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Current-algebra methods are used to analyze K~2~ decays. A study is made of the effects of
terms which are usually made to vanish by the soft-pion procedure. For this purpose the pions are

treated symmetrically and massless pions, k =q =0, are considered as an alternative to soft ones.

Detailed numerical estimates are made for the various contributions arising from "left-left" and
"left-right" operators.

I. INTRODUCTION

Progress in the understanding of nonleptonic
strangeness-changing weak decays of hadrons has been
achieved during the last decade. ' This progress has been
made possible by the advent of quantum chromodynamics
(QCD) as a possible theory of strong interactions. Gail-
lard and Lee, and Altarelli and Maiani, using
renormalization-group arguments, were able to show that
short-distance effects cause an enhancement of the Wilson
coefficient function of the b,I= —,

' operator and suppres-
sion of the coefficient of the AI= —, operator, relative to
the free-field value. This, however, was not enough by it-
self to account for the observed b,I= —,

' rule. In principle,
evaluation of the matrix elements of operators could re-
sult in further enhancement for the bI= —,

' amplitude.

However, detailed calculations have not borne this out yet.
Shifman, Vainshtein, and Zakharov" (SVZ) pointed out
the existence of a new class of operators, the so-called
"left-right" or "penguin" operators, in addition to the
usual "left-left" operators considered in Ref. 2. These
new operators are pure AI = —,

' and thus could be of great

help in the attempts to explain octet enhancement. Re-
cently, Donoghue, Golowich, Ponce, and Holstein have
carried out a detailed analysis of ES=1 nonleptonic de-

cays employing the MIT bag model to evaluate the ha-
dronic matrix elements of the various operators.

We should also point out there have been other efforts
to explain the M= —,

' rule using different approaches.
Oneda and collaborators have carried out detailed
analysis based on the ansatz of the so-called level realiza-
tion of asymptotic flavor SU(N) symmetry. McKellar
and Scadron propose that for kaon decay the significant
piece of the EI= —,

' weak Hamiltonian is the s-d quark

tadpole generated by 8' exchange that was considered ear-
lier by Ross and the present author. ' They argue that the
Nambu-Goldstone nature of the kaon prevents this tad-
pole from being transformed away by higher QCD or
QFD (quantum-flavour-dynamic) interactions.

In most of the works cited above the methods of
current algebra, PCAC (partial conservation of axial-
vector current), and soft pions play a significant role. "
For processes involving more than one pion it has been
suggested, rather than reduce one pion at a time and sym-

metrize, that it is more appropriate to treat all pions in

the process symmetrically and on equal footing. ' In this
work we apply this symmetric treatment to nonleptonic
kaon decay into two pions. Also instead of taking the
soft-pion limits of k, q —+0, we instead employ the
massless-pion approximation and take k =q =0, keep-

ing k, q &0. These matters are taken up on Sec. II
where PCAC and short-distance expansions are used to
set up a representation for the kaon decay amplitude. It is
our main aim in this work to study the effects of terms
that would normally give a vanishing contribution in the
usual treatment using soft pions. We are further motivat-
ed to do this by the rather appreciable momentum depen-
dence of the K~2m decay amplitude. " A major prob-
lem here is to determine the structure of an amplitude

M~@(k,q) (see Sec. II for notation) that involves the
time-ordered product of two axial-vector currents and two
hadronic weak currents. This problem is tackled in Sec.
III and our approach consists of dividing contributions
into those coming from "short" and "long" distances.
The short-distance component is calculable and we pro-
pose a certain approximation for the 1ong-distance com-
ponent. In Sec. IV we put together the results of Secs. II
and III, analyse further the kaon decay amplitude and
give numerical estimates. Section V is devoted to some
concluding remarks. In Appendix A we evaluate certain
integrals connected with the short-distance contributions
discussed in Sec. III while Appendix 8 is devoted to a dis-
cussion of some QFD renormalization effects connected
with the axial-vector current operator. As a theoretical
framework in this paper we take QCD to describe strong
interactions while weak and electromagnetic interactions
are described by the SU(2)U(1) gauge theory of Wein-
berg and Salam extended to hadrons via the Glashow-
Iliopoulos-Maiani mechanism and refer to it below as the
standard theory. We confine ourselves to only four quark
flavors in order to simplify the analysis.

II. PCAC, SHORT-DISTANCE EXPANSION,
AND CURRENT ALGEBRA

We write the nonleptonic weak decay amplitude in the
form
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where g„is the electroweak coupling constant of the stan-
dard theory. The hadronic currents are given by

Now let us consider the following quantity

J„Iv——(u cosHC csi—n6&)y'z(1 —yq)d,

J„s——(u sinOC+c cos0c)y„(1—y&)s .

Contracting out the pions in Eq. (2.1) we get

(2.2)

T[A ' (x )A Jp(y )Jq~(z)Jg(0)) .
ax ay~

(2.6)

For the product of the two hadronic currents one follows
Wilson and expands in terms of a set of local operators

2

M= dzdxdye' +
8

T[J„Iq(z)Js(0)]=—,
'

Q Ck(z)Ok(0), (2.7)

&&DF(z;mII )(CI +m„)(CJY+m )

&& (F
l
T[p'„(x)t){ (y )J„Iv(z)Jg(0) ] l

I & +H. c.

(2.3)

where we have separated off a factor of —,
' for later con-

venience. In writing Eq. (2.7) we have absorbed all the
Cabibbo-angle factors in the coefficient functions Ck(z).
The operator basis on the right-hand side (RHS) of Eq.
(2.7) has been identified in Refs. (2) and (4). Using Eq.
(2.7) in Eq. (2.6) we write

In Eq. (2.3), H.c. stands for a term as the first one with
the product of the weak currents replaced by
J„tv(z)Jg (0). For ease of writing we shall not write this
term in the equations that follow and it should be under-
stood that it is there. Next we invoke PCAC in the form

p T[A~(x)A Jp(y) JpIv(z)Jg(0)]
ax ay~

= —, g Ck(z) p
T[A' (x)AJp(y)O„(0)] . (2.8)

Bx gyp

B"A„'=m F P' .

Then for massless pions k =q =0 we obtain

(2.4)

We now apply the standard techniques of current algebra
to the T product on the RHS of Eq. (2.8). To simplify
the ensuing analysis let us restrict ourselves to the
neutral-pion case, i =j=3. The required identity then

ax ay~
T[A (x)Ap(y)Ok(0)]= T[c} A (x)B Ap(y)Ok(0)]+5(x y)T[[AO(y), B A~—(x)]OI, (0)I

+ —,'5(x )5(y )[A{1(y),[AO(x), Ok(0)]]

+ —'5(x )5(y )[A (x), [A (y), Ok(0)]]+5(y )Tt[A'(y), Ok(0)]t) A.'(x)I

+5(x )T [[AD(x),Ok(0)]BPA p(y) I . (2.9)

We substitute Eq. (2.9) into the RHS of Eq. (2.8), multiply both sides of the resultant equation by

2
i{k x+q y)D (z.m

2.
)Fzm (2.10)

and integrate over x, y, and. z. Taking matrix elements betweeII a kaon initial state:
nal state we arrive at the equation
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we arrive at

The first term on the RHS of Eq. (2.11) is easily recognized to be the K transition complitude. Next performing the z in-
tegration in all but the term on the left-hand side (LHS) of Eq. (2.11) and making use of the standard relation

GF2

Sm~'

k qp f d xd yd ze' "+'J"'DF('z;m'~ )&0~ T[A (x)A P(y)J&~(z)Jg(0)] ~K&

+ gC f d xd ye'"'"+~'~'5(x —y )&0~ T[[AD(y), B 2 (x)]OJ(0)I ~K&
2v 2S.',+,g C; f d'x d'y e"""+"'5(x')5(y') &0

