates a twofold discrete ambi-
guity for the left-hand side. Equation (2.4) also provides a
constraint (and hence a consistency check) on experiments
since the left-hand side has an absolute value equal to or
smaller than unity.

functions of sine and cosine. The above set of equations yields [using
Since we can determine only the relative phases between n=¢(a)+4(B)] ‘
amplitudes, we can set one amplitude real without infring- cosd(ar) = U(la|+|B|cosn)—V |B|sinn
ing on the generality of the description. We will choose & U4 y? ’
to be real. Then, from Table I we see that C;; —Cgs and . (2.5)
C.s give information on ¢(c) and ¢(B). In particular, we sing(a)= V(la]| + |B]|cosn)+U | B|siny
have for these two quantities U4 v?
TABLE II. The magnitudes of the transversity amplitudes as obtained from our analysis.
Bcm. (deg) la| Ala| |B] AlB| Ly Aly| 8 A8 €] Alel
66 0.720 0.006 0.392 0.010 0.287 0.011 0.211 0.015 0.194 0.016
70 0.717 0.005 0.422 0.009 0.285 0.011 0.188 0.016 0.194 0.016
74 0.703 0.005 0.482 0.008 0.280 0.013 0.185 0.020 0.155 0.024
78 0.674 0.006 0.506 0.007 0.291 0.012 0.173 0.021 0.175 0.021
82 0.649 0.006 0.527 0.007 0.265 0.013 0.174 0.020 0.224 0.016
86 0.636 0.006 0.569 0.006 0.253 0.014 0.167 0.021 0.208 0.017
90 0.600 0.006 0.605 0.006 0.241 0.015 0.161 0.022 0.229 0.015
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and
_ UUBL+|alcosp)+V | a]sim
cos¢(/3)_ U2+ VZ ’
) (2.6)
sing(B) = —V(|B| + |a|cosn)+ U |a|sing -

U2+ V2

The available data reflect the constraint of Eq. (2.4) rather
poorly. This is shown in Table IIIL

The above set of equations gives two solutions for ¢(a)
and two solutions for ¢(3), thus leaving us altogether with
four solutions for the set {¢(a),d(B)}.

If we had measurements also on Hggy (see Table 1),
then we could define

H
D=~ |S§“(’ = |a|cosp(a)— | B|cosp(B) , 2.7)
and from it and Eq. (2.3) we would get
i 2 2 2 2
coslgla)—g(B)]= 2L —1al"=BI" = (4

2|al |B]

which, however, also has a twofold ambiguity in it, and
hence adding it to the previous information would only
reduce the previous quadruple ambiguity to a double one.

In our quantitative determination of ¢(a) and @(3)
whenever the right-hand side of Eq. (2.4) was larger than
unity, we replaced that number by unity but retained the
error limits. Thus, a number of 1.65+0.95 was replaced
by 1.00+0.30, thus, in fact, probably underestimating the
uncertainty. This causes some problems, such as our not
getting exactly zero for the single spin-flip amplitude at
Oc.m. =90°.

Having determined ¢(a) and ¢(f3), at least up to some
discrete ambiguities, we now turn to the determination of
¢(y) and ¢(€). From our previously considered observ-
ables we also have

CLL +CSS:8RC7/€* (29)

which determines the phase between ¢(y) and ¢(€) up to a
twofold discrete ambiguity. This equation also gives a
constant and hence a consistency check on the measure-
ments.

So far we have determined the phases of a and f3 (rela-
tive to 8) and the relative phase between ¥ and €. Thus
we need at least one more measurement pertaining to the

where X and Y are given by
X =4|8]| |€|cos[¢(y)—d(€)]cosOy

=2|v|{|a|cos[¢p(a)+6r]+ | B|cos[¢(B)—br1} ,
(2.11)
Y=4|38]| | e|sin[¢(y)—ed(€)]cosOr

—2|y|{|a]|sin[¢(a)+6g]+ | B]|sin[¢(B)—6k]} ,

(2.12)
where Oy is the recoil angle. Using
X . Y
cos§ = (X241 Y2)12 and sin§ = (X241 Y22
(2.13)
we can write Eq. (2.10) as
B - 14)
(X2+Y2)1/2 =COS[¢(‘}/)—§] ’ (2

where £ is uniquely determined.

In terms of the same X and Y we can obtain a similar
relationship for sin[é¢(y)—Z]. Thus for a fixed ¢(a),
¢(B), and ¢(y)—¢(€), we can determine ¢(y) without any
ambiguities, but we recall that we “inherited” ambiguities
in the first three of these quantities. Using observables
other than Dgg (for example, D5 or Hyss) does not help
to resolve these discrete ambiguities.

