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The width of the transition pl ~Pg in the charmonium system is calculated in a potential-model

approach. A two-stage process is assumed in which the intermediate states are charmed mesons
which in turn couple to Pg via a quark-exchange process. A width of 1.6 keV is obtained.

I. INTRODUCTION

A long-standing problem in the charmonium system is
the unexpectedly large width of the decay g'~gg. A
branching ratio of 0.0218+0.0049 was reported' for this
decay in 1980. This result is surprisingly high, in com-
parison with the branching ratio of 0.49+0.05 obtained
for the decay f'~Prrm. If it is assumed that the g'~gal
and P'~P~m transitions proceed through gluonic cou-
plings (g' +egg, gg—~g or m~), then the Pg decay mode,
which is SU(3)n,„„-inhibited and occurs in p wave with
less available phase space, would be expected to have a
width whose ratio to the width for the Prrm mode is con-
siderably smaller than the value of 0.04 indicated by these
experiments. Indeed, the SU(3)-singlet-octet mixing angle
of the g (sin8-0. 2) is sufficient to account for this ob-
served ratio on its own, without even taking into account
the angular momentum and phase-space considerations.
One suspects, therefore, that there is some mechanism
which enhances the g'~gg width. Goldberg has sug-
gested that the coupling of the g to two gluons is unusual-
ly strong. This, by enhancing the process gg —+g, could
lead to a strengthening of the gg mode relative to gmn. .
However, the calculation of the coupling gg —+ri is prob-
lematic.

An equivalent picture that can be used to explain the
relative strength of l('~pq is gg, mixing. Strong pseu-
doscalar mixing between light-quark states and cc was
proposed soon after the initial charmonium discoveries.
Harari specifically suggested that this could account for
the large g'~$7i width by allowing this decay to proceed
without Okubo-Zweig-Iizuka-rule suppression. However,
a useful quantitative application of this idea requires a
knowledge of the cc admixture in the g,

A third possible way to picture the enhancement of
is through the use of intermediate charmed-

meson pairs. In this paper, a calculation based on this
picture within a specific potential model is presented.
The decay P'~Pg is viewed as a two-stage process, in
which the g' is coupled by means of the pair production
of light quarks to virtual intermediate charmed-meson
states,

DD, (D*D+DD*), D*D',
2

FF (F*F'+FF*
)

2

and these states are then coupled to tlag via the exchange
of charmed and light quarks or charmed and light anti-
quarks. These exchanges are assumed to involve the total
Hamiltonian for the relative motion and interaction be-
tween the two clusters (D and D, for example) in the in-
termediate states, where the interaction between clusters is
taken to be the sum of the two-body potentials between
the quarks in one cluster and those in the other. Further-
more, these two-body potentials are assumed to have cen-
tral, spin-spin, spin-orbit, and tensor terms. Thus, the ex-
change matrix elements involve a sum of many terms. It
is found, however, that most of these terms either vanish
or cancel in pairs. The only nonzero contributions come
from: for DD and FF, the spin-orbit potential between
charmed and light quar ks or antiquarks; for
(D*D+DD )/v2 and (F*F+FF")/V2, the spin-orbit
potential between the charged quark and its antiquark;
and, for D'D* and F*F*,the spin-orbit and tensor po-
tentials between charmed and light quarks or antiquarks.
These contributions are found to be sufficient to give a gq
width, via this process, of 1.6 keV.

The plan of this paper is as follows. Section II is devot-
ed to the pair-production process, which couples the prim-
itive cc states of charmomum to the charmed-meson
states, DD, FF, etc. This process yields charmonium
states which include contributions from the charmed-
meson sector and, therefore, results in nonvanishing am-
plitudes for charmed-meson states in charmonium
states —(DD g') &0, for example. The quark-exchange
processes which couple the charmed-meson states to gq
are then discussed in Sec. III. Selected matrix e1ements
for these exchange processes are considered in some detail
to illustrate which terms vanish, which terms cancel, and
which terms lead to nonzero contributions. In Sec. IV the
amplitudes of Sec. II are combined with the matrix ele-
ments of Sec. III to yield a width for P'~Pg. The final
section includes a discussion of this result and speculation
about an extension of this mechanism to the g'~pm de-

cay.

