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The University of Washington g —2 experiments have progressed to the marvelous precision of
10' in their measurement of the magnetic moment of the electron. A further improvement of a fac-
tor of 10 should occur in the near future. Concomitant with this accuracy is the necessity of under-
standing small corrections. These experiments employ a Penning trap whose electrodes behave as
conducting walls for a microwave cavity. We investigate the effect of this cavity on the spin and cy-
clotron frequencies. Previous work, employing calculations that are not gauge invariant, implies
that the present level of accuracy cannot be exceeded because of cavity effects on the spin-precession
frequency. In contrast to this work, we find no significant correction to the spin-precession frequen-
cy, but we do find a correction to the cyclotron frequency which may be important.

I. INTRODUCTION AND SUMMARY

CO, —COc

c
(1.2)

We see that corrections to the spin frequency co, and the
cyclotron frequency co, are of equal importance. More-
over, since

A University of Washington experiment isolates a sin-
gle electron or a single positron in a Penning trap to ob-
tain a "geonium atom" and then measures the magnetic
moments of these elementary particles with unprecedented
precision. The recent results for the g factor of the elec-
tron,

= 1 159 652 193(4)X 10g —2
2

display a relative accuracy of 4X10 . This extraordi-
nary accuracy demands that a careful examination be
made of possible sources of systematic error —physical
mechanisms that alter the experimental determination of
(g —2)/2. The electrostatic field in the Penning trap is
produced by electrodes that also behave as conducting
walls which form a microwave cavity. In this paper we
shall investigate the action of these effective cavity walls
on the experimental determination of (g —2)/2. Part of
our motivation for this investigation arises from a recent
paper whose result implies that the presence of this cavi-
ty makes it essentially impossible to improve the present
precession. This and previous related work are incorrect.
Thus we shall present our work in some detail starting
from first principles. ,

The electron in the geonium experiment orbits in a
strong magnetic field at the cyclotron frequency co„and
its spin precesses at the frequency co, . The g factor is re-
lated to these frequencies by

[1+(R8) ]cos(2',R/c) . (1.4)

accuracy of about one part in 10, the fractional correc-
tions to both m, and cu, must be smaller than one part in
10' or else these corrections must be computed with ap-
propriate accuracy and taken into account in the experi-
mental analysis. The experiments may well improve by
an order of magnitude in accuracy in the near future, in
which case these corrections should be bounded by
5co, /co, (10 ' and 5co, / co(10

Our results apply to a cavity with arbitrary geometry.
However, 'since our aim is to explain carefully the basic
physics and the order of magnitude of the effects of cavi-
ty walls on the geonium experiment, we being in Sec. II by
replacing the Penning-trap electrodes, which have compli-
cated shapes, by a single perfectly conducting plane. We
further simplify the physics by considering a classical par-
ticle with charge e moving about a cyclotron orbit in a
magnetic field 8 at a normal distance R from the con-
ducting wall. The effect of the wall is exactly reproduced
by an image of charge —e at a distance —R on the other
side of the wall moving with the same velocity except that
the sign of its component parallel to R is reversed. See
Fig. 1. The image construction familiar for the electro-
static case generalizes to the full electromagnetic field
since the retardation times to the plane from the charge
and its image are identical.

The image charge produces a retarded radiation field
which acts on the true charge, with the leading spatial
behavior being given by 1/(2R) in contrast to the 1/(2R)
behavior of the Coulomb force. Since the electron in the
Penning trap is at a large distance from the electrodes in
comparison with the wavelength 2'/to„ the leading
behavior of the radiation field gives the most significant
contribution. We show in Sec. II that this effect produces
a shift in the cyclotron frequency given to order e by

co ——a)~ —coc ~ o)c ~o)c Q 10
CX

2' (1.3)

we see that to determine (g —2)/2 to the present relative

Here ro e /4mmc =2.8X10 ' c——m is the classical elec-
tron radius and R and B are unit vectors along the wall
normal and magnetic field, respectively. The cosine fac-

32 729 1985 The American Physical Society



730 DAVID G. BOULWARE, LOWELL S. BROWN, AND TAEJIN LEE 32

FIG. 2. Graphical illustration of the energy shift given in
Eqs. {1.6) and {1.7). The double line represents the electron
propagation in the external binding fields. The dotted-wavy line
represents the difference of the photon propagators for the cavi-
ty and free space.