I I tW,'(y), [W,'(x),O, (0)]]+[a,'(x), [W,'(y), O, (O)]]I I
K &

4 2F~

yC f d'ye'e&{~'(k) ~5(y')[~,'(y), O (0)] ~K&+ f d' e'""&~'q) I5(x')[~o(x),O, (0)] IK&
2~2m. 0 p J

(2.13)
where M is the %~2m decay amplitude

GF gC f d xd ye'"'"+~~'&0~ T[d A (x)BpA P(y)O (0)] ~K& .
17 J

(2.14)

The quantities CJ have been determined in Refs. (2) and (4) and our normalization corresponds to that of Ref. (5). We
have used the contraction procedure in reverse to put one pion back into the final state in each of the last two terms of
Eq. (2.13), corresponding to the last two terms of Eq. (2.11). On the RHS of Eq. (2.14) the sum extends over four-quark
dimension-six operators. When one or two pions momenta are sent to zero the first term on the RHS of Eq. (2.13) gives
a vanishing contribution and the resultant expression for M forms the starting point of the usual current-algebra
analysis. " As announced in the introduction it is not our intention here to take k or q~~0 and we shall retain the first
term on RHS.of Eq. (2.13) in our formula. We shall write this term in the form

k~qpM P(k, q),

where M P is easily read from Eq. (2.13):

2

M~p(k, q)= — d xd yd ze'" "+~~'D~(z m ')&0~ T[A' (x)A'p(y)J„~(z)Jf(0)]~K&
8F

%'e shall take a closer look at the amplitude M ~ in the next section.

(2.15)

(2.16)
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ur. smUCrURE OF +HE AMpI. nUDE m ~

Calculating the amplitude M ~ of Eq. (2.16) js a

diffic-

ultt problem in strong interaction theory. Our approach
here will be to try and give an approximate treatment
based upon separating M ~ into pieces, coming from
"short distances" involving the variable x and y and from
"long distances. " We will try and make the meaning of
this statement more precise in the sequel. The amplitude
M ~ describes the "emission" of axial-vector currents 3
and 3 P carrying momenta k =q =0. The significant
domain in the variable z is constrained by virtue of the
presence of the propagator D~(z;m~ ) to remain bounded
by -m~ '. The short distances associated with x and y
are taken to be those satisfying: x,y (z-m~ '. In the

I

FIG. 1. Diagrams contributing to Mq . In this, and other di-
agrams, the wiggly line describes the 8'bosons while the zigzag
line stands for the axial-vector current.

absence of strong interactions this situation is described
by the graphs of Fig. 1. These graphs, together with their
radiative corrections when the QCD strong interactions
are switched on, would then represent the short-distance
piece of M ~ in our description. I.et us then consider the
T product for the four currents that appear in Eq. (2.16).
At short distances and in the absence of QCD interactions
we readily find that

T[A (x)A'~(y)J„~(z)Js(0)]=——cos~c»»c[ d(0)I pSr(z —x)y y5S~(x —X)y 'y5 F(J )I s(

+d(0)I „SF(z y)y~y5SF(y——x )y y,S~(x )I "s(0)

+z,a d(0)r„S,{z x)y y—S'F(x y)y~y—P'~(y)f'"s(0)

+z q d(0)I„S(z —&)y~y, S (& —x)y y,S (x)r"s(0)+ -. ] . (3.1)

In Eq. (3.1) I „=y„(1—y5) and the operators on the RHS
are normal-ordered. Next using the short-distance form
of the fermion propagators and making repeated use of
the following identity for Dirac matrices

(3.1')

We note that the first two terms on the RHS of Eq. (3.1)
reduce to a sum of terms each consisting of a coefficient

l

t

function multiplying a vector or axial-vector current
operator. Since these operators have zero anomalous di-
mensions we see that the form of the expansion of Eq.
(3.1) continues to hold when we switch on the QCD
strong interactions and no logarithmic corrections arise.
%'e shall continue to use the compact expression given in
Eq. (3.1) in the calculations below. Using Eq. (3.1) we can
now write for the contribution to M ~ coming from these
two terms

Ms" ~(k, q)= cos0csinOC(0
~

d(0)[I ~(k, q)+I~ (q, k)]s(0)
~
K), (3.2)

where the subscript 5 on M~ ' ~ signifies the contribution from the region of short distances and

ap 1 4
I „pyy (0+p)y~y (p+q'+4')I"I i'(k, q)=, d'p

(2') (p m~ +ie—)(p +ie)[(p+k) +re][(p+q+k) +ie]
(3.3)

I~ (q, k) is obtained from Eq. (3.1) by the simple exchange a~P, k=:q. A lengthy but straightforward calculation gives
(see Appendix A for details)

2

I (k, q) = —,
'

ln
4m. mg

T

2 211,~w 8ka~P+ ln + I p~a apeak, p + 19
18

qayP

2 2 ll
p@

2

mph'

4+ —3», +—g ~q (1—y&), (3.4)
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where A, is some mass such that A, «m~ (see Appendix A). The remarkable feature is that upon forming the sum
I p(k, q)+Ip (q, k) all the logarithmic terms cancel. In fact contraction with kaqp yields a very simple

kaqP[I P(k, q)+IP (q, k)]= q k(k+q')(1 —yq) .
121T m ~

We can now finally write

(3.5)

k q M'" p=, , o 9 i 8 (q k)(k+q)„(0~d(0)y"(1—y ) (0) ~&)
248~ F (3.6)

We now specify the kaon state to be that of EC and note. that in this ease the contribution will come from the
Hermitian-conjugate term of Eq. (2.3) that we have been suppressing all along. We then write

(0
~

Xy"ysn
~

K (k+q) ) =if o(k+q)", (3.7)

and thereby obtain

(1) p
—l GFcosOcsln c 2k qpMs —— (q k) f, ,

V 212m. f (3.8)

where we have introduced the charged-pion decay constant f =v 2F .
We have noted above that the logarithmic terms in Eq. (3.4) cancel in the sum I p(k, q)+Ip (q, k). It might be

thought that this is peculiar to the case of two neutral pions because for two charged pions, m+vr, only one of the two
diagrams of Fig. (1) contributes. Thus the symmetric combination indicated in Eq. (3.2) does not occur and we end up
with one term with logarithms as given in Eq. (3.4). In fact, we find upon contraction with k qp, in the case of m m

the following expression:

kaqpI P( k, q) = . —,lni(q k)
4m mg

(q k)+ —„(5—k —llq) (1—y5) . (3.9)

Upon taking matrix elements, however, the logarithmic term being proportional to q&
—k„wi11give zero contribution

since q =k =0. If we denote the charged pion amplitude by M'+' ps we then find

l GFcosOcslngc
kaqpM+ Ps=— : (q'k) fko ~v'212~ f (3.10)

which is identical to the neutral-pion ease result of Eq. (3.8).
Next we turn to the third and fourth terms in Eq. (3.1). By similar manipulations we find that they make the follow-

ing contribution to M ~:

(2 ) p l Gp cosOC sln&g
MF ' p= — (0

~

8'd( )0( gpy, +gpy +g, yp)(1 —y, )s(0) ~K),v'248~'F ' (3.11)

where the subscript F signifies the absence of QCD interactions. We can cast Eq. (3.11) in an alternative form that in-
volves the derivative of the d or s field operators

(2) p l Gy cosOcslnOg
(0~d(09 "(g y.+g.y +g.yP)(1 —y ) (0) ~&),

v 248~2F 2 (3.12)

where we define

d 8 "s = —,
' (d 3 s —8'd s ) . (3.13)

