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We compute the hadronic vacuum-polarization contributions a„ to the muon anomalous magnetic
moment a„. To improve on previous calculations, we use QCD at large energies, and exploit the
analyticity properties of the pion form factor. We find a„=(7100+105+49)X 10 ",with which we
have a„(theory) =(116592051+114+49)X 10 ". Purely QCD bounds'for a„are also presented.

I. INTRODUCTION

The largest uncertainties in the existing theoretical cal-
culations of the gyromagnetic ratio of the muon,
—,(g —2)=a&, come from the order-a hadronic contribu-
tions to it, particularly from two sources: the medium-
energy (1 to 2 GeV) vacuum-polarization contribution,
and the low-energy pion-form-factor contribution. The
uncertainties due to higher-order hadronic contributions,
higher-order QED contributions, and weak-interaction
contributions have been drastically diminished in the last
years. '

In the present paper we consider the vacuum-
polarization contributions to a& (Fig. 1), to be denoted by
a„. The reasons why we think it worthwhile to make a
new calculation are the following. First of all, there are
now available precise data in the region 1 & t & 9 GeV for
the (imaginary part ofl the vacuum-polarization function
II(t). Second, we also have new good data on the pion
form factor F(t), which allows a precise determination of
ImlI(t) at low t. Finally we have the fact that due to our
understanding of strong interactions via QCD, the calcu-
lations present a theoretical solidity lacking in previous,
more phenomenological approaches.

With respect to the last point, it is interesting to remark
that pure QCD calculations of a„are possible using tech-
niques of QCD sum rules. This is presented in Sec. II of
this paper. The results are somewhat academic
(46+11&10sa„&1100+300) in that the upper bound is
way above experiment, but they have the merit to exist.
In Sec. III we present the full calculation, using all avail-
able information and experimental data. The article is
finished in Sec. IV, where we add all contributions to find

a p"""——[116592 051+114(stat) ]X 10

an error nine times smaller than the experimental one:" '

a'"+~' = (116591 000+ 1200)X 10

a'F =(116593 600+1200) X 10
(1.2a)

or, if combining both

a„'" '=(116592200+900)X 10 (1.2b)

Equation (1.1) is our best result, obtained with the method
of analysis we consider more reliable.

If, however, we assume the P-wave isospin-j. mm. phase
shift to be given mar-scattering analysis, we obtain a slight-
ly different value:

a&
"'——[116591 997+110.5(stat)] && 10 (1.3)

The discussion of why we think (1.1) is more reliable may
be found in the text, Sec. III B.

We may discard (1.3) or, alternatively, consider the
difference between it and (1.1) as a measure of possible
systematic uncertainties in our analysis and write

a&""'——[116592024+112(stat)+27(syst)]&& 10 " . (1 4)

II. PURE QCD BOUNDS

a, may be written in terms of H as

a„= f Ch K(r)R (r),
4m

where

(2.1a)

FIG. 1. Vacuum-polarization contribution to a„. and

12 I II()
o(e+e ~p+p )

(2.1b)
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a 'd x (1 x)
3m t o x+(1 x—)t/m~

(2.1c)

~("&( )
¹t

d
R(s)

12m. 4 ' (s —t)

and from QCD we have '

(2.2)

By using a dispersion relation (differentiated to avoid
subtractions) we may relate R to II(t) for t «0, where it
is calculable from QCD. We write

GeV. at which we assume the QCD expression starts be-
ing valid, provided we do not go much above to- —2
GeV: when we increase to the lower bound decreases (the
upper bound increases), but the errors also diminish and
the effective result is not much altered.

More details about this part of the work will be pub-
lished elsewhere; here we finish this section with two
comments. First of all, we could have reversed the argu-
ment, i.e., use the experimental value of a& to put bounds
on C. We find

II'(t)= a, ( t)—
1+

-12m t

2
a, ( t)—

+ 0 ~ ~

Here

R =3+Qf

2~ 1 C
16m A — B ———+

3 t2 t3

(2.3)

—0.4(C(0.10 GeV (2.5)

very close to the vacuum-'saturation estimate C=—0.20
GeV . Second, it will be noted that the lower bound in
(2.4) is close to the experimental value, a„-70&&10;but
the upper bound is hopeless. This is because K(t) in
(2.1c) is strongly peaked at small t. Hence we can add a
narrow resonance at low energy with practically no effect
at large