FIG. 1. Image construction of the electromagnetic field out-
side the conducting wall denoted by the hatched surface.

tor results from the retarded propagation of the elec-
tromagnetic field. Since for a typical trap R =1/3 cm
and co, =1&&10' sec ', giving 2',R/c =20, the correc-
tion in Eq. (1.4) may be as large as several parts in 10' .
We find that a more careful examination is warranted of
the cavity-induced frequency shift of the cyclotron fre-
quency. This has recently been done for the case of a
cylindrical cavity whose walls have a finite conductivity.
It is worth noting that the cavity also changes the decay
rate of the cyclotron orbit from its free-space value.

The cavity alters, in principle, the spin-precession fre-
quency co, as well as the cyclotron frequency. Although
the spin —, of the electron is intrinsically quantum
mechanical, the size of this effect can be estimated semi-
classically using the image method. In this case an image
magnetic dipole moment of order eh'/mc produces a re-
tarded magnetic radiation field which contains the factor
cos(2co, R/c). The gradient operation associated with the
moment can act either on the 1/R behavior of the mono-
pole field or on the cos (2',R/C) retardation factor.
Since 2',R/c =20, the latter is the more important con-
tribution. Thus the fractional shift in the spin frequency
5m, /co, is changed in order of magnitude from the result
(1 4) for the corresponding cyclotron shift by an addition-
al factor of fico, /mc =10 . In contrast to previous

work, ' we conclude that the cavity effect on the spin is
completely negligible.

We verify and generalize these results to an arbitrary
cavity in Sec. III using the exact apparatus of quantum
electrodynamics. We avoid short-distance singularities
and the attendant necessity of renormalization by consid-
ering only the alteration brought about by the cavity. We
work only with the modification of the photon propagator

D cavity D free space (1.5)PV jtlV PV

which is nonsingular but which forces Dz""~ to satisfy
the correct boundary conditions at the cavity walls. In
the absence of the cavity, the electron is bound in a small
orbit of energy E described by the Dirac wave function
O'E(r). To order e, the presence of the cavity shifts this
energy eigenvalue to E+5E, where

5E= f d r d r Ãz(r)5~(E; r, r')+F(r'), (1.6)

in which

5~(E;r, r') =ie y&S(E', r, r')y"5D„„(E—E', r, r')
dE'

(1.7)

is the electron self-energy or mass operator. The Green's
function S(E';r, r') describes the propagation of the elec-
tron in the binding field provided by the Penning trap
with its strong magnetic field. This form for the energy
shift, which is illustrated in Fig. 2, is the familiar form
which is used, for example, in modern calculations of the
Lamb shift.

We use the radiation gauge for 5D» to simplify the
calculation. In this gauge the leading contributions are
obtained by performing the dipole approximation about
the center of the well-localized electron. In the radiation
gauge

5DOO(E;r, r') = —5&(r,r')

5EC i b = —
&

e 5&(R,R) (1.9)

This is just the classical potential energy of the electron at
its average position in the presence of the induced charges
on the cavity walls. This potential energy is independent
of the spin and velocity of the electron, and it does not

is independent of energy corresponding to an instantane-
ous Coulomb interaction with image charges that
represent the effect of the cavity walls. We find that in
the leading dipole approximation



32 APPARATUS-DEPENDENT CONTRIBUTIONS TO g —2? 731

alter the spin and cyclotron frequencies. [A more com-
plete discussion of the Coulomb effect is presented in Ref.
5(b).]

At this point we should pause to clarify our notation.
For the simple case of a single plane, R is the vector from
the plane to the center of the electron orbit shown in Fig.
1. In general, R denotes the average position of an elec-
tron inside an arbitrary cavity. For the particular case of
interest, the Penning trap, R denotes the position of the
center of the trap where the electron is well localized. In
this case, we measure R from a convenient origin located
on a trap electrode so that the magnitude of R also
denotes the size of the trap.

