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The thermalization problem in relativistic heavy-ion collisions is considered. The initial momen-
tum distribution of the quarks and gluons in a nucleus-nucleus collision before thermalization takes
place is first determined. It is then argued that the relativistic Fokker-Planck equation is the ap-
propriate transport equation to describe the time evolution of the quark-gluon system. In terms of a
scaled time variable, the thermalization time is determined without fully solving the Fokker-Planck
equation. The actual proper time, of local thermalization is then estimated on the basis of some
reasonable inputs on the soft interactions among quarks and gluons; the resultant value is of order
0.1 fm/c. The time for global (in rapidity) thermalization is longer.

I. INTRODUCTION

A central unanswered question in ultrarelativistic
heavy-ion collisions concerns the time that it would take
for the quark-qluon system to achieve thermal equilibri-
um. This is important because the lattice gauge calcula-
tions on phase transitions' and the hydrodynamical calcu-
lations on the time evolution of the quark-gluon plasma
all assume that the system under study is in local thermal
equilibrium. But in a laboratory where the quark-gluon
plasma is envisaged to be created in a high energy
nucleus-nucleus collision, it is not a priori impossible that
the thermalization time is longer than the duration of ef-
fective containment, after which the plasma has either too
low a density or too low a temperature to be of much in-
terest. In that case, many of the properties of the phase
transition and their signatures that have been investigated
would be irrelevant to the laboratory situation. For this
reason it is crucial that the thermalization problem is ful-
ly understood.

To study the problem at the level of QCD is difficult
because the perturbative method is not applicable to soft
interactions. The conventional wisdom is that the time
scale for hadronic interaction is of order 1 fm/c. Even on
the basis of that time scale, it is still an open question as
to how long a quark-gluon system achieves local thermal
equilibrium. For, if it takes ten units in that time scale to
thermalize, then it may be too long to justify ignoring
nonequilibrium thermodynamics in the study of macro-
scopic behaviors of the system. The only way to gain a
detailed understanding of the system while it undergoes
thermalization is to find the appropriate transport equa-
tion that describes the time evolution of the momentum
distribution function and to solve it.

In this paper we give arguments in favor of treating the
kinetic theory of the problem by the relativistic Fokker-
Planck equation. The complete solution of the problem is
out of the scope of this work, although a formal solution
in terms of an eigenvalue problem is feasible. We shall,
however, determine the thermalization time in terms of a
scaled time variable without a complete solution of the
transport equation.

There are two parts to this work. The first is the
momentum distribution of the quarks (referring generical-
ly to both quarks and gluons) in a nucleus-nucleus col-
lision assuming no quark interactions. The result of this
part of the work is then used as the initial condition for
the transport equation to be studied in the second part.
We adopt an approximation method for treating the
second part so that the nature of the solution is essentially
independent of the details of the initial distribution. Con-
sequently, the two parts can be read independently. A
reader interested only in the kinetic theory of thermaliza-
tion can proceed directly to Sec. III.

II QUAR. K DISTRIBUTION
IN A COLLISIQNLESS PLASMA

t =r coshy +g/2, (2.1)

z =~ sinhy ——tanh Y,
2

(2.2)

where ~ is the proper time measured from the point of
quark liberation (z+,z )=(O,g). We shall in the follow-

In a collisionless plasma in which the quarks do not in-
teract, the momentum distribution in the fragmentation
region of an 2 +3 collision has already been considered
in Ref. 3. Here we treat the subject in both the central
and fragmentation regions, using kinematic variab1es de-
fined in the c.m. system.

Let the rapidity of each nucleon in a nucleus 3 collid-
ing with another nucleus A be Y so that the velocity is
V=tanhY. Define z+ t+z/V. Then the ——trajectories of
the quarks, after the nuclear collision, are confined to the
forward cone bounded by the z+ and z axes. Consider,
in particular, the right-moving nucleus. Before collision,
each nucleon in it moves along a constant-z line until its
nucleon bag is broken by the first quark from the left-
moving nucleus. That occurs at z+ ——0 on the z axis.
Let g be the value of z along that axis where a nucleon
breaks up into a spray of partons, as shown in Fig. 1. If y
is the rapidity of a quark starting from that point, then its
free-particle trajectory has the time-space coordinates
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moving nucleus. The limits of integration y~ and y2 will
be specified below. Combining (2.4) and (2.6) yields

T" =mr n~ f dy F(y)B~(y)u"(y)u "(y), (2.7)
3')

where n~ X——/L and

Br(y ) =sinh2 Y/sinh( Y+y) . (2.8)