II. PAIR PRODUCTION

Pair production couples two-quark systems to four-
quark systems, specifically a meson to a meson-antimeson
pair. We use a model in which either quark in the origi-
nal meson emits a gluon, which then produces a quark-
antiquark pair. Recoupling between the original two

32 666 Q~1985 The American Physical Society



32 CALCUI. ATION OF rHE WIDTH OP THE DECAY y' 667

quarks and the produced pair then yields the final
meson-antimeson. The coupling operator for this process
is obtained from a semirelativistic reduction of the Feyn-
man amplitude for the relevant graphs. This is regarded
as a good approximation for the production of light
quarks (u, d, or s) off of heavy quarks (c or b), and
therefore for the coupling of charmonium states (cc) or
b-quarkonium states (bb ) to charmed mesons ( cu, cd, cs )
or bare b states (bu, bd, bs), respectively

The pair-production operator obtained is

where crt is the Pauli operator for the produced light-
quark pair, E~ is the total relativistic energy of either
member of this pair (the energies of the produced quark
and antiquark are assumed to be approximately equal),
and V is the interquark potential. This is a modified ver-
sion of the operator used by Eichten et al. in similar cal-
culations. The potential V is taken to be the central part
of the potential of Stanley and Robson.

In the charmonium system there are two J =1 states
below the threshold for charmed-meson decay —the g and

These can couple virtually, by quark-pair production,
to the charmed-meson states DD, (D*D+DD ')/V 2,
D D, FF, (F*F+FF )/v 2, and F*F*. The relative
motion between these mesons is conveniently expanded
in radial oscillator functions. One thus obtains
the matrix elements {P ~

H~,
~
M,M„Nl ) and

{g'
~ H~„, ~

M,M„N/), where (M,M, ) symbolizes any of
the charmed-meson states listed above and X,l are the
quantum numbers of the radial oscillator. Because of
spin-parity conservation, we have l = 1 only, except for
D'D' or F*F* coupled to total spin 2. Since g and g'
states have D l components due to the tensor force of the
Stanley-Robson potential, the pair-production operator, a
tensor of rank one, can couple these components to
(D*D*)s 2 or (F'F*)s 2 with I =3 relative motion also.

After calculation of the pair-production matrix ele-
ments, diag onaliz ation in the total charmonium-
charmed-meson space then yields slightly shifted values
for the charmonium energies and leakage of the char-
monium states into the charmed-meson space. For exam-
ple, the state

~

g') is now represented as

~l(')=g~;~g', )+ g yM —,~M, M„M), (2)
(MM )

X, l

where the
~ g; ) are the primitive P, P', . . . , states, i.e.,

the states in the cc sector only. The amplitudes a; and

y —,= {M,M„Nt
~

y')—

are, of course, determined directly from the diagonaliza-
tion.

III. QUARK EXCHANGE

The role of quark exchange in hadronic interactions has
been studied by Robson' and others, "mostly with regard
to nucleon-nucleon interactions. Here, we wish to consid-
er a nondiagonal quark-exchange process, i.e., one in

which the final and initial states are different. In particu-
lar, if a c quark and an n quark (n =u or d) are ex-
changed between D(cn) and D(cn), one obtains a cou-
pling of DD to the nonstrange part of the state

~ Pg)
(g=nn/~2 s—s/V 2); similarly, c and s exchange be-
tween F(cs) and F(cs) gives a coupling of FF to the
strange part of

~
fbi). Identical effects are obtained with

the exchanges c~n and c~s, respectively. A convenient
way of determining the exchange operators appropriate
for these processes is to use an SU(4)tl, „„representation in
which the four quarks u, d, s, and c are identical. Then,
in evaluating the interaction between clusters of these
quarks, we must use properly antisymmetrized states. For
a state M(cl)M(cl), with 1 =n or s, such an antisym-
metrized state is

4=(1 P,l)(1 —P,I)p—(cl)-$(cI)R, (3)

where P is the internal wave function of M (or M), R is
the wave function of relative motion between M and M
and P,I,P, I are the exchange operators in the space, spin,
and color variables. Matrix elements of the Hamiltonian
between states of this form, {'I'

~

H
~
4), include the ex-

change terms

—{e [ HP«[ e) —{e
[
HP, , ~

e),
where @ is the cluster-symmetrized state

C&=(1+P«P~I)%' .