When the QCD interactions are turned on then upon using the identity of Eq. (3.1a) and the short-distance form of the
fermion propagators we see that the third and fourth terms in the expansion of Eq. (3.1) involve the operator

0"P= dD "yP(1 —y5)s, (3.14)

where now the color-covariant derivative D appears here because of gauge invariance. In discussing the renormalization
of tensor operators, as is well known, it is convenient to work with traceless operators that possess definite symmetry
properties. Thus, our operator basis consists of the following two operators

02p d(D yp+D py —,g pg——)(1—ys)s, —

Oo ——d B(1—yq)s,
where

(3.15)

(3.16)
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Dp ——Bp —igT Bp, (3.17)

with B„'being the gluon field. The operator Oz~ is the well-known nonsinglet twist-2 operator that enters in the descrip-
tion of deep-inelastic electroproduction. The coefficient functions of these operators are modified over the free-field
case by the appearance of functions EJ(x,y, z;g, IJ, ), j=0,2, which obey renormalization-group equations whose solution
Ieads

t
EJ(e 'x, e 'y, e 'z;g, p) =EJ(x,y, z;g(t), p)exp —f dt'yj [g(t')] (3.18)

g(t) is the running coupling constant and yj is the anomalous dimension of the operator. The parameter t is taken to be

(3.19)

By writing the quantities y~ in the form

2

y, (g) = y,
' +

4~

then for large t Eq. (3.18) is written in the form
(2)/

EJ(e 'x, e 'y, e 'z;g, p) ~ 1 — t EJ(x,y, z;g(t), p) .

(3.20)

(3.21)

The quantity p& is given by

P) ———
6 Cp(G)+ , T(R )Ng, — (3.22)

with N~ being the number of flavors and the group-theoretical quantities Cz(G), etc. , have their usual meaning. On the
RHS of Eq. (3.21), and with t given by Eq. (3.19) we can set g equal to zero and replace the EJ(g) by their free-field
values. The quantity yz

' is known from the results of Ref. (13) while for the operator Oo we easily compute the
anomalous dimension to one-loop order and find

g Cz(R)
yo(g) =

4~
(3.23)

(2) p l GFcosOc sinc

48M2mI'. 25g ~w
(0~O,~~re)+ ,' 1+ g, ln-

24m-2 p
1+ ln

25g
24~' p

g ~(o~o, ~rc)

Now in the case of four flavors that we are considering we finally have for the contribution to M ~ coming from the
third and fourth terms of Eq. (3.1), and in the presence of strong interactions, the following expression:

' —32/75 —8/25

Let us now specify the kaon state to be that of K . We use the equations of motion to cast Oo in the form
e

l l
Oo = ——(m +m~ )ds ——(m m& )d y&s . —

2 S

(3.24)

(3.25)

Only the second term on the RHS of Eq. (3.25) contributes when calculating the second matrix element in Eq. (3.24).
The matrix element of dy5s is next related to that of the divergence of the axial-vector current. For the operator Oz~ we
write

&0IOF I&'(p)&=V S~ .'g ~S')~z——
We then arrive at

(3.26)

')

(2) P
—l GFcosOcslnOc foal~'

~Z384~'~ ' 1+ ln
25g 2 @pe ~
24w2 p

—32/75

2+3 1+ 2
ln

25g
24m' p

' —8/25
(m, —mg)

m, 1m~ 0 ~

(3.27)

Next we turn to a discussion of other possible contributions to M ~. The great virtue of the contribution ~&l is that
it is calculable but there is no reason on general grounds to expect that it would dominate M ~. A contribution which is
partially calculable arises when only one of the distances x or y is short in the sense that we are specifying here with the
oth«being outside the short-distance domain. In the absence of strong interactions this situation is described by the
graph of Fig 2. The T.product of three currents that arises here is easily shown at short distances to be given by
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cas8csinOc (z —x )~T[A3(x)Jp~(z)Jf (s)]=-
2rr [(z—x) —ie] (x —ie)

X[d(0)I' ~(1 —y )s(0)+z,B"d(0)I' ~(1 —y )s(0)+ —,'z,z 8 8 d(0)l ' ~(1—y )s(0)+ . ]

m„2cos8esinOc 1
d(0)y (1—y, )s(0)+ .

8n [(z—x ) i—e](x i—e)
(3.28)

where

pTcxp
'

y1 ycxyp (3.29)

We shall denote the terms on the RHS of Eq. (3.28) suc-
cessively by Tg, i =1,2, . . . . In the presence of strong
interactions we designate them by T; . We compute the
contribution of each one of them in turn. Now the first
term T]F gives rise to a logarithmically divergent contri-
bution to the amplitude M which is of O(gw ). We
show in Appendix 8 that this contribution can be re-
moved by QFD renormalization of the axial-vector
current operator. A finite O(gw ) contribution also arises
from T&F. This, however, does not represent a genuine
weak-interaction effect and is also removed by renormali-
zation of the axial-vector current. Moreover, the finite
O(GF) contribution that arises from this term is propor-
tional to k and hence vanishes upon contraction with
k . When QCD interactions are switched on, no logarith-
mic modification of Tq~ occurs and T~ ——T&J;. This is so
since by use of Eq. (3.1a) T~F can be expressed as a sum
of terms each involving the SU(3) current operator

k~ f d z d x 8 DF.(z;7tlw )T2

cosOcsinO& 25g2 m ~1+ 2
ln

48~2m ' 24~2 p

' —32/75

k„k Oz

(3.32)

k~ f d zd x e DF(z;mw )T3F

k [2d(0)Q B~(1—y5)s(0)
96 mw

+d(0)B y (1—y, )s(0)] .

(3.33)

Note that the masslessness condition k =0 eliminates the
contribution coming from the operator 00.

Next we turn to the term T3F and find for its contribu-
tion

~6+i 7
ey (1—y5)

+'
~ =dy (1—y5)s

2
(3.30) In the presence of QCD interactions the following opera-

tor enters the operator-product expansion:

k~ f d zd x e DJ;(z;mw )Tzp

coso&sinOC
k k,d(0)B "y (1—y, )s(0) .

24m mg
(3.31)

and this has zero anomalous dimension. . Hence, our con-
clusions above are unchanged and no contribution to
k~q~M~~ results fram T ~.

Next we turn to the term Tzz. In terms of the deriva-
tive operator of Eq. (3.13) we find that it contributes the
following

OcTv1 dDO'DvyT( 1 y )s (3.34)

As before we work with operators of definite symmetry
properties. It turns out that the contribution from the
symmetric and traceless twist-two operator 03 ' as well
as that coming from antisymmetric operators vanishes
and the nonzero contribution from T3 involves the fol-
lowing two vector operators:

Qi ——d g D (1—yg)s, (3.35)
When QCD interactions are switched on T2F~Tz. The
coefficient function occuring in T2 is modified over the
free-field value that appears in TzF and the operators that
enter now are Oz~ and Oo of Eqs. (3.15) and (3.16). Us-
ing by now familiar arguments we find for the contribu-
tion of T2

Q2 ——
dDpD "y (1—y5)s . (3.36)

These operators mix under renormalization. No mixing
with pure gluon operators occurs because of the nonsing-
let nature of Q~ and Q2. We calculate the anomalous-
dimension matrix to one-loop order and find

5 13
g'C, (R)

2 1 1
(3.37)

FICi. 2. Diagram associated with Eq. (3.28) of the text. We then write the contribution of T3 as
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I COsggslnOg
k~ f d zd x e'"'"DF(z;m~ )T3 ——— g k E;

48ri mw .j
where

1+ ln
25g mw

24~' p

—6y(')/25

Qi (0), (3.38)

(3.39)

GFcosocslnSC 25g m w
kaqpMss. = k qp 1+ ln

v'248w2F„2 24~2 p

Finally, we observe that the last term on the RHS of Eq. (3.28) gives rise to an O(GF) contribution. However, this is
suppressed due to the smallness of the u-quark mass. In fact, with the estimate m„=5 MeV (Ref. 14) we have
GFI„=2.9X 10 ' . This suppression continues to hold when QCD interactions are turned on and we shall ignore this
contribution.