-L /coshY
gg z

L/'coshY

FIG. 1. Kinematical configurations of nucleus-nucleus col-
lision. The heavy lines denote the boundaries of the two nuclei
in space-time. The cell at (~,g) is shown to have two representa-
tive quarks with rapidities y& and y, the former originating from
z+ =0, the latter from z+ ——0, z

ing ignore the transverse coordinates, regarding them as
unchanging for the duration of time evolution of interest
to us. Their effects are taken into account on the average
by assigning a transverse mass rn~ to all quarks. The
momentum of a quark as a fraction of the host nucleon's
momentum is

x =(mz. /M)e~ (2.3)

where M is the nucleon mass.
Let the quark distribution relevant for low-pz interac-

tion ' be E(x). It can be expressed as a sum of terms cor-
responding to quarks and gluons separately, or for con-
venience combined into one generic parton distribution (in
which gluons are converted into quark-antiquark pairs)
The precise form of F(x) will not concern us in this pa-
per; it is only necessary to accept in the context of the
parton model that in the infinite-momentum frame such a
quark distribution exists even before an actual collision
occurs. It is a representation of the nucleon which is
given physical realization at z+ ——0 (and at z =0 for a
left-moving nucleon with corresponding changes in signs
of y). For economy in notation, we denote E(y)
=F(x (y) ).

The energy-momentum tensor at (t,z) is

T"'=g f drkg Z„'5 (Z —Z„(r)),l7 (2.4)

where Z" is the two-vector (t,z) and

k"=mru", u~=(coshy, sinhy) .

The contribution to the summation over the quarks, com-
ing from the right-moving nucleus, but neglecting
cooperative nuclear effects, is

f dg f dy E(y), (2.6)
max

where g,„=L/sinh Y and N is the number of nucleons in
a longitudinal tube of length L in that nucleus in its own
rest frame. There is a similar contribution from the left-

In a similar way the current density can be obtained
3'2Ji'=n„ f dy E(y)B,(y)u&(y) . (2.9)

If (t,z) is in the overlap region of the trajectories of the
colliding nuclei, g,„would be less than L/sinh Y in order
that tanh Y ~ 1. Nevertheless, (2.7) and (2.9) remain valid.
The constraint x &1 is contained in the properties of
E(y); nuclear effects which allow x to exceed 1 are ig-
nored in this treatment.

The dependence of J" and T"' on (t,z) is through the
limits y~ and y2. The quarks in a space-time cell at (t,z)
that have the lowest rapidity y& must originate from the
nucleon at /=0, while the ones that have the highest rapi-
dity y2 must come from g=g,„. Let (t,z) be expressed
as

t =~cosh', z =~sinhg, (2.10)

wsinhg+L(2 cosh Y)

rcoshg —L(2 sinhY)

Note that (r,g) specifies the coordinates of the space-time
cell while y& and y2 are the boundary values of the range
of rapidity that the quarks in it can have, coming from
the right-moving nucleus. For the quarks originating
from the left-moving nucleus, the rapidity range is from

y q to y&, where y ~ is still g but y q satisfies

tanhyz ——

r sinhg —L(2 cosh Y)
tanhy 2

——
r cosh' —L(2sinh Y)

(2.12)

Their contributions to J"and T""have the same forms as
(2.7) and (2.9), except that the integrals are from y2 to y~,
that F(y ) is obtained from F(x ) through the substitution
x=(mz/M)exp( —y —Y), i.e., F(y)~F( —y), and that
Br(y )~B&(—y). We summarize by writing

J~~, „~
——f dy P(r, g,y )u"(y) (2.13)

and

T""(v., ri) =mr f dy P(r, g,y )u "(y)u'(y),

where

(2.14)

P(~, rj,y ) = n~[F(y)By(y )8(y —g)8(y2 —y)

+E(—y)Br( —y)&(y —y~ )&(ri —y)] .

(2.15)

The quark density J is frame dependent, but the

where r is now the proper time measured from
(t,z) =(0,0); it is a notation which we adhere to hereafter,
superseding a different us'age earlier in (2.1) and (2.2).
Then we have y~ ——g and y2 is a function of ~, g, and Y
determined by the relation
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J J"do =f dy, (2.16)

where do& is the spacelike surface Z&dg. Thus we have

dX
d rtP(r, rI,y )cosh(y —g)

dy

=n&r fF(y )B~(y)smh(y —q+ )

+F(—y)B&( —y )sinh(q —y )], (2.17)

rapidity distribution dX/dy of the quarks is not. They
are related by

III. THE THERMALIZATION PROBLEM

We now consider the thermalization process due to the
interactions among the quarks. Let M (r, rI,y) be the dis-
tribution function at the space-time cell located at (r, r)),
when the quarks in the plasma interact in the normal way,
as specified by QCD. P(r, rt,y), being the distribution in
a collisionless plasma, should therefore be the initial dis-
tribution of a (r, g,y). Our problem is to determine how
P(r, r),y) evolves into ~ (r, r),y) at large r.