Thus, our exchange operator is

H„=—HP, T
—HP, (

taken between cluster-symmetrized states.
For the interaction between clusters, H, we take

H=T+ g V,, (7)
i =c,T
j=c,l

where T is the kinetic energy and VJ is the two-quark po-
tential. Thus the exchange operator contains the kinetic-
energy terms —TP,~ and —TP-, T, as well as the
potential-energy terms —( Vl+ V-, T+ V„-+VlI)P«and
—( V«+ ~cT + V.v+ VlT».T-

For Vz, we take the Stanley-Robson potential, with a
suitably modified color factor. That is, instead of the

which these authors use for the quark-antiquark in-
teraction in a color singlet, we take

Il'l'"'= {(cl)1(lc)1
i F; F)(—,

' +2F, Fl)
~

(cl)1(lc)1), (8)

where the F's are the SU(3)«~„generators and (cl)1, for
example, indicates that c and l are in a color-singlet state.
( —,'+2F, .Fl) is the color exchange operator and F; Fl is
the assumed color dependence of Vll. From Eq. (8) and a
similar expression for P~T, we find color factors of —', for

4
VclPcl~ V TP«~ VclP~p V-, TP Tand —

9 for V-„Pcl~ VlTP«~-
The potential Vl contains central ( V ), spin-spin

( V ), spin-orbit ( V ), and tensor ( V ) terms. We find
that not a11 of these terms contribute to each exchange in-
tegral {MM,Nl ~H,„~ Pri). For example, consider the
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central or spin-spin potentials. These give exchange terms
which conserve total quark spin and so can couple Pg
only to (D*D+DD *)/~2 or (F F+FF ')/W2 (or
D*D, F*F*,each with total spin 1, but there is no pair
production from P' to these states because of a vanishing
spin factor and so we can ignore them in our g'~gg
mechanism). But because of the P-wave nature of the rel-
ative motion between 1t and g, we can show that even
these terms either vanish or cancel in pairs. Consider, for
example, V,-,P,~ (in what follows, we shall consider only

P,I, identical results can be obtained for P,-~). The spin
matrix element for D*D or F*Fis

&X,M(cI)XOO(tc) IPei I&iM(cl)Xz&(lc) &= —,', (9)

&&i~(c~+m(«)
I
P i I &~(c~»lM(~ c) & =

~ .

But for the spatial integrals we have, for D*D,

(10)

where XsM is the singlet or triplet spin function and
P,~ , (——1+—o,cr~). Similarly, for DD* or FF*,

"cc &II ~ (k)= I d x„dy&~d-R g*(x,, )Pz(y~—)e
' '

V (,—,)P „—R+ +

"crR+ + RM ( —Xx„+( I —A, )y,1),

where f, Pz, P ~, and PD are the internal wave functions of the P, q, D", and D; R~~, R&IF~——,, a radial oscillator

function times a spherical harmonic; and we have taken a plane wave for the relative motion between P and g. In Eq.
(11),we have also used

my gI +mygy mc xc +m-x-
R=

ml+m~ m, +m

and the fact that, under the exchange c~l,
x„- x(,——— R+x—„/2+y(-I/2, ytT x,r R+x—../2+y—i~/2,

mcxe +mI Y7 mIYt+ m-I-
R—+R'=

m~+m,

with A, =m, /(m, ~ml).
Similarly, for DD*, we get

= —A,x„-+(1—A, )y&~,

"ecI,(k)=I d x,,d y&~d R P*(x„)gz(yI~)e '"' V (x„)P~ —R+ +
2

"cc &IT
Xp + R+ + Rwm, ( Ax, +.(1 —A, )yi)) .