We shall denote the contribution to M that involves Eq. (3.28), and the similar term obtained from it by the replace-
ments x~y and a~P by M+L, where the subscript I. describes the situation that one of the distances x or y is large.
Recalling Eq. (2.16) for M ~ and using our results in Eqs. (3.32) and (3.38) we can now write

—32/75

k, f d y e' ' (0
~
T[A (y)02 (0)]

~
E)

2

+i gE; 1+ 2
ln

25g m w

24m' p

—6y(2)/25

d4ye'~~ 0 TA Py J 0 E

+ (q~k, a~P) (3.40)

Next we consider contributions associated with both
variables x,y being large compared with z-I '. We
denote the corresponding piece of M ~ by ML .. In gen-
general, ML p would be given by the class of diagrams de-
picted in Fig. 3 with multiparticle intermediate states.
Here we shall approximate this contribution by retaining
only single-particle intermediate states. Dominance of
pole diagrams is frequently invoked in phenomenological
descriptions of weak decays. ' Of course, it is particularly
effective when the intermediate particle states are close in
mass to the decaying state. Let us also recall here that it
is our declared aim in this work to study the effects of
terms that are usually thrown away by the soft-pion pro-
cedure. These effects are not simply confined to the re-
tention of the k qpM ~ term as we shall see in the next
section. While we are able to give a fairly general analysis
for the contributions Ms~ and Mgz~, we have necessarily
to settle for an approximate treatment for Mr ~. We shall
then represent ML ~ by the diagrams of Figs. 4 and 5. In
these diagrams S„and P„denote intermediate scalar or
pseudoscalar meson states. In Fig. 4 the kaon undergoes a
weak transition to a scalar meson state which is, in turn,
coupled to a pseudoscalar state through the action of one
of the axial-vector currents. The pseudoscalar meson then
couples to the vacuum state through the second axial-
vector current. Since, however, the contribution from
each of the two diagrams of Fig. 4 is proportional to ei-
ther k or q p, then they would give zero upon contraction
with k qp.

Next we turn to the graphs of Fig. 5 where the internal
meson state can be scalar or pseudoscalar. %"e note im-
mediately, however, that for the pseudoscalar case the am-
plitude coupling the meson state to two axial-vector
current is proportional to the covariant

g p~~qykg . (3.41)

Hence, upon contraction with k qp we again find a van-
ishing contribution. We are thus left with the case of
scalar-meson intermediate states and hence we write ML p

as

g T„~(k,q) (n
~

A ~(0)
~

IC ),
n mz —mn

(3.42)

GFcosmic sinO&
A ~(0)= Q CJOJ+h. c. ,2v'2 (3.44)

where m„denotes the intermediate meson mass and the
sum extends over all scalar meson states of positive G
parity. T„~(k,q) is the amplitude describing the coupling
of the state n to be the two axial-vector currents:

T„(k,q) =i f d z e'"

&&(0
~

T[A (z/2)A ~( —z/2)]
~

n) .

(3.43)

The effective nonleptonic weak Hamiltonian is given as
usual by

0
K

FIG. 3. General class of diagrams contributing to ML, .
+(q K)

K ~S„ Pn K

FIG. 4. Two-pole diagram contributing to Ml ~.
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Sn Pn

FIG. 5. Pole diagram contributing to ML~.

where we now make the cos8csln8c factor explicit.
By means of the standard methods of PCAC and

current algebra we can relate the amplitude T„p(k,q) to
the amplitude T„(k,q) that describes the strong decay
n ~2m . To show this we start from the identity

T[A~(x)A p(y)]
Bp' Bx

= T[d A (x)BpAp(y)]+[AD(y), B A (x)]5(x —y ) .

where Q5 is the axial-vector charge:

Q5 ——f d x Ao(x) . (3.47)

The equal-time commutator (ETC) occuring in Eq. (3.46)
will be discussed further in the next section. The ampli-
tude T„(k,q) is given by

T (k q)
1 d4z ei(k —q) z/2

2

X (0
l
T[B A ~(z I2)dPA p( —z/2)]

l
n ) .

(3.48)

we then easily derive that

kaqpTn = FTn—(k q) l ~01[Q5 ~ Aa(0)] I

(3.4S)

(3.46)

As we mentioned earlier T„(k,q) describes the strong de-

cay process n~2m. where the emitted pions have zero
masses. We note from Eq. (3.42) that the decaying meson
state is also off-shell since its momentum p satisfies

2 2
P =Ply

This then concludes our analysis of the quantity M p.

IV. THE X~2m AMPLITUDE

Assuming the absence of q-number Schwlnger terms in the ETC s occuring in Eq. (2.13) we now write the X ~2n.
amplitude in the form

M= k qpM p+ f d"xe'"+ '"(Ol TI[Q, , B A'(x)]A (0)I lK )
l

+ ', (0
I
[Q'„[Q',,~.(0)]] I

z') — '
I (~'(k)

I
[Q'„~.(0)l I

lt') + (~'(q)
I
[Q'„~„(o)]

I
z'& I . (4.1)

We shall now analyze each of the terms appearing on the RHS of Eq. (4.1) which we denote successively by
Ml, . . . , M&. From the results of Sec. III we have

Ml k~qpM P=——k~qp(Ms" P+Mg ' P jMgg)

T„(k,q)+ z (Ol [Qq, B A~(0)]
l
n)2 , (,n

l ~.(0)
l

J:0),
Pl g —m~

(4.2)

where we have used SU(3) symmetry to replace f 0 by fx,
the charged-kaon decay constant. The terms M~ and M2
involve the ETC between the axial-vector charge and the
divergence of the axial-vector current. In general, one
writes

[A o(y ),8"A J~ (x ) ]5(x —y ) = io;J (x )5"—(x —y ), (4.3)

where i,j denote isospin indices. The quantity o.;J(x) in
general will, in the limit of isospin symmetry, have I=0
and I=2 components. Here we shall ignore the I=2
component and write

[Ao(y), Bl'A„'(x)]5(x —y )= im„Fo(x)5 (x——y),
(4.4)

I

where m is the common mass for the u and d quarks.
Hence one can evaluate the ETC and find'~

m F o(x)—:m[u(x)u(x)+d(x)d(x)] . (4.7)

We can now write the quantity M2 as

M, =—,f d x e" +q'"(0
l
T[o(x)A „(0)]l K') .

[Ao(y), B"A„(x)]5(x—y )

= —im[u(x)u(x)+d(x)d(x)]5 (x —y) . (4.6)

We note that the term on the RHS of Eq. (4.6) is purely
isoscalar. By comparing Eqs. (4.4) and (4.6) we see that
we have the equivalence relation'

8"Az im(uy5u ———dyzd), (4.S)

where cr(x) is an isoscalar scalar field and we have taken
note of the PCAC relation, Eq. (2.6) so as to extract the
factor m I'„.Now the divergence of the axial-vector
current, in the limit of SU(2) symmetry, is given by

(4.8)

If the field o(x) is an interpolating field for a physical
particle of mass m then using the reduction formalism
one can write for the integral occuring on the RHS of Eq.
(4.8)
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where the o particle has momentum k+q. However, in
general, unlike the case of the divergence of the axial-
vector current and the pion field, the field cr(x) is not ex-
pected to be dominated by a single physical particle and
we have to replace the RHS of Eq. (4.9) by

Z„' (n(k+q)
I
A (0)

I
k )

m„—(k+q)'
where the quantity Z„'~ is defined by

(o
I
o

I
n )=z„'",

(4.10)

(4.11)

and the sum extends over all possible scalar isoscalar
physical particle states n Com. bining Eqs. (4.8) and (4.10)
and noting that (k+q) =mx we can now finally writem, (n(k+q)

I
A ~(0)

I
K )z„'»5 m„—mz

We next turn to the quantity M3 which reads

Ms —— (0
I [Qs, [gs,A ~(0)]] I'lC ) .