A similar procedure, with similar results, could be car-
ried through using the corresponding K’s instead of D’s to
determine ¢(e). We have

K5 =T cosg(e) +Z sing(e) (2.15)
with T and Z given by
T=4|6]||y|cos[d(y)—d(e)]cosOg
—2|e| {|a|cos[(a)+0Ox 1+ | B sin[¢(B)—0x 1)
(2.16)
and

Z=—4|8] |y |sin[¢(y)—d(€)]cosOr
—2|e|{|a|sin[¢(a)+6r]+ | B|sin[¢p(B)—Or]1}

relative phase between the group a, 3, and 8 on the one (2.17)
hand and the group ¥ and € on the other. That can be from which we get
supplied by K
. . SS
DSS=4Reye*cost9R—2Re(ay*elaR +By*e ~ior) cos[¢(e)—,u]=m/—2 ’ (2.18)
=X cos¢(y)+ Y sing(y) , (2.10) where
TABLE III. The demonstration of the constraint given by Eq. (2.4) in our analysis. For details, see the text.
Oc.m. (deg) 50 54 58 62 66 70 74 78 82 86 90
cosm 1.875 1.776 1.746 3.170 0.480 0.431 0.472 1.092 0.826 1.092 1.210
A(cosm) 1.171 1.088 1.121 2.013 0.089 0.516 0.400 0.581 0.513 0.603 0.666
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Z

W . (2.19)

cosp = and sinu=

T
( T2 + ZZ ) 172
We used, however, a different procedure at this point.

Since there were a number of additional observables at our
disposal, we used D&, D;g, Hyss, Hys (corresponding
to the notation in Ref. 13 to Dwoso, DWOKO’ MWOSN:
Myokn, respectively), which are given by

— LMy + Do) =Im[(|a| | [T eisr (|5 || 1NN, i (2.20)
(MBS ey — DD o) =Im[(| B| |y | PO T Em D —ivtn) (|5 || WV —HN= Oy, —igir)y 2.21)
— L (ME ey + Do) =Re[(a| |y | # YT O Neibr (5] || [T THNHE=N,  —ig 2.22)
— H(MBey — Do) =Re[(| B] 7| PP T8 _(| 5] || 1T HN O, —igiry (2.23)

where 6; is the scattering angle in the laboratory system,
and o is the final transversal direction as analyzed in the
polarimeter. These four equations contain only one un-
known, namely, ¢(y), and so a X? fit can be made to these
four measurements to obtain the best value of ¢(y).

A similar procedure, using the observables Kowso,
Nowsns Kowko, and Nowgy, can be carried through to
determine ¢(e). None of that, however, relieves the inher-
ited ambiguities originating with ¢(a) and ¢(S3).

To conclude this section, we remind the reader that
once the transversity amplitudes have been determined, we
can immediately obtain any other amplitude set (and,
specifically, the helicity amplitudes) by a simple linear
transformation involving only mathematics but not phys-
ics. In these transformations both the magnitudes and the
phases of the other set of amplitudes depend on both the
magnitudes and the phases of the transversity amplitudes.
For the transversity amplitudes the magnitudes can be
determined, by themselves, from an easy subset of experi-
ments and hence with very small uncertainties, but the
phases almost always involve much larger errors (even
apart from the question of discrete ambiguities). Once

" one transforms, however, to a different set of amplitudes,
both the magnitudes and the phases will exhibit larger un-

certainties.  Specifically, the transformations from
transversity to helicity amplitudes are'?
a=tla+B+2y—6—e),
b=—la—p),
. =7[a+/3+2 +8+6)], (2.24)

7/_8+E)] ’

III. DISCRETE AMBIGUITIES

Discrete ambiguities in amplitude determinations can
occur for at least three different reasons.

First, let us consider the relationship of bicoms and ob-
servables, with exactly 2n — 1 observables available (n be-
ing the number of amplitudes). Criteria for when discrete

ambiguities arise in such situations have been provided re-
cently.!* These criteria can be tested extremely easily
through the geometrical diagrammatic analog technique
described in the same paper.

Second, in a situation when we have more measure-
ments than 2n — 1, and a least-square fitting is made, ad-
ditional discrete ambiguities can arise if the uncertainties
on the experimental observables are sufficiently large so
that a unique solution cannot be pinpointed on the basis
of X? criteria, and several different solutions with fairly
comparable X*’s present themselves as candidates.