Let us briefly focus on P(r, rl,y) still. If it is the distri-
bution function for noninteracting quarks, then it should
satisfy the relativistic transport equation for the collision-
less case

where g+ are the solutions of the equation
+y=y2 (r '9+) .

u" d&P(r, r),y ) =0 .

From (2.5) and (2.10) we have

(3.1)

r sinh(y —g+ ) = + LB' '(+y ),
we obtain

dX =%[F(y)+F(—y )],

(2.19)

(2.20}

which is the intuitively correct result in the absence of
quark interaction. This serves as a consistency check on
our result in (2.15) for the rapidity distribution of quarks
in the space-time cell at (t,z) or (r, r)) in a collisionless
plasma.

The determination of the quark distribution given in
(2.15) is exact, subject to the condition that F(x) is the
quark distribution in each nucleon along the z+ and z
axes. While the momentum distribution of quarks in a
nucleon is a well-accepted notion in the parton model, no
statement is made regarding the spatial localization of the
partons. To require all partons in a nucleon to be local-
ized in a section of extent g,„/X [cf. (2.6)] along the z+
axis is actually in violation of the uncertainty principle.
That localization may be sensible for partons with high
rapidity by virtue of Lorentz contraction, but wee partons
with low rapidity are expected to have a spatial uncertain-
ty comparable to the hadronic size. In other words, even
in the limit of infinite Y (for which a hadron is usually
viewed as being an infinitely thin disk} the wee partons
should be spread out over a spatial extent of order 1 fm.
To take this quantum-mechanical effect into account will
necessitate the introduction of a g-dependent quark distri-
bution F(y, g) for each nucleon with appropriate spatial
smearing. It would considerably complicate (2.15) for the
parton distribution in the cell at (r, r) ). Since the effect of
spatial smearing will not influence our considerations
below until a point in Sec. IV where numerical estimates
are made, we shall, for the sake of clarity in our formal
development, ignore the complication and use P(r, r),y ) in
(2.15) as a specific expression of the quark distribution in
a collisionless plasma. The mathematical formalism will
not, of course, depend on (2.15) in detail for its validity.

The function y2+(r, q) denotes the solution of (2.11), i.e.,
(r, r)), and the function y2 (r, r)) is the solution of

(2.12), i.e., y2 ——y2 (r, g). By virtue of an identity that can
be shown, viz. ,

u "8&——cosh(y —r) ) +sinh(y —r) )
Bv 'TB'g

(3.2)

In the expression (2.15) for P(r, r),y ) we note that yz and
yz depend implicitly on ~ and q. In fact, applying the
operator (3.2) to (2.15), one finds that (3.1) is satisfied if

~3& ~32
cosh(y2 —r)) +sinh(yz —g) =0

Bt 'TB'g
(3.3)

and similarly with y2 replaced by yz. After some
straightforward algebra, these equations can be shown to
be identically satisfied with the help of (2.11) and (2.12).
Thus P(r, r),y) is indeed the distribution function for a
collisionless plasma.

We turn our attention now to ~ (r, r),y) which satisfies
the transport equation

u"B„a(r, r),y ) =C[~ ], (3.4)

where C is the collision operator. A complete description
of this operator in the framework of QCD would be diffi-
cult and is not the objective of our endeavor here. As (3.4)
stands, we have already ignored the phase space of the
color variables and the kinetics in the color space. Since
our aim in the following is to obtain a realistic estimate of
the thermalization time, we shall approach the problem in
a way that incorporates as much as possible the nature of
quark interaction that is characterized by QCD, yet sim-
ple enough to be amenable to a solution. An attempt to
solve (3.4) has been initiated by Baym in the relaxation-
time approximation.

In QCD which is asymptotically free, hard collisions
between quarks that involve large momentum transfers
Q are suppressed compared to soft interactions, because
the coupling constant decreases with Ing . Thus in a
quark-gluon plasma thermalization takes place primarily
through many soft collisions. A test quark in the plasma
therefore experiences many small momentum transfers,
and the corresponding transport equation is the Fokker-
Planck equation, which describes a diffusion process in
velocity space. That is the kinetic theory which we adopt
for the thermalization of our system of quarks and
gluons.