F~'
(4.13)

To evaluate the double commutator on the RHS let us re-
call that ~~(0) is given by Eq. (3.19) where the operators
Ok are given by

0$ —A g ck

02 ——A g+A g+2A c+2A D,

03 ——A ~+A g+2A ~ —3A D,
04 ——A g+Ag —A c,

(4.14)

f d x e""+~'"(0
I
T[S(x)A (0)] I

Eo)
—i(cr(k+q)

I

A (0)
I

x )
(4.9)

m —(k+q)

In addition, we have the so-called "penguin" operators
originally introduced by SVZ:

Os = yp( y—s)t dgy"(1+ys)t "g,

[gs [Qs Ok(0)]]=[g [Q Qk(0)]],
k = 1, . . . , 6 (4.17)

where Q denotes the third isospin generator. Hence,
evaluation of the matrix element of the double commuta-
tor can be effected through the known action of the iso-
spin operator Q and we have

M,=, (OIA (0) IE') .
4F

(4.18)

Next we turn to the quantity M4. The ETC's between the
axial-vector charge and the operators OJ read as '

[Qs, g, (0)]= —[O', O, (o)]

[Qs o6(0)l = —
2 O6(0)+O6' (o»

where 06" is given by

o", =—', &o
I
dd Io&:r(1+ys)d: .

(4.19)

(4.20)

(4.21)

Similarly,

[Q,',o, (o)]= ——,
' o,(o)+o", (o),

(c) ~~ (c)0 5 =
3 0 6

(4.22)

(4.16)o6= y.(1 —ys)dQy"(I+y, )g .
{The opera, tors OJ are all understood to be normal or-
dered. ) g„g2,Os, and 06 transform like SU(3) octets
and carry isopin I= —,', while 03 and 04 are 27-plets
under SU(3) and carry I=

z and —, , respectively. In Eq.
(4.16) the field operator Q is summed over all three light-
quark flavors u, d, s. The matrices t" generate the color
gauge group SU(3) and satisfy trt"t =25~~. Now as
Tanuma et a/. have pointed out, we have for the double
comm utators

A g
——sy„(1—ys)uuy1'(1 —y, )d,

A g ——sy„(1 ys)duy—l'(1 —ys)u,

~c=s'y„(1 ys)ddy"(1 ys—)d, —
A D

——sy&(1 —ys)d sy"( I —ys)s .

(4.15) (4.23)

Using Eqs. (4.19)—(4.22) we easily deduce that

In the following we shall denote the contribution to M4
arising from the operator Ok by M4(gk) and write

6

M4 ——Q M4(gk) .
k=1

M4(gk) =

M, (o, ) =

i GFcosecstn~c
4 2F [Ck& '«)

I ok I&'(p)&+(k q)], k=1, . . . , 4

i GzcosOcsinoc Cs(o, ) = [&~'(k)
I os Ilt"(p) &

—9' &0I dd
I

o& &~'«) I» II~'(p) &+«~q)]
4 2F

i'.cosOcsln8c C6

4 2F
[(~'(k)

I O6 I
&'(p)) ——', (0I nn

I
0)(m (k)

I
sd

I

A (p))+(k q)],

(4.24)

(4.25)

(4.26)

where p =a+ q is the momentum of the kaon.
Next we consider the evaluation of the matrix elements

of the operators that appear in the expressions given for

I

the quantities MJ. We compute the matrix elements using
the vacuum-insertion method as usually done in the litera-
ture. ' ' Now the coefficients Ck have the following
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I

numerical values: C& ——2.5, C2 ——0.08, C3 ——0.08,
Cg ——0.4, Cs ——( —0.06)—+( —0. 14), and Cb =( —0.01)
~(—0.05). In view of this, and bearing in mind the na-
ture of the accompanying operators OJ, we shall give
below explicit res'ults only for the operators 0?, 04, and
Og.

For the operators Ok we consider, as is usually done,
the matrix element between K+ and m+ states. The ma-
trix element between E and ~ is then obtained by stan-
dard SU(2) considerations. We start by considering the
quantity M4. We then easily find for 0? .

(~+(k )
~
0?

~
K+(p) ) = ,

' f fx—k.p . (4.27)

(~o(k) ~O, ~K (P))= — (m-+(k) ~O?
~

k+(I?))
2

1 2-f fsc&x .
3v'2

(4.28)

For the operator 04 we find

(?r (k)
i
04

i
K (p) ) =v'2(?r+(k)

[ O~ [K+(I?) )
2v'2 f fkmic'.

3
(4.29)

Next we turn to 05. One applies the vacuum-insertion
method to the rearranged form obtained after a Fierz
transformation, namely,

We immediately observe an important difference from the
case of SVZ. In their corresponding result k p is replaced
by k . This is so because they consider matrix elements
between states of equal momenta which arise as a result of
applying the soft-pion method. When comparing the ma-
trix element of 0 ~ and 05, SVZ take k =m~ . There is
some ambiguity here because it is not clear what happens
to four-momenta. when one of them is taken to zero. ' ' In
our case k p is unambiguously given as —,

'
m~ because the

kaon is on its mass-shell. Recalling that there are two
terms on the RHS of Eq. (4.24) then they add up to give
an mx factor. For the K -to-?r matrix element we thus
find

where use has been made of the reaction ~2F =f .
Next we have

v 26+cosOcsin8c
M4(04) = —i

3
Cqfk mac (4.33)

For the case of M4, (Os) we need also the matrix element
of the scalar operator sd between K and vr A.gain using
the quark equations of motion sd can be related to the
divergence of the vector current sy&d. We find

mx f+(0)
(?r (k)

i
sd

i
K (I? ) ) =—

2(m, —md)
(4.34)

where f+ (0) is the K?s form factor. Hence, we arrive at

i' cosOg sln8c C5

2v 2F.M4, (Os ) =

32f fxm 'mx'
X 9'(mg +???d )(?r?g + p?g )

+ '4 (0(dd~o)
mx. + (0)

s d
(4.35)

The first term on the RHS is twice that found by SVZ for
the quantity M&(Os). The reason for this is that we have
two matrix elements in Eq. (4.25) in contrast to the one
matrix element situation of the soft-pion method. Qur re-
sult for Mq(Os ) also differs by the presence of the second
term on the RHS of Eq. (4.35), the origin of which is the
additional term 0 s' in the commutator of Eq. (4.22).