Third, as we have seen in the previous section, addition-
al discrete ambiguities can arise when the measured ob-
servables do not yield individual bicoms but some linear
combinations of these.

The second and third causes for discrete amblgultles de-
pend on the particular situation at hand and hence it is
difficult to offer an a priori discussion of them. The first
reason, however, can be thus discussed.

We recall that the criteria in terms of the analog dia-
grams are that each amplitude point must be included in
at least one loop diagram in which there are an odd num-
ber of solid and an odd number of broken lines. With five
amplitudes, therefore, there is no way that four measure-
ments (in addition to the five determining the magnitudes)
will give freedom from discrete ambiguities. In fact, five
measurements cannot do it either. With six measure-
ments, however, we can eliminate all discrete ambiguities,
for example, by measuring the cosines of ¢(e), @(y),
d(B)—d(a), d(B)—d(y), and ¢(B)—e(e), and the sine of
#(a). Thus the minimum number of measurements in
this case that can bring about a completely unique deter-
mination of the amplitudes (apart from the one overall
phase factor which is experimentally undeterminable) is
11. A few examples of fully complete sets are

0,P,Cynn,Dyn,Kyn; Crr,Css,Crs; DirrsDss,Drs

or

0,P,Cyn,Dyn,Kyn; CrrsCss,Crs; Kpp,Kss,Kps (3.1)
or

0, P,Cyyn,Dyn;Kyn; Dirp,Dss,Dis; Kpp,Kss,Kps -
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The existing data, however, at this energy are not
numerous enough to constitute any of the above groups
entirely. It might be noted that the third of the sets in Eq.
(3.1) was in fact used'® for a determination of the ampli-
tudes of this reaction at 800 MeV.

IV. DISCUSSION OF THE RESULTS

In order to compare the amplitudes obtained by us with
those obtained by previous work, we have to collect the
amplitudes from all sources in the same frame. In Ref. 9
the amplitudes were given by Eq. (2.24) in the helicity
frame. Reference 1 (and the SAID program described in
it) tabulated the amplitudes in the frame used in Ref. 13,
and displayed them in Table I of Ref. 1.

We chose the helicity frame for the intercomparison.
The results are shown in Tables IV and V, which give, for
each angle, our four solutions together with their uncer-
tainties, the solution from Ref. 9, and the solution from
Ref. 1. We should recall that the last of these was ob-
tained with the help of an energy-dependent phase-shift
analysis in which the unique solution at low energies and

some assumptions about the smoothness of the energy

dependence were used to arrive at a unique solution at
higher energies.

We can observe the following features.

(1) One of our solutions (solution I) agrees very well
(i.e., within experimental errors) with that of Ref. 9,
which in turn agrees well with that of Ref. 1. It should be
noted that the uncertainties of the amplitudes of Ref. 1
(which are much smaller than ours) depend on the as-
sumptions built into the smooth energy dependence of the
energy-dependent phase-shift analyses, and hence are not
as firm a function as our uncertainties which do not de-
pend on such assumptions.

0.7 Pu
A..
0.6 r
0.54 r
0.4+ F
0.3+ r
o Set |
— ——5Set 2
1S oSet 3 i
—--—4Set 4
O.l— S e A Ref. © -
------- ® Ref. |
0 T T T T T T T
62 70 78 86

0. m (deq)

FIG. 1. Predictions of — D;; from the six sets of amplitudes
in the laboratory system. The mixing angle w of Ref. 9 has been
taken into account.

0.4 LL L
0.3+ A i

0.2 i

o Set |
———aSet2 r
————— oSet3
»»»»»»» - 4Set 4
...... ARef9 |

FIG. 2. Predictions of K;; from the six sets of amplitudes in
the laboratory system. The mixing angle @ of Ref. 9 has been
taken into account.

(2) If we recalculate the already measured observables
from Tables IV and V, we see that these observables can
be divided into two groups. The first group, which in-
cludes the observables P, Cyy, Dyy, Kyy, Crr, Crs,
Dgg, Ksg, and Hygs agrees quite well for all six ampli-
tude sets and for all five amplitudes. The second group,
which includes D;g, Kg;, Hgys, and Hyyg, is in good
agreement with some of the six sets for all amplitudes.