~

t
~

where perturbative QCD is valid, but which
would greatly increase the value of a„. This emphasizes
the importance of a correct treatment of the low-energy
region, to which we now turn.

with Qf the charge of the quark with flavor f,
rz —2.0—0.12nf, nf being the (effective) number of fla-
vors, and

f m +12frcmx
2 1 2 2 1 2 2

g

=(2.7+0.5)&(10 GeV

The errors in (2.3) may conservatively be taken as follows:
of the last known perturbative contribution; 60% the

contribution of B, larger than the error given above
(which was taken from Ref. 4), 20% that of A, and 100%
that of C. Finally, we will take consistently the value

A=130+~) MeV

for the QCD parameter. With this it follows that, to an
overall 25% error, we may use (2.3) down to

~

t
~

&1
GeV .

The problem we now have is one of extremals: given
II' '(t) for t & —1GeV from (2.3), find the allowed max-
imum and minimum values of a„as given by (2.1). The
existence of nontrivial extrerna is guaranteed by the posi-
tivity of R which follows from (2.1b). The solution may
be found with standard methods of Lagrange multipliers
and in this way we obtain the result quoted in the Intro-
duction:

46+11 & 10 a„&1100+300 . (2.4)

The errors come from the assumed errors in Eq. (2.3).
The net result is fairly insensitive to the value to- —1

B =ag(:G")„„=0.044+0.015 GeV

Finally, C is a combination of vacuum expectation values
of the quark operators qt'qq't'q', estimated to be

C —0.2 GeV

III. DETAILED CALCULATION OF a„

A. The high-energy contributions

We will split the contributions to a, into several pieces.
First of all, we have the regions where perturbative QCD
is expected to be valid. With the quoted value for A,
A=130 ~ MeV, this certainly should occur when t &2
GeV. Therefore, we use the QCD expression

2
a, (t)a, (t)R(t)=3+Qf' 1+ +r, (3.1)+e ~ ~

a, (t &2 GeV ) =(840+10)&& 10—" (3.2)

to be compared with our estimate (3.3) (see below). It will
be seen that the difference is so minute that we may
neglect this point. Near the cc and bb thresholds where
perturbative QCD is not valid we have used experimental
data. The g and Y resonances were evaluated in the
narrow-resonance approximation. We have also included
the contribution of a t quark whose mass we have allowed
to vary between 20 GeV (its experimental lower bound)
and 400 GeV (its theoretical upper bound). Its contribu-

for all t &2 GeV except near quark thresholds. Equation
(3.1) fits perfectly the experimental data; use of it, instead
of the last, allows us to get smaller errors. These have
been estimated as (a) due to the error in A, and (b) the er-
ror committed by truncating the expansion (3.1), which
we assume to be at most —,

' of the last term taken into ac-
count. Note that, for t =2 GeV, one already has
r2[a, (t)/m] =1.4%. Also, the error due to that of A is
of approximately 1%.

A controversial point is whether one should use a, (t) or
~
a, ( t)

~

as expansion par—ameter in the timelike region.
Using the last would decrease R by some 1.5% at the
lower end; the change in the value (and error) of a„would
be to
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TABLE I. Contributions from the t ~2 GeV region.

Resonance or energy Contribution
range [t'~~ (GeV)] to 10"a, Reference Comments

1.4—3.1 560 +10 QCD

3.1—3.6

3.6—4.9

9(b)

9(c)

Exptl. data

Exptl. data

4.9—9

9—14

67.5+1

19 +1.2

13 +2

9(d)

QCD

Exptl. data

QCD

+I +II +III 63 +4.5 9(a) Exptl. data

tion is negligible. The several contributions are listed in
Table I; the overall result is

It will be noted that most of the error here comes from
the low-energy (0.8 & t & 2 GeV~) region. One could con-
sider using QCD for smaller values of t; but this does not
work. Up to t=1.6 (and considering only the u, d contri-
butions) one still has agreement between the QCD contri-
bution (130+2.5X 10 ") and experiment (125+11);but
below this they deviate. For example, the contribution be-
tween 1.2 and 2 is 366+7&&10 " from QCD while using
experimental data we get 278+25 && 10 ". This
discrepancy is likely due to nonperturbative contributions,
not taken into account in (3.1). Therefore, we believe (3.5)
to be the best one can do at present.