Next we turn to the quantity Ms. We note from Eq.
(4.18) that only the b,I= —,

' component of A ~ would
Inake a contribution here. It is interesting to observe that,
in the vacuum intermediate state approximation, all the
left-left operators give zero contribution The n. onvanish-
ing contribution comes from the left-right or Penguin
operators only. We find that

4i GF
Ms ——

2 cos8csin8c???x. fx9 2(m? +m„)F

Os ———4A(1+ ys)QQ(1 —ys)n ~C, [(0
~

dd
~

0) —(0 ~ss
~
0)] . (4.36)

+ —,~„(l+ys)Q,Q, (1—ys)d„,
where r,s are color indices. One then finds that

(7r (k)
~
0,

~

K (p) ) = — (7r+(k)
~
Os

~

K+(p) )
2

(4.30)

Gy cosOc slnl9c
Mg(O? ) = i — C?fxmx

6 2
(4.32)

32f fkm ?nx
(4.31)

9% 2(m„+md)(m, +m„)
Equation (4.31) was first derived by SVZ. In establishing
it one uses the equations of motion to relate the pseudos-
calar densities q, ysqb (a, b are flavor indices), to the
divergence of the corresponding axial-vector current
q, y&ysqb. This then gives rise to the quark-mass factors
appearing in Eq. (4.31). Using Eqs. (4.28)—(4.31) we can
now write

m f = —(md+m„)(0
~
uu+dd

~
0),

mz fx —(I,+m„)(0
~

uu+ss ——~0) .
(4.37)

Then the VEV on the RHS of Eq. (4.36) is determined to
be

(0
i
(dd —ss)

i
0) = ?? lc'flc'

77ls +mu

2 2m f~-
md + t?zg

(4.38)

Next we turn to the quantities M2 and M&. We observe

To determine the vacuum expectation values (VEV's), of
the quark densities one usually resorts to the methods em-
ployed in the treatment of chiral symmetry breaking by
Glashow and Weinberg, and by Gell-Mann, Oakes, and
Renner. These involve the use of PCAC for the
pseudoscalar-meson octet and the current-density commu-
tation relations so as to derive
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that when the ETC of Eq. (4.4) is used in Eq. (4.2), that
M2 cancels against the third term on the RHS of the
equation for M&. The combined contribution then reads

M, +M, = k.„(Ms~~~-&+M,"~-P+ M,-P)

—g T„(k,q) (n
~

A ~(0)
~

K ) .
fPl g —Pl~

(4.39)

Using the vacuum-insertion method we obtain

M ~ is small. In Eq. (3.27) there enters the quantity A2
defined by Eq. (3.26), the magnitude of which is unknown
a priori. There is no reason to expect an abnormally large
value for it and for A2 —0(f ) we see that the contribu-
tion of k~q~M~

' ~ is suppressed to the same extent as
that of k qpMs

Next we turn to the quantity k qpMsL. We focus on
the first term on the RHS of Eq. (3.40) and to estimate its
contribution we use the following relation:

q~ J d ye' '"(0
~

T[Ap(y)0"'(0)]
~

K(p))'

(n
~

Ot~ K ) = f &j—„mx
(4.40)

= F (m (q)
t

0""(0)
i
K (p ) )

+i (0[g5(q),0"'(0)]
~

K'(p) ), (4.49)
32im~'fxo

(n [05 ~K )= ((n ~dd ~0) —(n ~ss ~0)),
9(m, +md)

where f„is defined by

where

g, '(q) f d'ye-"~AO3(O, y) . (4.50)

(Oiuy"u
i
n) =f p" . (4.41)

Now we try to carry out numerical estimates for the vari-
ous contributions MJ that make up the E —+2~ decay
amplitude M. For this purpose we shall take f =130
MeV, fx ——1.15f, and cost9& ——0.97. We also need values
for the "current" quark masses. These are known only to
within 30% accuracy. ' We shall use the following values

m„=5MeV, md ——9 MeV, m, =17S MeV . (4.42)

We parametrize the matrix element of 0" as follows

(~'(q)
~

0& (0) ~K'(p))

Pl g= p"p — g" +~+a "e +2
4

+(p"q'+p "q" ,p qg"—)—F~,

and obtain

(4.51)

We begin by considering M4. and find

Mg(0) ) = —i2.92X 10 GeV . (4.43)
k&k„(vr (q)

~

0" (0)
~

K (p)) =mz F,
with

(4.52)

In what follows we shall refer to M4(0&) as the basic
term. We shall express our results for each of the remain-
ing contributions in the form of a ratio to the basic term.
We write M4(05) as

M4(05) =M~~'(Og)+M4" (Og) (4.44)

corresponding to the two terms that appear on the RHS
of Eq. (4.35). We then find that

Mg'(Og ) 83C5
(4.45)

M4(Oi ) Ci

We remark that this is less than twice the value found by
SVZ [see the remark following Eq. (4.35)), simply because
we use a larger value for m~. Next we have

M4'(05 )

M4(0) )
(4.46)

For M3 we obtain

M3

Mg(0))
11.4C5

Ci
(4.47)

Next we turn to M~+M2. For the first term on the RHS
of Eq. (4.39) we find that

a'QP S
7 4 &O

m4(0()
(4.48)

viz. , the contribution from the first short-distance piece of

F= (F, +F2+2—F3) . (4.53)

Using Eq. (4.49) in the first term of the RHS of Eq. (3.40)
and denoting the contribution that involves only the ma-
trix element (m

~

0""
~

K ) by P we find that

P= l. 16X 10 F GeV . (4.54)

The quantity I' is again unknown a priori but we expect
F-D(f+), where f+ is the KI3 form factor. With this
estimate we find

=2.8X10 '.
M4, 0) (4.5S)

We thus conclude that P is suppressed. It is clear that
this suppression continues to hold for a range of larger
values of I'. Similar arguments would lead us to conclude
that the contributions from the remaining terms in Eq.
(3 40) are also suppressed and hence the quantity
k qpM~~ is small. Denoting the remaining term on the
RHS of Eq. (4.39) by M, ~+M21, we note that a glance at
the meson data reveals that the lowest lying scalar
mesons of even G parity are the isoscalar S(975) and
e(1300). The contribution to M&~+M2L arising from
them wi11 be purely AI= —,

' in nature. As an illustration
we compute this contribution. To do this we need the de-
cay amplitude T„(k,q). We determine T„from the
known widths of these resonances:



32 NONLEPTONIC KAON DECAY 683

I s =33+6 MeV, I m=200 —600 MeV . (4.56) 8 /1~=Iv Fvgv, (4.62)

Note that for e the width is poorly determined. For S the
partial decay made into the mar .channel is 78+3% while
for e it is -90%. The data describes the combined n m

and m m. decay modes and upon use of the isospin invari-
ance of the strong interactions we compute that

I
Ts

I
=130 Mev

T.
I
=300—519 MeV .

(4.57)

M, L(OJ;n )+M2L(OJ;n )
R (OJ', n )=

M4(O) )
(4.58)

in which the numerator represents the contribution of the
resonance n to M~L+M2L. %'e can only determine the
magnitudes here since the phase of T„is unknown. We
then find that

In computing
I
Ts

I

we have taken I s-33 MeV for sim-
plicity and the range of values for

I
T,

I
in Eq. (4.57) cor-

responds to the range in the experimental determination
of the widths in Eq. (4.56). We shall use these values to
give us an idea about the size of the term M)L+M2L.
Note that in Eq. (4.39), T„(k,q) is extrapolated from the
physical mass m„ofthe resonance of mi, . We do not
attempt to study the effects of mass extrapolation here
and simply use the results of Eq. (4.57). In order to exhib-
it the ratio of M)l +MAL to M4(O) ) it is convenient to
introduce the following quantities:

where Pv stands for the g-meson field and we are ignoring
the question of g-g' mixing. Then we readily derive the
following equation:

kaqpTs, n«q)= —F„'Ts,n(k q)

—i & o
I [Q,', a ~.'(0)]

I
n ),

with

(4.63)

TaP (k ) i d4& ei(k —q) z/2
,q =&

T

OTA
2 2

(4.64)

(k )
i d4 ei(k —q) z/2

8, 1l

'9

&& OTga8 —'
a 2 P

T8 (k, q) is the amplitude for the off-shell strong decay
process n~2g. Next the divergence of the axial-vector
current 3~ reads8

8 A' = (m„uy,u+mddy, d —2m, sy,s) . (4.66)
3

I
R(O„.s)

I
=3.7xlo 'I f I,

I
R(o),'e)

I
=(4.2—7.2) x 10

I f, I

(4.59)
We use Eq. (4.66) to compute the ETC appearing in Eq.
(4.63). In the SU(3) limit and with m standing for the
common u, d, s-quark mass we have

I
R(o&', e)

I

(4.60)

I

~ «5 ~)
I

= (10 44X IO-')
I

&S
I
(dd —ss)

I
0) [QS,B A (0)]= i™[u(0)—u(0)+d(0)d(0)

+4s (0)s (0)] (4.67)

CI
(11.7—20.3)10 6

I ( e
I
(dd —ss )

I
0 )

I

Thus, the ratios appear to be parametrized by the decay"
constants f„and the matrix elements (n

I
(dd —ss)

I
0).