(3) In order to distinguish among our four solutions,
some already measured observables could be measured
more precisely and/or some new observables could be
measured. In the former category, we have the four ob-
servables mentioned under (2) above where there appears
to be some difference among the six solutions. In the
second category of new observables to be measured, our
investigation suggests that of the experimentally simpler
measurements, D;; and K;; would be most suitable be-
cause such measurements would complete the sets indicat-
ed in Eq. (3.1) and thus provide a fully complete set for
the determination of the amplitudes. Figures 1 and 2
show the predictions for these observables. Two other ex-
perimentally somewhat more difficult observables which

|
04 o4
Mnoks Hsin! Myosk (HLsn?
0.3 0.3
02 . K ) Loz
o,ul ot Lot
-

0.4 s T T T 0.4
66 74 82 90 66 74 8 90
8, , (deq) 8,y (deg)

FIG. 3. Predictions of Myosx (Hysy) and Myoxs (Hsin)
from the six sets of amplitudes in the laboratory system. The
mixing angle @ of Ref. 9 has been taken into account.
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TABLE IV. The magnitudes of the five helicity amplitudes as given by our four solutions and by Refs. 9 and 1.

6. (deg) Solution | a | Ala | R A|b | | c| Alc| | d | Ald | |e| Ale|
66 Set I 0.394 0.031 0.100 0.005 0.477 0.017 0.034 0.041 0.277 0.027
Set 1I 0.421 0.040 0.100 0.005 0.425 0.024 0.063 0.051 0.313 0.024
Set III 0.353 0.016 0.089 0.005 0.428 0.019 0.247 0.034 0.316 0.020
Set IV 0.379 0.016 0.089 0.005 0.439 0.016 0.198 0.017 0.306 0.016
Ref. 9 0.408 0.092 0.479 0.062 0.259
Ref. 1 0.398 0.002 0.086 0.001 0.483 0.003 0.079 0.004 0.269 0.004
70 Set I 0.425 0.036 0.085 0.005 0.448 0.019 0.070 0.044 0.292 0.024
Set II 0.435 0.041 0.085 0.005 0.406 0.027 0.079 0.051 0.333 0.022
Set III 0.388 0.016 0.080 0.005 0.431 0.018 0.208 0.026 0.309 0.018
Set IV 0.397 0.016 0.080 0.005 0.419 0.017 0.196 0.025 0.320 0.018
Ref. 9 0.413 0.086 0.460 0.061 0.289
Ref. 1 0.407 0.002 0.072 0.001 0.475 0.003 0.089 0.005 0.283 0.003
74 Set 1 0.430 0.039 0.071 0.005 0.448 0.025 0.040 0.035 0.304 0.025
Set II 0.432 0.039 0.071 0.005 0.436 0.026 0.039 0.038 0.318 0.022
Set III 0.395 0.017 0.059 0.005 0.450 0.017 0.183 0.012° 0.306 0.017
Set IV 0.399 0.017 0.059 0.005 0.446 0.017 0.177 0.017 0.311 0.017
Ref. 9 0.422 0.069 0.459 0.051 0.299
Ref. 1 0.417 0.002 0.058 0.001 0.463 0.003 0.098 0.005 0.299 0.003
78 Set I 0.415 0.020 0.042 0.005 0.451 0.016 0.142 0.040 0.312 0.016
Set II 0.424 0.020 0.042 0.005 0.437 0.017 0.123 0.041 0.328 0.017
Set III 0.415 0.020 0.042 0.005 0.451 0.016 0.142 0.040 0.312 0.016
Set IV 0.424 0.020 0.042 0.005 0.437 0.017 0.123 0.041 0.328 0.017
Ref. 9 0.429 0.043 0.450 0.081 0.315
Ref. 1 0.425 0.002 0.043 0.001 0.446 0.002 0.104 0.005 0.318 0.002
82 Set I 0.442 0.035 0.031 0.006 0.415 0.022 0.112 0.047 0.342 0.023
Set II 0.441 0.038 0.031 0.006 0.393 0.023 0.125 0.049 0.363 0.021
Set III 0.416 0.015 0.039 0.006 0.406  0.017 0.188 0.035 0.348 0.016
Set IV 0.415 0.015 0.039 0.006 0.393 0.016 0.191 0.038 0.361 0.018
Ref. 9 0.442 0.034 0.426 0.068 0.337
Ref. 1 0.433 0.002 0.029 0.000 0.426 0.002 0.109 0.006 0.339 0.002
86 Set 1 0.427 0.020 0.018 0.006 0.415 0.015 0.134 0.042 0.355 0.015
Set 1I 0.427 0.021 0.018 0.006 0.403 0.016 0.136 0.046 0.367 0.016
Set III 0.427 0.020 0.018 0.006 0.415 0.015 0.134 0.042 0.355 0.015
Set IV 0.427 0.021 0.018 0.006 0.403 0.016 0.136 0.046 0.367 0.016
Ref. 9 0.436 0.020 0.419 0.071 0.358
Ref. 1 0.437, 0.002 0.014 0.000 0.406 0.001 0.112 0.006 0.362 0.001
90 Set I 0.426 0.023 0.034 0.008 0.372 0.015 0.156 0.051 0.389 0.015
Set II 0.426 0.023 0.034 0.008 0.372 0.015 0.156 0.051 0.389 0.015
Set III 0.426 0.023 0.034 0.008 0.372 0.015 0.156 0.051 0.389 0.015
Set IV 0.426 0.023 0.034 0.008 0.372 0.015 0.156 0.051 0.389 0.015
Ref. 9 0.448 0.000 0.381 0.094 0.381
Ref. 1 0.444 0.003 0.000 0.000 0.379 0.001 0.124 0.006 0.380 0.001