2 2
(12)

Now take R~ —R in Eq. (12) and compare with Eq. (11). We see that

IDD, (k) =ID,D( —k) .

But the final motion of g and q is P wave. Therefore, I, ( —k) = I,D(k) a—nd

I~~a(k) = I~~D(k) . —

Since the spin factors for D*D and DD * are the same [see Eqs. (9) and (10)], we conclude that

&A I ~«&~i I
(D*D+DD")/~&& = r'lID*D(k)+ID&*(k)J/v 2=0

(13)

(14)

(15)

and similarly for (F*F+FF )/V 2.
In this same way, we can also show that V&~P,~ vanishes and that V,IP,I and V, ~P,~ cancel. Identical results also fol-

low for V, and for the kinetic-energy terms. So we are left with the spin-orbit and tensor potentials. These give ex-
change operators which do not conserve total quark spin and thus can give contributions for all spin channels in the
charmed-meson sector. However, for DD and D*D (FF and F*F'), the contributions due to V,,P,~ and V&1P,I, for—
V=V or V, vanish exactly as above, leaving only V,~P,I and V-, ~P,I. By comparing the spin factors for these terms,
e.g., for the spin-orbit terms,

Scl & &i~(&I )&oo( I c )
I
(~e +~t )P I I t&s, , ( cl ~'. m ( ~ & ) JsM' & (16)
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S T
——(g,~(cl)XOO(l c)

l
(o +oI)P,~ l [X, (cT)X, (l c)]sM )

for charmed mesons of spins s t and s2 coupled to 8, we easily find that S,-~———S,t for st ——0, s2 =0 (DD or FF) and for
s&

——1, sz ——1 (D"D or F"F ), but S-,T ——S,t ——0 for s& ——1, s2 ——0 and st ——0, s2 ——1 [(D D+DD*)IM2 or
(F*F+FF')Iv 2]. The relative minus sign between the spin factors S,t and S,I for st ——s2 ——0 and st ——sz ——1 cancels
the relative minus sign between the spatial integrals and results in the spin-orbit exchange terms V,I P,I and V,~P,~

add-

ing constructively, for DD and D D * (or FF and F*F ). These terms are zero for (D*D+DD .*)/v 2 or
(F*F+FF*)/v 2. But we find that the term V,, P, t —has a relative minus sign in the spin factors between st ——1, sz ——0
and st ——O, sq ——1 and so contributes in this case. On the other hand, the matrix element of VtT P,t vanishes —it is zero, in

general, because the g has spin 0. For the tensor potential, we get a nonzero result only when s] ——s2 ——1 and then only
through the terms VQP, t and V, TP,t w-hich, like the spin-orbit terms, pick up a relative minus sign in the spin factor to
cancel the relative minus sign in the spatial integral.

Since the Pz~ give the same results, we have, taking account of color factors, the exchange matrix elements

(@rtl H„ lDD, Nl) = —", (@g l
V,t P,t l

DD, Nl), (18)

& A I H,„ I
(D*D+» ')/~~, Nl & = —v'

& A I V,", P„ I
(D'D+» ')/~~, Nl &,

&@n IH- ID'D*»l&= '9'(A I(~A'+~5)&et ID'D* Nl&

(19)

and similar results for the F's. In these expressions, l = 1 only, except in the tensor of Eq. (20) where l = 1 or 3.
As an example, consider (grl l V,t P,t l

DD, N = ll =1). The spin factor Eq. (16) is found to be the unit vector eM

[wh«e eo=z, e+ t =+(x+iy)/V 2] and this must be dotted into the spatial integral

I (k)= J d x d yd R 4(x)N (y)e VLs(~ct~-x„tttD —R+ + tttD R+ + Rtt ( —tt.x+(I —A, )y)

X [j 0(bkp)+j 2(bkp)] VIs(p) (23)

where C, cz, a, and b are constants depending only on the

where we have taken

V,", =V„(x„)(o,+at) L„, ..

But xct=xt —xe ——R+x/2 —y/2, where x=—x,„y=ytT,
and R is defined above. So let p=x, t ——R+x/2 —y/2
and change variables x,y, R~x, y,p to get

I~ (k) =I d x d y d p g(x)Pv(y)e

X VIs(p)&~ttt~(x p)PD(y+p)—

)&Rtt ( —Ax+(1 —A)y) .