In our case the diffusion is in the rapidity space. The
collision operator in the Fokker-Plack equation for our
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problem is then

B
[A (y)~ (r, g,y )]

By

B2+,[B(y)~ (r,g,y )],
By

2

C[a]=—

where

(3.5)

A(y) =f dy'y'w(y, y'), (3.6)

B(y)= —, f dy"'y'w(y y') .

Here, w(y, y ) is the transition rate for a quark at rapidity

y to gain y' from its neighboring quarks and gluons to at-
tain the rapidity y+y . Sufficient knowledge in how to
treat soft interactions in QCD should, in principle, enable
one to determine w(y, y'), and thereby to calculate A(y)
and B(y). In a nucleus-nucleus collision in which the
plasma is expanding, w(y, y') can, in general, also depend
on ~ and g. In the absence of a reliable procedure to ac-
count for all these complications, an approximate method
is to be adopted that will retain the essence of w(y, y'),
while averaging out its detai1s.

Our first step is to express M (r, g,y) in the integral
form

(3.7)

W(r, ri y)= f dy P(r, rjy)f(r, ri y —y) .

Since p(~, g,y) is the initial distribution of ~ (r, g,y) be-
fore interaction, the boundary condition for f(~,ri,y —y)
1s

f(r, n,y y) I.,=0=@V——y), (3.9)

where the z+ ——0 lines are the boundaries along which the
quarks are liberated from their host nucleons. Since our
result will not depend explicitly on Y, we shall simplify
(3.9) by considering its Y—+co limit, i.e.,

f(o v» y)=&(y y) . — — (3.10)

If we confine our attention to small ~, the only region
where numerical estimates will be made in the following,
we may regard v" to be very nearly v"—:(coshy, sinhy) on
account of (3.10). Then we can make the approximation

v"B„[P(r,rjy )f(r, r1,V —y )]

=[v "d„p(r*n y )lf(r, z,y y)—

As r increases, the broadening of f(r,g,y —y) in y —y
determines the thermalization effect that changes
P(r, g,y) into M(r, g,y).

Substituting (3.8) into (3.4) and- (3.5), we have

f dy I v"d„[P(r,q,y )f(~,ay —y )]

P(&,riy )C[f(r,ri,y —y)] I =0 . (3.11)

Thus our problem of solving the Fokker-Planck equation
(3.4) for M(r, g,y) is reduced to solving the same for
f(r, rI,V y)—. The advantage is that the initial condition
for f(r, ri, y —y) is far simpler than that for a (r, q,y).
Our focus will be on how fast f(r, ri,y —y) deviates from
(3.10) at small r. That will form the basis of our defini-
tion of the thermalization time. There is a complication
concerning the question of whether the thermalization is
local or global in rapidity. A discussion of the subject will
be given at the end of this section.

To simplify (3.13) further, we define the variables o and

cr =r cosh(g y), p—=r sinh(rl —y ) (3.14)

+,[B(y)f(~y —y)] .
By

(3.15)

This is essentially the Fokker-Planck equation in its stan-
dard nonrelativistic form, where cr and y —y are the time
and rapidity variables, respectively, defined in the same
proper frame. Hence, without loss of generality we may
set y=O, provided that A(y) and B(y) are given ap-
propriate forms consistent with the approximation already
made.

In replacing the original equation (3.4) and M by the
simplified equation (3.13) on f, whose initial condition is
a 5 function, we have made an approximation which has
the effect of eliminating the explicit dependence on the in-
itial quark distribution I' from the Fokker-Planck equa-
tion. Since P(r, q,y ) is least dependent on q and y in the
central region, we should restrict the applicability of
(3.15) only to the central region also. In that region we
may approximate B (y) by a constant B, whose value will
be estimated in the next section on the basis of some
reasonable properties of w (y,y'). It sets the scale of time
in the problem. If we now define

O=Bo., a(y) = —A(y)/B, (3.16)

where 8 is a dimensionless time variable, then (3.15) be-
comes

f(OV) = +a (y) f(&y ) .B B B

By By
(3.17)

This is in the form of the usual Fokker-Planck equation.
The initial condition is

which measure the time and space, respective1y, of the cell
at (r, g ) in the proper frame of a quark at rapidity y.
Since v "Bzo = 1, and v "8~=0, (3.13) is automatically sa-
tisfied if f(r, rj,y y) is a fu—nction of cr and y —y, satisfy-
ing, along constant p,