are also suitable for distinguishing among the present four ambiguities in the determination of the reaction ampli-

solutions are shown in Fig. 3. tudes but still contain a set of four discrete solutions. One
of these solutions agrees with the one found previously in
V. CONCLUSION AND SUMMARY Ref. 9 and also with the one that can be obtained from an

We have seen that the now available data for p-p energy-dependent phase-shift analysis.! In order to
scattering at 579 MeV can eliminate any continuum of choose among the four solutions, the observables Djg
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TABLE V. The values of the relative phases of the helicity amplitudes as given by our four solutions and by Refs. 9 and 1, at an-
gles where data are available. ¢(e)=0.

Oc.m. (deg) Solution éla) Adla) &(b) Ag(b) é(c) Ag(c) ¢(d) Ap(d)
66 Set I 190 10 228 7 155 11 65 10
Set II 207 13 243 9 179 15 57 16
Set III 198 10 285 7 184 11 86 10
Set IV 183 6 280 3 174 6 79 7
Ref. 9 184 234 162 79
Ref. 1 192 1 236 1.4 173 1 89 3
70 Set I 201 12 242 8 171 14 87 16
Set I1 212 13 252 9 188 15 92 24
Set III 187 9 285 5 179 8 91 9
Set IV 191 8 281 5 182 8 90 9
Ref. 9 189 223 160 ) 78
Ref. 1 191 1 235 1.4 172 1 88 2.6
74 Set I 204 13 239 9 180 14 118 10
Set 1I 208 13 243 9 187 14 117 9
Set III 185 4 283 3 181 4 98 6
Set IV 185 6 284 4 182 5 97 8
Ref. 9 187 225 161 92
Ref. 1 197 1 238 1.4 175 1 94 2.5
78 Set I 200 10 269 6 182 10 97 26
Set II 200 6 272 1 187 6 94 4
Set III 200 10 269 6 182 10 97 26
Set IV 200 6 272 1 187 6 94 4
Ref. 9 221 272 192 116
Ref. 1 198 1 238 1.5 176 1 97 2.3
82 Set I 203 13 281 13 176 14 93 36
Set II 210 13 285 14 184 15 104 32
Set III 195 11 303 9 179 11 94 9
Set IV 198 11 306 9 184 12 97 9
Ref. 9 194 229 164 97
Ref. 1 202 1 240 1.5 178 1 100 2.2
86 Set 1 . 197 12 246 12 179 11 101 25
Set II 200 9 249 8 184 10 104 24
Set III 197 12 246 12 179 11 101 25
Set 1V 200 9 249 8 184 10 104 24
Ref. 9 195 224 168 100
Ref. 1 203 ' 1 240 1.5 179 1 101 2.2
90 Set I 204 8 5 90 186 10 107 15
Set II 204 8 5 90 186 10 107 15
Set IIT 204 8 5 90 186 10 107 15
Set IV 204 8 5 90 186 10 - 107 15
Ref. 9 192 83 167 100
Ref. 1 203 1 242 1.5 180 1 101 2.2
(and consequently K;g), Kgg, and Hy;s (and consequent- that the first of these sets of observables deserves
ly Hgys) would have to be measured very accurately, remeasuring, and that the second set of observables should
and/or the observables D;; and K;;, now unmeasured, be measured, in order to make the amplitude determina-

would have to be measured. Our conclusion, therefore, is tion for this reaction at this energy fully unambiguous.
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