B. The low-energy contribution

For low energies the only states that contribute to
o.(e+e ~hadrons) are the 3m states (taken into account
already with the co contribution) and the sr+a one. The
4m. channel gives a negligible contribution until the open-
ing of the co@ channel at t-0.8 GeV . Therefore, we can
write

a, (t & 2 GeV ) =(847.5+12.6) && 10 (3.3) a, (t &0.8 GeV, minus ~)=—a (0.8),

a(co-p) = (25+3) && 10

and the overall result, with obvious notation is

a, (0.8 & t &2 GeV, to) =(1404+100)X 10

{3.4)

(3.5)

TABLE II. Contributions from the 0.8 (t & 2 GeV2 region.

Final state Contribution to 10"a„ Reference

294 +30 10(a)

224.5+

196+33.2 11(b)

3m.

(including co)
492+",, 11(c)

The region between t =0.8 GeV and t =2 GeV has
been treated by using the existing experimental data' '"
on the various channels that are open {including reso-
nances). The lower bound, 0.8 GeV is forced on us: it is
essentially the con threshold, so it is only below it that we
can assume that R is dominated by the ~+a. channel.
The results are insensitive to reasonable variations of the
value t =2 GeV where we match the QCD calculation
and the use of experimental data. The results for the
0.8&t (2 GeV region are summarized in Table II.

The ar resonance merits a few words on its own. To
avoid problems with co-p interference, we have separated
off a region around t =m„, 0.595 & t &0.629 GeV
where this interference is non-negligible. Thus the contri-
bution of the 2m state is to be understood to be minus the
co-p interference, which has been evaluated by itself. The
co-p contribution is then

where we define

a {0.8)= J,dt p(t)
~
F(t)

~

',

p(t) =—1

4

2 3/2
4m

K(t), t, =0.8 GeV',

(3.7)

E (t) as in (2.1c). It is to be understood that the co-p in-
terference contribution has been subtracted from (3.7).

The information we have available on the pion form
factor F(t) is the following:

(i) F(t) is a real analytic function with a cut for
4m (t ( (x).

(ii) F(0)=1.
(iii) From QCD, F decreases as 1/~ t

~
(up to loga-

rithms) when
~

t
~

~~.
(iv) From Watson's theorem we know that the phase of

Fon the cut equals that of the I' wave in mn. scattering:

phaseF =5I(t) . (3.8)

Strict equality is valid only up to t =9m~, but it is
known that, to a very good approximation (3.8) holds up
to the con. threshold, t&-0.8 GeV . As will be seen, how-
ever, we have problems with this information, to be dis-
cussed in Secs. II8 2 and HI 8 3 below.

(v) We have experimental data' on F(t) not only for
t ~0, but also in the spacelike region t (0. It is the in-
direct inclusion of these data (via dispersion relations) that
allows us to greatly decrease the errors in the contribution
of I'.

The value of F'(0) (charge radius of the pion) is also
known, but this does not add new information as it is ex-
tracted from the experimental data already described.

166 +21

6.3+3.4

»(d)

11(c)

1. Calculation usthout use ofdata from nnscattering.

The information contained in (iv) is incorporated with
the Omnes-Muskhelishvili method. We define
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2m t 1
cot5I(t)

5I(s)J(t) =exp —I,ds
'll 4m 2 s(s —t)

%'e parametrize 5& as

2 3/2

(3.9a)
tible with the constraints (3.13). In practice it is better to
find a central value for 6, Go, taking the difference
6 —GD as the unknown function. We thus write

6(t)=GO(t)+b(t), Imh(t)=[ImGO(t)]y(t) (3.14)

with y(t) an unknown function. If we are careful and
choose Go satisfying the requirements of Eq. (3.12), so
will A(t).

For 60(t) we write
4

Go(t)=f (t)+d +(bi+bzt+b3t )
~0.8 —~0.8—t

2

+33 ——m (3.9b)
+h„(t)+a&J&(t)+a2J&(t) . (3.15)

we take mz from the world average of the Particle Data
Group tables, " mz ——0.769+3 GeV, and a-"I from nm

scattering, a', =(0.04+0.003)m . A
&

is given in terms
of the remaining parameters,

Aq ——1/a I(mz —4m 2);

the A2, A3 are free parameters to be fitted; we find

Aq ———0.3S18 GeV ', A3 ——2.624 GeV

which corresponds to a width of I z
——158 MeV [to be

compared with the world-average value of Ref. 9(a),
I'p ——154+5 MeV].