To evaluate the contribution of the radiation-field prop-
agator 5Dki, we express the propagator in terms of a
dispersion relation

1

Ho E—+A, +i e

—+ —,H IIk E 1 1+~, +~+« —co, +A, +i@
(1.13)

kl g kg l

in Eq. (1.12). The terms in the large parentheses in Eq.
(1.13) combine with the dispersion integral in Eq. (1.12) to
reform the photon propagator correction 5Dki, and we
find that, effectively,

e' Okrr'
Hi ——— 5Dki(co, ;R,R) (1.14)

fPl 2'
Now in the quantum expectation value

ao
&

dki(A, ;r, r )
5Dki(co;r, r') = f dA, —CO —l6

(1.10)
& (5ki g kg i)E

This makes manifest the analytic properties of the quan-

tum propagator with the i e, e—+0+, providing the

positive-frequency boundary conditions of the time-

ordered product. We then perform a Foldy-Wouthuysen

transformation to cast the expression for 5E„& in a form

suitable for the appropriate nonrelativistic approximation.

In this way we find that to leading order

5E-d =(4s Hi 0z»

where itjk is the nonrelativistic counterpart of the Dirac
wave function %z and Hi is an effective perturbation
Hamiltonian given by

2

H, = —', f dz[IIk+ ,'(~XV-)']
m2 Ho —E+A, —ie

X [II'+ —,
' (o'X V')']dkt(A, ;r,r')] ~,

(1.12)

Here 0=p —e A is the kinetic momentum operator, o. are
the Pauli spin matrices, and Ho is the nonrelativistic
Hamiltonian of the electron. Not surprisingly, formula
(1.12) is precisely the result one obtains by directly cou-
pling the quantized radiation field to the nonrelativistic,
quantum-mechanical description of the electron motion,
including the spin contribution to the current. We give
the derivation of this result from quantum electrodynam-
ics in Sec. III since the relevant literature is in error. '

To obtain the shift in the cyclotron frequency, we note
that the operators II can be expressed as a linear com-
bination of raising and lowering operators which shift the
energy eigenvalue E by +fico, . Moreover, once this shift
action is performed, the order of the raising and lowering
operators is immaterial since their commutator is a @-

number which does not contribute to the energy difference
55E between adjacent levels which produces a frequency
shift. Accordingly, we may make the replacement

and since EE=Aco„we see that Eq. (1.15) produces the
frequency shift

2

5aie = — (5 —& "& ')5Dki (co„R,R) .I (1.16)

Since co, ~ 0, the combination co, —ie in the dispersion in-
tegral (1.10) for the photon propagator is equivalent to
(co, ie) T—hus, .the time-ordered function 5Dki can be
replaced by the corresponding retarded Green's function.
Therefore, the result (1.16) for the cyclotron frequency
shift is purely a classical result. Since the propagator is

complex, Lo, contains an imaginary part which gives the
alteration in the cyclotron decay rate brought about by the
cavity. The real part of 5', gives the frequency shift.

The spin contribution to the energy shift can be readily
determined from (1.12) to be of the form
%co, (ro/R)(fuu, /mc )f(2',R /c) and thus of order
Ace, /mc smaller than the shift of the cyclotron frequen-
cy: The spin contribution comes from the o XV terms
where, by the same argument as above, the gradient acts
on the retarded photon propagator 5akl which is of the
form f(Rco, /c)/R where f is of order 1. The leading
term in the gradient then yields a factor of order co, /c
from the retardation; thus, the spin term is of order

(fico, /c) /(II ) =fico, /2mc

times the shift in the cyclotron frequency.
These expressions are the main conclusions of our

work. The leading-order corrections to the energy levels
of an electron in a cavity are purely the classical results.
The correction to the spin is entirely negligible regardless
of the cavity geometry but the corrections to the cyclotron
frequency are important. The detailed dependence on the
cavity geometry is included in the expression for 5Dkt.

Previous publications have dealt with the special cases
of a single-plane conducting wall" and a pair of conduct-
ing walls. In these works much larger effects were re-
ported; however, the calculations as presented are not
gauge invariant. In order to understand the origin of the
discrepancy, we will show that a gauge-invariant calcula-
tion yields a vanishing contribution of the order reported
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there so that the corrected calculation is consistent with
ours. Since the form and order of magnitude of our result
is independent of 'the details of the cavity (or plates), we
shall not present a detailed comparison in the two-plate
case although the result may be obtained from that of the
single plate by doing the (convergent) sum over the infi-
nite set of images.