If we take f to be a representative value for f„wesee
from Eq. (4.59) that the contribution to M)L+Mzl com-
ing from the operator O& is suppressed relative to
M4(O) ). In order to be able to proceed further with Eq.
(4.60) we have to be able to determine the value of the ma-
trix element on the RHSz, To do this we follow the same
line of reasoning that led to Eq. (4.38) and consider the
identity

Using Eq. (4.67) into Eq. (4.63) we then have

k qpTSP (k, q) = —F„T8„(k,q)

3
(0

I
uu+dd+4ss

I
n ) .

Next using Eq. (4.5) into Eq. (3.46) we also obtain

k~q pT„P(k,q ) = FT„(k,q )—
—m(0Iuu+ddIn) .

From Eqs. (4.68) and (4.69) we then deduce that

(4.68)

(4.69)

p T[A ~(x )A p(y)]
Oyp ax

= T[B /I (x)BpA p(y)]+[/10(y), B A (x)]5(xo—yo),

(4.61)

where 8 denotes the value of the SU(3) index. With
PCAC extended to describe the meson octet we write

(0I (dd —ss)
I
n) = t Fv T8„(k,q) FT„(k,q)—

4m

+k qp[ T()P„(k,q)

—T„P(k,q )] I . (4.70)

Again, as in the case of Eq. (4.37), one resorts to the soft-
meson limit in order to get an estimate for the quantity on
the LHS of Eq. (4.70). This then gives
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(0
~

(dd —ss)
~

n )= [F„Ts„(o,q) F—T„(o,q)] .

(4.71)

The kiri decay mode has not been reported for the S(975)
and has possibly been seen for the e(1300). So for these
two states at least we can set Ts„(o,q)=0 and thereby ar-
rive at

3I'
(0

i
(dd —ss )

i
n )=— T„(o,q) .

4m

Taking m = —,
' (m„+md+m, ) we then obtain

(0
~

(uu —ss)
~

n )=—100T„(o,q) . (4.73)

Using Eq. (4.74) in Eq. (4.60) we obtain

i R(05,'S)
i
= (13.6)X 10

1

i
R(05,e)

i
= (35—105)X 10

C(

(4.75)

%e observe that the mass extrapolations involved in the
quantities T„will most like1y bring the values below the
experimental values of Eq. (4.57). Hence, the numerical
estimates of Eqs. (4.59), (4.60), and (4.75) should represent
some sort of upper bounds with the actual values being
less than the quoted ones. Let us also observe with Eq.
(4.72) one can determine the ratio R(05,n) and not just
the absolute values if the sign of T„(k,q) is not changed
by the extrapolation to k~=0. In fact, one would have

8C F 2T„(k,q)T„(O,q)R(O n)= ' " '," ', &0
C&m(m, +md)(m„—mx )

(4.76)

since C5/Ct &0.
Collecting together the numerically significant contri-

butions which come from M4(O&), Mq(05), and M3 we
find from Eqs. (4.43)—(4.47) that the IC ~2~ amplitude
reads

C5
M = i 1+ —( —83+55.3 —11.4)

C)

X(2.92X10 ) GeV . (4.77)

V. CONCLUSIONS

In this work, we have studied the consequences for the
E 2' amplitude of the procedure in which one avo'ids
taking soft-pion limits. It is important for the consistency
of the soft-pion procedure that when quantities like
k~qpM ~ are made to vanish to sending k or qp to zero,

The numerical estimates of Eq. (4.57) then finally give

i
(0 i

(dd —ss)
i
S)

i
=130X10 MeV

(4.74)

~
(0

~

(dd —ss)
~
e)

(
=(300—519)X 10 MeV' .

that the quantity itself be rather small for physical mo-
menta since otherwise large extrapolations will be in-
volved. In the approximation of the treating the final
pions as massless, k =q =0, we have computed the
short-distance contribution k qpMs, and found that it is
indeed small in comparison to the basic term generated by
the Lee-GaiHard operator O&. We have argued that the
quantity k q~M&&I is also small. For the long-distance
component k q~M&, we could only given an approxi-
mate treatment in which we retain single-particle inter-
mediate states. We have found that the contribution to
k qpML +M2, where M2 is the so-called o. term, coming
from the operators OJ, j=1, . . . , 4, is indeed small. Re-
calling that

C)
= —(2.4—5.6) X IO

—', (5.1)

we see from Eq. (4.70) that the contribution from the
operator 05 is suppressed due to the smallness of the ra-
tion in Eq (5.1.). We gave explicit results for the resonant
states S(975) and e(1300)'but presumably similar results
hold for higher-mass states.

Treating the two pions symmetrically and keeping
k,q~&0, has the advantage that the contribution from
the operator 05 is doubled. It has turned out that appli-
cation of the vacuum-insertion approximation is more
favorable to the symmetric case. From Eq. (4.77) we see
that the K —+2~ amplitude has the value

M= —i[1+(0.9—2. 19)]X(2.92X10 ) GeV. (5.2)

The first term in the square bracket corresponds to the
Lee-Gaillard operator Oj while the second one represents
the Penguin contribution. Thus, for E&~2~ we have
the amplitude

M(Ks ~2m ) = —i(0.80—1.32) X 10 GeV . (5.3)

When compared with the experimental value of the
AI = —,

'
amplitude a

& &2 (Ref. 9)

Q ~g2 ——( 3.84+0.01 ) X 10 GeV, (5.4)

we see that 21%—34% of the experimental result is ac-
counted for. As is well known the theoretical estimate is
quite sensitive to the value of C5. For C5 ———0.2, which
is not an unreasonable value, the theoretica1 prediction is
increased to 44%. Agreement with experiment would re-
quire Cz ———0.53.

Recently Dupont and Pham criticized the SVZ use of
the vacuum-insertion method to compute the K-~ matrix
element of the penguin operator on the grounds that it
does not lead to a term quadratic in momenta as required
by chiral-symmetry constraints. Let us recall that in our
notation the operator Oq is normal ordered. For the non-
normal-ordered form 05 Donghue has, however, shown
that the inclusion of a previously omitted diagram re-
stores the consistency of the IC ~ matrix element of 05
with chiral-symmetry constraints and hence the criticism
of Pham and Dupont of the vacuum-insertion method is
not tenable. In a recent paper 6avela et al. have
reached similar conclusions. Moreover, these authors ar-
gue that the vacuum-insertion method becomes exact in
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(~o
~
O, [

g ')=,(0
i 17@ )

O)',

&~o~sd ~rCo)=, &O~yyiO),

(5 5)

where f stands for any of the quark flavors. Now since

03 =0,——", [ (0
~

dd
~

0):s(1+y, )d:

the chiral limit and is thus quite reliable as far as the
computation of the K rr-matrix element of 0& is con-
cerned. In fact, in the chiral limit and for zero-
momentum pion and kaon one finds using the reduction
procedure, and the vacuum approximation in the case of
0&, that

Ks~n+2r can account at most for 9%%uo or 23%%uo of the
experimental result, depending on the sign of the term
quadratic in momenta. In our approach we retained
symmetry-breaking effects in computing the constant
pieces of the various matrix elements and were able to get
better agreement. Inclusion of terms quadratic in momen-
ta could conceivably improve our estimates further.