As is known' there is essentially one fit for 5I con-
sistent with mz, I z, for every value of a I', we will for the
moment fix a I to

a ) ——0.038m1 (3.10)

later on we will allow it to vary within its bounds. Al-
though fit to the experimental mr phase shifts was not re-
quired, we get a very good one except that the position of
the p is shifted. As stated we will comment on this later
on.

Defining the function

6(t)=F(t)/J(t), (3.11)

we can translate the remainder of the information (i)—(v)
as conditions on 6 as follows: since now 6 is analytic up
to t = t], we can write a dispersion relation for it as

6(t)= 1+—I ds
rr 'i s (s —t)

(3.12)

moreover, 6 is known at points where we had experimen-
tal data on F(t). Points to the right of t~ have very little
influence and we drop them. For points to the left of t&,
since 6 is real there the information on

~
F

~

translates
directly into values for 6:

6(t~)=6~"~'+e~, a=1, . . . , 18 (3.13)

with e the errors induced by the experimental errors on
~
F

~

. Qf the 18 points, nine are in the timelike and nine
in the spacelike regions. They have been selected from
Refs. 10.

In principle we could work directly with Eqs. (3.13),
(3.12), (3.11), and (3.7), i.e., find the ImG(t) that gave
maximum and minimum values of a (0.8 GeV ) compa-

r~ = —6.38& 10 GeV, p„=0.598 GeV

q„=0.628 GeV

which fits very well the experimental data. 60(t) itself
fits the data with a X /DF=0. 95 in the timelike region
and X /DF =2.2 in the spacelike region.

If y (hence b, ) were zero, this 60 would provide us with
a calculation of a (0.8). We would then get our starting
value,

a~(0.8 GeV )=4825X10

Now, 6 is nonzero and is the function that will provide
us with the corrections to (3.16},hence the final value and
errors. To get them we have to make an extra assump-
tion: otherwise we would, as in Ref. 13 get only /ower

bounds. A convenient one is to demand

( y(t) (
(S(t) . (3.17a)

The function S(t) is obtained as follows. In the region
where experimental data for

~

F
~

exist, we assume that
the errors of ImG are not (relatively) bigger than those on

~
6

~

itself. We then let S(t) interpolate smoothly be-
tween these errors, multiplied by a factor c. To be pre-
cise, we assume (5IrnG)/ImG=c(5~ 6

~
)/~ 6

~

the errors in ImGO are given as

(Im60)(y+S}=(Im60)pe+5 1m60 .

For large values of t where data do not exist, we take the
errors of the phenomenological fit FpF given below, again
multiplied by c. This then corresponds to a X of

X /DF=c (3.17b)

For large values of t where experimental data are not
available we have taken the errors of I' as those obtained
extrapolating the errors of a fit to F(t) using the empiri-

The meaning, and values for the various terms (except
h„) are given in the Appendix. The term h takes into
account the co-p interference and, as explained in Sec.
III A, is extracted from the analysis here. We took

r~ e (s p„)(s——9„)
h„(t)= — ds

7T ~67 s —t

with
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cal formula

FEF(t)= A
ln—t A2

C2 Xo /DF 10"~ (0.8 Gey2)

TABLE III. Central values and bounds for a (0.8 GeV ) not
using m.m phase shifts. (a) Global g . (b) Independent g in
spacelike and timelike regions.

A =(6.25+1.3) X 10 GeV, v=4,
for data with

~
t

~

)2 GeV .
The best method to get the desired results is again that

of Lagrange multipliers. We have to find the maximum
and minimum of a (0.8) as given by (3.7) subject to the
constraints (3.13) and (3.17). We form the Lagrange func-
tional

f~ tl
&[y]=2f,dt Q (t)&~(t) ReGO(t)+ f,dt Q (t)b, (t)

G""—[G,(t )+6 (t )]

CZ

+ f, dtI p/(t)[&(t) —p(t)]+p2(t)[g(t)+&(t)]I

(3.18)

3

1.4

1.4

1.4

(a)

(b)

4879+410

4865+257

4856+70

4883+257

4848+31

4847+ 163

4834+130

4861+8

%[A,,q&;t] —p, ,(t)+@2(t)=0 . (3.19)

The explicit expression for '0 is very cumbersome, but
may be easily obtained from (3.18) by the interested
reader.