It is a simple matter to compute 5Dkt for a single-plane
conducting wall (see the Appendix) and verify Eq. (1.4).
Clearly, the frequency shift for an arbitrary cavity will
also be of roughly the same order of magnitude as that for
the wall.

The results of previous workers ' on the effects which
we have considered are not gauge invariant. This is expli-
citly stated in the discussion of Eq. (6.1) in Ref. 3. It is
easy to see that the result of Ref. 4 is also not gauge in-
variant. These authors make a Foldy-Wouthuysen reduc-
tion of the complete Hamiltonian for the radiation field
plus an electron near a plane wall. In our notation, the
corrected version of one of their contributions [their Eq.
(2.5)] reads

HI —— o"R&II .
16m R

Clearly

(11)=tm([a, r]) =0,

(1.17)

which is equivalent to a gauge transformation. Thus
there is an additional term in their expression,
e cr XR Rp/m R, w. hich depends upon the origin
(gauge). Since any physical quantity must be gauge in-
variant, these results must be in error and not even their
order of magnitude can be trusted.

Before turning to give the details of our calculations,
we should emphasize that the electron is very well local-
ized in the g —2 experiment. Thus, an approximation in
which the photon propagator is represented by a mode
sum appropriate to a cavity but the electron propagator
represents unbound, plane waves is not relevant to the ex-
periment. Such a computation gives an unphysical loga--
rithmic divergence because the effect of the image charge
diverges when the electron approaches the wall, which it
does with sufficient probability when it is represented by

and so Eq. (1.17) gives a vanishing result. Instead of this
evaluation, the authors of Ref. 4 write II=p —e A and as-
sume that the expectation value of the gauge-noninvariant
canonical momentum p vanishes. They then use a gauge
such that A= —,'BXR and so find that Eq. (1.17) yields a
large contribution of order (e /mR)(e/m)o"B rather than
the correct result: zero. A similar (noncompensating) er-
ror is made in the authors' evaluation of. the remaining
term in their Eq. (2.6). This may be made manifest by ob-
serving that the single factor of R in the denominator of
their final result Eq. (2.8) arises from a factor of R
canceled by the R from A= —,'BXR using a particular
choice of origin. Thus these earlier results depend upon
the position of a "center" of a perfectly homogeneous
magnetic field. They are altered by the translation

A= —,
' BxR. —,

' Bx(R—Rp),

plane waves. Indeed, if the magnetic field is treated as a
first-order perturbation, an essentially free electron intro-
duced into a conducting cavity will be attracted by an im-
age charge, hit the wall, and be lost from the trap.

II. CLASSICAL CALCULATION

To assess the size of the shift in the cyclotron frequency
brought about by a microwave cavity, we replace the cavi-
ty walls by a single, perfectly conducting plane. The elec-
tron of charge e moves about its cyclotron orbit at veloci-
ty v(t) a distance R from the wall. As discussed in the
preceding section, the electromagnetic properties of the
conductor are reproduced by an image charge —e at a
distance —R on the other side of the plane. The image
charge moves at velocity v'(t) which is equal to v(t) ex-
cept that the sign of its component parallel to R is re-
versed. The wavelength c/co, is very small in comparison
with the distance to the plane. Hence, the leading effect
of the plane is the long-distance radiation field produced
by the motion of the image, a field that falls off as 1/2R.
Moreover, the size of the cyclotron orbit is also very small
in comparison with the distance to the plane and so the
dipole approximation suffices, where R is taken to be the
position of the center of cyclotron orbit. Thus the cyclo-
tron equation of motion is altered by the addition of the
familiar (Lienard-Wiechert) retarded radiation field:

vp(t) =&& Xpp(t) (2.2)

take the scalar product of Eq. (2.1) with p, (t), and in-
tegrate over the exact period ~. Since

pp(t). [v(t) co, Xv(t)]= [pp—(t)'v(t)],
dh

(2.3)

and v(t) is periodic with period r while pp(t) is periodic
with period wp, we obtain, to leading order in 5r,