In conclusion, we find it reasonable to believe that the
symmetric treatment of pions and working with
k =q =0 instead of k or q~~o, as well as attempting
to improve upon the vacuum-approximation technique in
the future, and by systematically including the effects of
terms quadratic in momenta, could very well lead to a
better understanding of the b,I= —,

' rule.

+(0 iss f
0):s(1—y )sd:], (5.6) ACKNG'%LEDGMENTS

we readily see that

(~'~ o, ~rc') =o.
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APPENDIX A

In this Appendix we consider the evaluation of the integral given by Eq. (3.3) of the text:

1 s~~I ~(k, q)= „d'p
( 21T) (p —m w + l E') (p + l e )[(p +k ) + l 6][(p+k'+ q ) + lE]' (Al)

S =I ~y y5(lg'+p)y y, (p+lg'+q)I

We easily find that

S ~=8(p~p p, p~p k, k~—p p, )1' —4(p 2p k)—p I P —8p~ I'~ +—4p q I

where

I" =y'y y (1 y5). —
If we denote by D the denominator appearing in the integral of Eq. (Al) then we have, using Feynman s formula,

1 X) X2 I—=1(4)f dx, f dx, f dx,
o o o (M 2pA p )

where

M2=mw2(1 —xi)+2(x2 —xi)k q

A —(x3 x$ )k+(x2 —x~ )q

(A2)

(A4)

(A5)

(A7)

Using Eqs. (A3) and (A5) in Eq. (Al) we generate a number of integrals. The most involved of the momentum integra-
tions has the form

~4 5'pS'vP o

(M —2Ap —p )

I (a —n/2)
( ~ )

(M —2Ap —p ) (M+A )

n/2

+ (M2+ g 2)a —1 n/2—I (a —1 n/2) &-
—,(g„A +g„A„+g„Ap).

The n-dimensional integration techniques then give

(A8)

(A9)
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Using Eq. (A9), and other results of similar nature, we can do all the momentum integrations and this is then followed
by performing the x; integrations. Let us illustrate by considering the contribution, to I ~ arising from the first term on
the RHS of Eq. (A3) for S @. Denoting this contribution by I~ P~ we have

gp(4) f x) x2
4 P PoPr~

I(P)—,f dx, f 'dx, f 'dx, f d'p
(2~) o o o (M —2Ap —p )

(A10)

Doing the momentum integration using Eq. (A9) and retaining the term that involves (M +A )
' only since it is the

one that gives rise to an 0(G~) contribution [the term in (M +A ) gives a contribution suppressed relative to previ-
ous one by a factor of m~ ], we obtain

(g i'A. +g.'A, +g.,A i')r"
I($) 2 Gx] Qx2 Qx3

4~2 0 0 0 M +A
Next we observe that

(Al 1)

M +A =my (1—x) —|)),
where

2k q(x& —x2)5= [1—(x) —x3)] .
P1 ~

(A12)

(A13)

Thus in Eq. (A12) the term 5 in the bracket on the RHS is suppressed by a factor of m ~ relative to the term 1 —x
&

and
we are going to drop it in the following. The integrations over x; are greatly simplified in this way. However, to regu-
larize the infrared divergences resulting because of this (and also because of the fact we have set the u-quark mass to
zero) we shall introduce a mass scale A, such that A, «ms and write

M2+A =my (1—x) —A. ) .

Performing the x; integrations one then finally obtains for I~))..
(A14)

2
l mg

ln
12m m

(A15)
6

[(k,+ ,'q, )I' ~+(—k,+ , q, )l ~ '+(—k~+, q~)g, I ' —].

As we have noted in the text the dependence on A, disappears from the result for the physical quantity k~qpMs~. Next
we employ Eq. (3.2) of the text to reduce the product of three y matrices. The remaining contributions to I ~ coming
from the rest of the terms in S ~ are similarly handled. In this way we arrive finally at Eq. (3.4) of the text.

APPENDIX B

In this Appendix we consider the T product of one axial-vector current with the two weak hadronic currents:

T[A (x)J„~(z)Jg(0)] . (81)

If at first we ignore QCD interactions we readily find the following expression for the T product of Eq. (81) at short dis-
tances [x &z,z &0(m~ ')]

cosOcslnOC (z —.x )~,
T[A (x)Jp~(z)Jf (0)]=-

2m [(z—x ) i@] (x —ie)—
&(g"g" g"g"+—g "g' i~""g—'. )dr 81 1'~)~+ —.

It is then easily established that the term on the RHS of
Eq. (82) would give rise to a logarithmically divergent
contribution to the amplitude M ~ which is of order g
This contribution does not represent a genuine weak in-
teraction effect and can be removed by QFD renormaliza-
tion of the axial-vector current operator as we shall now
explain.

We find it convenient to work in momentum space and
with operators of definite chirality. We define the follow-
ing set of electrically neutral operators:

0) ———,
' [uy (1—y, )u —dy (1—y&)d],

Oz ——cy (1—y, )c,
03 ——cy (1—y5)c,

04 ——dy (1—y5)s,
a af05 ——02

O, =O4~ .

(83)

When we consider renormalization of Green's functions
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with an insertion of one of these operators 0;, we realize
that mixing with other members of the set occurs. Let

(q qb)I 0.' denote the proper renormalized Green's function

with external quark states q, and qb (a, b are flavor in-
dices), and one insertion of the operator 0;. We then have

Z1/2Z1/2 Z P qa b) (qq)
0. q qb EJ p 0-

J

(84) FIG. 6. One-loop graphs contributing to the Green's func-
tions I o" for i =1,2.

where Zz and Z~ are the wave-function-renormalization
qa qb

constants of the quark fields and Z;1 is the renormaliza-
tion matrix for the set of operators 0;. On the RHS,

{q qb)I p 0. denotes the unrenormalized Green's function.
7 J

Here we are primarily concerned with insertion of the
operator 0& between external n and A, states. In Fig. 6 we
show, as an illustration, the 0(g~ ) graphs corresponding
to 0 ] and 02. Similar diagrams describe the operators
03 and 05. The contribution of the operator 04 begins
at zeroth order while 06 enters at fourth order in the elec-
troweak coupling constant q„.We write

Zd = I +ddg~ + ' ' '

Z, =1+d,g~ + .
(88)

I o,
' =gu (bi+b&4)X (1—7's)+0(g ) . (8&)

Next we substitue Eqs. (85)—(88) into Eq. (84), with
i =1, and obtain

I o(, o),. =(g 2bj)y (1—ys)+ ' ' ' j=1 2 3 5

I o, o, =7' (1—7's)+0(&)

(85)

(86)

Hence, by choosing

In Eq. (85) the bj are logarithmically divergent functions
of the ultraviolet cutoff A. For the quantities Z,J we
write

2
lJ fJ +gW lJ (87)

where b;J are arbitrary functions at this stage. For the
quark wave-function constants we write

we cancel the 0(g~ ) contribution completely. When the
QCD interactions are turned on, the term on the RHS of
Eq. (82) is unchanged since only vector and axial-vector
current operators appear on both sides of the equation and
these have zero anomalous dimensions as far as QCD re-
normalization goes. Thus, our conclusions remain the
same.
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