The solutions to the extremum equations (3.19) are
given by functions y,„, which run along the edges of
(3.17a)

q,„,(t) =+&(t)

jumping from (+) to ( —) at given points tj. Some of
these points are fixed; because 4 is proportional to
ImGO(t), the points at which ImGO(t) vanishes must
necessarily correspond to jumps of p,„,(t). Besides this,
and to be able to verify the Lagrange equations, we must
have an extra jurnp at t =t, . The value of t, is to be
found by requiring

%'[A,,y,„„'t,]=0,
so (3.19) can be satisfied with p& z(t, )=0. One jump at a
point t, (besides the compulsory jumps at tJ) is sufficient
to satisfy the Lagrange equations; but solutions exist with
more than one jump. We have, however, checked numeri-
cally that solutions with two and three jumps are only rel-
ative extrema and thus the y,„, we found with only one
jump gives very likely the absolute maximum and
minimum.

Before presenting the results, two last comments are in

Here Q(t) =p(t)J(t) and b,~ is a functional of y:
ImG (t')

b~(t) = f dt'—, , p(t') .t'(t' —t)

A, , p], p2 are Lagrange multipliers. +o is the overall error
we admit for the experimental points, G(t ) with t to
the left of t, .

The extremum condition is 5A/5p=0, which we write
somewhat sketchily as

a (0.8)=(4848+ 31)X 10 (3.20)

2. Calculation using

neer

phase shifts

We could have found J in Eqs. (3.9) and (3.11) by fit-
ting 5I to experimental mm phase shifts. '

Then we write

order. The problem posed [to find F verifying conditions
(i)—(iv)] is ouerdetermined Becau.se of statistical fluctua-
tions, it is to be expected that no F will exist compatible
with [(i)—(iv)] if the X is taken too small. This indeed
happens: if we decrease c below c —1.5, and Xo /DF
below unity, no solution exists. To be on the safe side, we
have given generous error allowances, restrict ourselves to
values c ~2, Xo /DF& 1.4. Then, we have up till now
kept 5I fixed, by fixing a~ to a~ ——0.038m . If we
allow a I to vary within the bounds (3.10), the extremal
values of a (0.8) do not change appreciably; but the start-
ing value a~(0.8) does. What we can do is, for every
choice of c, Xo, select a value of a I so that a (0.8) is
centered between the extrema of a (0.8). (This is the
reason why a (0.8) varies from one entry to another in
Table III.) Generally speaking, this requires a value of a I
on the small side, a j —0.038m

The results of our analysis are presented in Table III.
In Table III(a) we give the results of the straightforward
application of the Lagrange equations. In Table III(b) we
require separate Xo for points in the timelike and space-
like regions. This is because the y,„,we find with a global

manage to get it by going through the spacelike
points, but missing widely the timelike ones or vice versa:
so such y,„, are not very believable physically. This is
why we attach more credit to the calculation with
separate 7, even if it is slightly amplified, than that with
a global one. The results are quite stable against varia-
tions of c and Xo . We believe a reasonable value to be
that given in the last entry of Table III(a):
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1
2tm

3/2
m

cot5I(r }

) + ——m~
1 t

a,' QB, ——m2
j=0

(3.21)

The scattering length is taken as before and we find

Bo——0.46 GeV, B~ ———0.3 GeV

B2———0.91S GeV

This gives a value' '
m& ——778+2 MeV (3.22)

quite incompatible with what we found before, and the
world average "of 769+3 MeV.

In Fboth pions are real; in mw scattering one of them is
off-shell. This may shift the effective p mass, which is
the reason why we trust more the previous calculation.
Indeed, if we now parametrize again Go, even adding
more parameters in the form of extra contributions a;h;

(~ —p;)(~ —q;)
h;(t) =— ds

a „(0.8 GeV )= (4794+ 14)X 10 (3.23)

That the difference between (3.20) and (3.23) is not too
large, in spite of the wide difference of methods, is very
encouraging. Although for the reasons already discussed
we believe (3.20) to be the best value, we may combine
both and take the variation as a measure of the systematic
uncertainties of our analysis. In this way we arrive at the
value quoted in the Introduction, Eq. (1A).

TABLE IV. Central value and bounds for a (0.8 GeV ) us-
ing mm phase shifts. (a) Global g . (b) Independent g in space-
like and timelike regions.