[pp(w) —pp(0)] v(0)

=5'rvp = f dt vp(t)RX[RXvp(t —2R/c] .
2Rmc2

(2.4)

Here we have integrated by parts in the last term so as to
place the time derivative of v(t) on p(t). Now

vp(t —2R/c) =vp(t)cos(2', R/c)
—BX vp(t)sin(2', R /c ), (2.5)

where B=u, is the unit vector along the magnetic-field
direction. Moreover, averaging up(t)up(t) over an orbit
produces a unit dyadic in the plane of the orbit,

—f dt u (t)u' (t) =v '(5 ' B "B')— — (2.6)

v(t) co, Xv(t)= ——
z RX[RXv(t —2R/c)] . (2.1)

2Rmc ~

The overdot denotes the time derivative.
The radiative correction changes the orbital period wo to

%0+57. To compute &; we write the unperturbed velocity
as
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Using Eqs. (2.5) and (2.6) in Eq. (2.4) and remembering
that 5r/7. = —5', /co„ro = e /4mmc, we secure

5coq

4R
[1+(R 8) ]cos(2Rco, /c) . (2.7)

This is the result quoted in Eq. (1.4) in the preceding sec-
tion.

III. QUANTUM CALCULATION

As discussed in the Introduction and Summary, in
quantum electrodynamics, when the photon propagator is
altered by 5D», to order e an energy eigenvalue E is
shifted by

5E= f d r d rÃz(r)5M(E;r, r')%@(r'), (3.1)

where

E' PLANE

FIG. 3. Contour rvhich defines the time-ordered electron's
Careen's function.

5~(E;r,r') =ie y~S(E';r, r')dE'
2m

&& y"5D„,(E E';r,—r') . (3.2)

Coulomb propagator correction (3.6) gives an instantane-
ous propagator involving 5(t r'). There—fore, a symme-
trical equal-time limit must be defined by the energy con-
tour; it must be the average of closing the contour in both
the upper and the lower half plane. Accordingly,

The unperturbed Dirac wave functions are defined by
5Ecouiomb =

2 e'5~(R R» (3.&)

Hg)%'E ——E%'g,
where

H~ =a.II+ V+Pm

(3.3)

(3.4)

which is the result displayed in Eq. (1.9).
To obtain the contribution of the radiation field correc-

tion, we first perform a unitary, Foldy-Wouthuysen
transformation

S (E')/3=
D

(3.5)

To obtain the correct time-ordered boundary conditions
for the electron's Green's function, the energy integral
over E' must run along the contour shown in Fig. 3. The
calculation is facilitated with the use of the radiation
gauge where

We use the Dirac matrices y =P and a =/3y. The opera-
tor 0=p —e A is the gauge-invariant, kinetic momentum.
The Dirac Green's function S(E',r, r') is the coordinate
matrix element of the operator

0'~ ——Urged, /3$F. ——+fE .

To our needed accuracy, it suffices to take

U =exp( —Pa. II/2m ),
which gives

U HnU=/3(m+Ho)+O(1/m ),
where

II e
Ho —— + P"+ ~.8

2m 2m

(3.9)

(3.10)

(3.11)

(3.12)

5D00(E', r, r') = —5D(r, r') (3.6)

is the correction to the static, Coulomb Green's function
brought about the cavity, while 5DkI is the similar correc-
tion to the spatially transverse, radiation field Green's
function.

We first compute the Coulomb energy correction result-
ing from 5D+&. In leading order we may neglect the
spread of the electron's wave function and make the di-
pole approximation, replacing 5&(r,r') by 5&(R,R),
where R is the position of the center of the orbit. Then,
using an operator notation, we have

R); PEH
dE' t 1

2w Hg —E'

U a U=a +/3 + Pa —.VaI, H 1 1 k

m 2m i
(3.13)

Here the explicit gradient V acts on the coordinate of the
photon propagator. This gradient appears in the form

u —.Va"= —.V +(cr)& V)
l l

(3.14)

is the nonrelativistic Hamiltonian. Employing this
transformation on the wave functions in Eq. (3.1) and per-
forming appropriate integrations by parts, we encounter,
to our order,

dE'= —e 5&(R,R)i I (3.7)
and the V /i does not contribute since the photon propa-
gator is transverse. Finally, using /