Now take —A,x+(I—A.)y- —x (for the Stanley-Robson
model A, =0.88 for the mt=m„, 0.79 for mt=m, ), and
use Gaussians for all meson wave functions. We chose
Gaussian parameters by minimizing the expectation
values of the Stanley-Robson potential in each case. Then
Eq. (22) can be done analytically up to a final radial in-
tegral involving the potential. We find that

e~.I,(k) = Cke Yt M, (k)

X I dpp'e 't"-

I

Gaussian parameters of the wave functions and the oscil-
lator parameter chosen for the DD relative motion. Simi-
lar expressions can be obtained for Eqs. (19) and (20).

IV. CALCULATION OF THE WIDTH

Our wave functions have nonrelativistic normalizations.
So the phase-space factor for P'~Pg is

k'~&k dkP=
(2~)' «

EpE~ d Qk
k

My (2m)'
(24)

E =(k'+M&')'~'+(k'+M„')'~'=M&,

with M~, M~, and Mv the masses of g', g, and g. Using
Fermi's "golden rule No. 2," the width for the decay is

EpE~ dQk

7

(25)

where we have summed over final spins I and averaged
over initial spins m'. For (g g lH l

P' ) we take

&@ nlH I@' &= ~~ X(&g n. lH-ID. ,D.,»l&&D. ,D.,»l I@' & &@ n. lH-IF. F.—Nl&&F. ,F.,»l ly' &)
SISP
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where D, ID,2
and F,1F,2 designate the various spin states

DD, F F*,etc. , and q„,g, are the nonstrange and strange
parts of the q. In this equation we have assumed that the
set I ~

D, D, ,Nl ),
~
F, F, ,NI ) I is complete. We expect

this to be a good approximation; more energetic charmed
mesons, such as the p states, are expected to have little ef-
fect at the energy level of the P'. In Eq. (26) the unspeci-
fied Hamiltonian H reduces to H„when taken between

and the charmed-meson states. The amplitudes
(D, D,,,NI

~

P') and (F,,F...NI
~

g') are determined from

pair production —they are, in fact, the coefficients
y~ ~ ~I of Eq. (2). Taking these and evaluating the ex-

c c'
change integrals of Eqs. (18), (19), and (20), we obtain

(q 7J ~H ~l/i' )=—l' (0.0020)

where we have taken N =1, . . . , 4 for I = 1; N = 1 only
for the 1=3 tensor term in the summation of Eq. (26).
Using Eq. (25) with M~ ——3.684, M~ ——3.095,
Mz ——0.549, k =0.196 GeV, this gives

I'g ~——1.6 keV .

plification —A,x+ ( 1 —A, )y~ —x in these integrals, and
the assumption of completeness in Eq. (26). Nevertheless,
the result obtained in this calculation, 1.6 keV, falls ap-
proximately within the range of two standard deviations
of the measured value. This is quite promising and indi-
cates that a mechanism of this type can, in fact, contri-
bute significantly to the width of the f' +fg—decay.

We feel that the reason this mechanism works is that it
is able to circumvent the SU(3)n,„„inhibition. SU(3)~,„„
is broken at three stages in this process: first, in the ener-
gies and wave functions of the D and F'mesons of the qq
model; second, in the pair-production mechanism, which
is mass-dependent; and third, in the exchange integrals.

It is possible that this same process can be used to ex-
plain the isospin-violating g ~gn decay. This decay has
been reported' to have a branching ratio of 0.15+0.6%%uo.

This seems to be too large to be a pure electromagnetic de-
cay and it has been suggested by Bhandari and Wolfen-
stein that this might be caused by coupling through the
electromagnetically split D+-D states. In this regard, a
mechanism of the type presented in this paper with a
three-tiered breaking of the SU(2) symmetry could be use-
ful. A calculation would require, however, that we put
the electromagnetic splittings into the Stanley-Robson
model and into the pair-production process.
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