C2 &o'~Djp

(a)

10 g (08 Gey )

4791+112

1.8 4794+46

(b)
4788+46

4794+14

we only get a X /DF of 1.1 in the timelike region and of
3.37 in the spacelike one. This discrepancy will be dis-
cussed in more detail by one of us (J.A.C.) elsewhere. '

The rest of the analysis is exactly like in Sec. IIIB1
above and we do not repeat it. The results are reported in
Tables IV(a) and IV(b). The best value for a with this
method of analysis is, we believe, the last entry of Table
IV(b), viz. ,

3. Discussion

IV. CONCLUSIONS

In the previous section we have discussed the various
contributions to a, . Adding also other contributions, "'
we may collect here the different pieces:

a„(QED) = ( 116584 802+ 30) X 10

az(weak) =(195+1)X 10

az(higher hadronic) =( —46+32) X 10

a„(t )2 GeV )=(847+13)X10

a„(0.8 & t & 2;co ) = ( 1404+ 100)X 10

a (0.8 GeV ) = (4848+ 31)X 10

(4.1a)

(4.1b)

(4.1c)

(4.1d)

(4.1e)

(4.1f)

We can compare the most recent evaluation"' of a„,
using only experimental data on E.:

a„'"=(7070+60+170)X 10 (4.2)

which corresponds to our result [obtained by adding
(4.1d)—(4.1f)],

a„=(7100+105+49)X 10 (4.3)

where the first error is statistical and the second is sys-
tematic. The improvement is not dramatic but is substan-
tial.

Let us comment briefly on the difference between (4.2)
and (4.3}: Our statistical error is larger than that quoted
in Ref. 1(a), due essentially to the three-pion contribution
in the P region, where we have been more pessimistic. We
have already explained in the text how we have estimated
the systematic error coming from the low-energy two-pion
contribution. We have compared two calculations based
on independent experimental data and we have assumed
that the difference provides a rough estimation of the sys-

To finish with this section we will give a few comments
on our results, as well as on possible ways to improve
them.

The method of Lagrange multipliers gives, of course,
the extrema of a; but the functions which realize these
extrema are clearly unphysical. Indeed they contain
jumps of ImG, therefore ReG presents logarithmic singu-
larities. A possible way to avoid this would be to incorpo-
rate in the formalism experimental poi.nts On the cut,
t& & t & oo. We have not done this for two reasons: first
this would complicate enormously the analysis; and
second, the improvement would not be worth the added
effort. In fact, as follows from our analysis it is practical-
ly impossible to get a X of unity, if using only points to
the left of the cut. The reason for this is very likely, that
systematic uncertainties exist for data on the spacelike re-
gion (where one has to extrapolate one unphysical pion
mass to get F). Moreover, an improvement on the "large"
t ( t ) 1) region for F would have a negligible influence on
a . Thus although our results might improve, they would
do so very slightly and at the loss of some credibility.
Substantial improvement would only come with more pre-
cise experimental data in the p region and its vicinity.
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tematic error. This procedure has led us to a better result
than that depicted in (4.2). All the other contributions to
the systematic error, which are less dominant, go as in
Ref. 1(a) except for the pieces which have been evaluated
using QCD expressions and do not give any contribution
to the systematic error.

Our final result is obtained adding all the contributions
(4.1). Note that, since they are independent, we can add
the errors statistically. In this way we get the figure quot-
ed in the Introduction,

J~,J2 correspond to the p', p" resonances, taken to be co+
and p+p resonances:

mi +miyiV'0. 842
Ji(t) =

m i t+—m)yiV'0. 842 —t

m, '+m, y,V'2. 372J,(t) =
m2 —t +m2y2V'2. 372—t

a& (theory) =(116592 051+114+49))& 10 (4.4) m, =1.277 GeV, m, =1,624 GeV,
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APPENDIX

Here we discuss the parametrization (3.15) (except h~).
We have

4
0.86—t

1
0.86—t

1
0.86t=C '

ln
' —ln

A A

C =1.02X 10

yi ——0.1883, y2 ——0.6 .

Moreover,

a~ ——0.050 81, a2 ———0.077 34 .

f(t) provides the asymptotic behavior of I'. The back-
ground parameters of Eq. (3.15) are

bi ——0.09763 GeV, b2 ——0.5654 GeV

b3 ———0.8461 .

Finally d is given in terms of the other parameters by the
condition Go(0) = l.
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