To completely define the energy integration contour in
Eq. (3.7), we note that the Fourier transform of the

(3.15)U"S(E )PU=
/3(HO+ m ) E'—
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we obtain in the dipole approximation

+ (o'X V)
dE' ~ rrk k 1 II 1+ (o X&') ys5DkI(E —E';r, r') ~, , R . (3.16)
2& m 2m ao+m —Z' m 2m

Note that since Pz is an eigenvector of P with eigenvalue + 1, only "even terms, " terms that commute with P, survive in
the P@

. . gz matrix element and P may be replaced by l. Although the a" a contribution is overall an even term,
it is not significant because it gives rise to the denominator

1 1

—Ho —m —E' 2m
(3.17)

which commutes with a". Hence, since 5Dk~ is symmetrical in k, l this contribution involves —,
' Ia,a I =5", which pro-

duces a state-independent energy shift that can be omitted. (Since this state-independent shift is already of order
e /mR, we may neglect higher-order corrections to it.) In a similar way one may verify that the higher order in 1/I
corrections to Eq. (3.13) are not significant.

The energy integral in Eq. (3.16) remains to be done. To evaluate this integral, we express the photon-propagator
correction as a dispersion relation

dkq(A, ;r;r')
5Dk((co;r, r')= J dA,

0 g CO I'6
(3.18)

The energy integration now involves the simple poles and contour shown in Fig. 4. Thus we may close the contour in the
upper half plane to secure

2

5E„d———
2 I dkfF [II"+ —,

' (o && V)"] . [Il'+ ,'(~x&—')'jpEdk,(A;r, r') ~,, , R.
m ~o+m —E+~+ (3.19)

Here E is the total energy including the rest mass.
Changing to the nonrelativistic energy, E—m —+E, gives
exactly the formula (1.12) which we have discussed in the
Introduction and Summary.
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APPENDIX

We establish a coordinate system such that the conductor
is in the x-y plane. The boundary condition that the
tangential electric field vanish at this plane is obeyed by
adding the correction

3

5Dk((co;r, r') = —I e'"'e
(2m )

Here we compute the photon-propagator correction
5Dk~ for a perfectly conducting plane. First we recall that

Here

kk Ql
X tk

k k —6) —EE
2 2 (A2)

q=(kI, k2, —k3) (A3)

rYl + HQ

kl 5kl 2ZkZl

It is easy to check that this correction is transverse,

~k~Dkl 0 ~l ~Dkl .

(A4)

(A5)

E+ k —Ic

E' PLANE

For the evaluation of the cyclotron frequency shift we
need the long-distance limit of

d kdk 2kB
(2~)'

FIG. 4. Poles and contour for the energy integral giving
5E„d when Eq. (3.18) is introduced into Eq. (3.16).

kk Cl
2 (A6)

1

—CO —l6
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This form has cylindrical symmetry about the z axis.
Hence it must be composed of scalar function times the
projection into the x-y plane

d 3k e2iklt coss
5Dki(co;R, R) = —5ki' I (2m. ) k —co2 i—e

(AS)

(j.)
5kl =5kl —zkzl . (A7)

and another scalar function times zkzl. To compute the
long-distance limit of these scalar functions, we introduce
spherical coordinates with k3 ——k cosO. Since the
exp(2ikR cos8) in the integral (A6) varies rapidly in the
R~ao limit, with adjacent regions in k canceling, the
leading contribution comes from the angular end points
cos8=+1. Since 5D33 involves the factor 1 —cos 8, it is
smaller asymptotically than are the 5Dii,5D22 terms.
Thus in the long-distance limit

[The ki and kz terms in Eq. (A6) can be neglected since
they contain sin 8.] Evaluating first the angular integrals
in Eq. (AS) and then using standard contour methods for
the remaining integral gives

2ld
5Dki(co&R&R) = —(5ki z—kzi)

Replacing z by an arbitrary direction R and inserting this
in Eq. (1.16) produces the result (1.4) after the real part is
taken.
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