B Bf(~,y —y) = — [~(y)f(~ y —y)]
Bo By

2

+P(~, rj,y )v "dg(r, g,y —y) . (3.12) f(O, y) =&(y) . (3.18)

V"BQ(r riy y)=C[f(r '9 y —y)]—. (3.13)

The first term on the right-hand side vanishes because of
(3.1). Since P(r, r1,y) is arbitrary as far as the integral in
(3.11) is concerned, we have

The customary way of determining a (y) is by the require-
ment that the collision operator C acting on an equilibri-
um distribution f0(y) leads to no change, ie.
C[fo(y)]=0. We adopt the same method, and write in
general
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f {y)=& exp[ —L(y}].
Then we have

(3.19)

a(y) =L'(y), (3.20)

L~(y) =P coshy, P =m z /T . (3.21)

On the other hand, if fo is to be a Fermi-Dirac or Bose-
Einstein distribution, then

where the prime denotes derivative.
If the equilibrium distribution is Maxwellian we would

have —Pok"u& in the exponent, which implies, in the
frame y =0,

broadens. Let the width be measured by the quantity

D(9)=I dyy'f(9, y) . (4.1)

The corresponding quantity for the equilibrium distribu-
tion fo(y) is

d3 3 'exp[ —L{y}l
Do —— (4.2)I dy exp[ —L(y)]

Our aim now is to determine the rate at which D(0) ap-
proaches Do. From (3.17) and (3.20) we obtain by partial
integration

Lzz(y)=in(ep'"" +1) (3.22)
D(0) =— D(0)

It should be emphasized that in solving (3.13) rather
than (3.4), with (3.8) being the bridge between ~ (r,q,y)
and f(r, g,y —y), we have limited ourselves to the study
of the first phase of the thermalization process only. For
when the equilibrium distribution fo(y) is attained, the
substitution of fo(y —y ) into (3.8) does not render
~ (r, ri,y ) fully thermalized, i.e., in the form
exp[ L(y ——g )]. A fully thermalized distribution for
~ (v, g,y ) is what we shall call "global" thermalization, in
contrast to fo(y) which we shall call "local" thermaliza-
tion, where the qualifiers, global and loca1, refer to the
rapidity space, and not to space-time coordinates. Those
distributions are defined only in a local space-time cell.
We shall see in the next section that fo(y) has a narrow
width in rapidity, corresponding to a thermal distribution
that can be expected from a dynamical interaction having
only short-range correlation in rapidity. The convolution
of P(~, ri y) with fo(~, g,y —y) in (3.8) results in a locally
thermalized distribution ~ (r,g,y}, since, if P(7,g,y) has
a wide spread in y, (3.8) cannot effect a correlation be-
tween y values that are farther apart than the width of
fo(r, g,y —y). Of course, that is the first step in thermali-
zation before it becomes global. Recall that (3.12) is an
approximation valid for small r. How global thermaliza-
tion can be achieved is not treated in this paper. What we
consider below refers only to local thermalization, except
toward the end of the next section where some remarks
will be made on global thermalization.

=2 1 —f dy yL'(y) f(0,y) (4.3)

so that at 0=0, (3.18) implies

y L,' (y) )/3,y, s =M,F,B,
where

PM=P PF,a=P(I+e ~)

The upper bound on D(0) is therefore

(4.5)

(4.6)

D{0)&2[1—P,D(0)] .

This implies that

D(0) &Ps [1—exp( 2f3s0)] . —

(4.7)

(4.8)

This result is valid so long as (3.17) and (3.20) are valid.
Let us define the thermalization time Oo to be

D(0)=2 .

This result depends only on the validity of the Fokker-
Planck equation (3.17) near 0=0, and not on the details of
fo(y). Note, however, that D(0) =0, if fo(y) is substitut-
ed into (4.3). Thus the system of equations has the neces-
sary property that f(0,y)~fo(y) as 0~oo even though
the equations themselves may not be an accurate descrip-
tion of reality when 0 is large

For the specific forms of fo(y) . considered in (3.21) and
(3.22), we have

IV. THE THERMALIZATION TIME 0o =D{0)/Do (4.9)

There are two aspects in the problem of determining the
(local) thermalization time. One is to determine the time
scale set by 8; the other is to calculate the relaxation time
0o in the scaled-time variable 0. The former requires a
knowledge of the transition rate w(y, y'), while the latter
involves solving (3.17). Both are difficult. We shall cir-
cumvent both in their details, while extracting their key
characteristics. Consider first the second problem.

D(0) =Do[1—exp( —0/0o)] . (4.10)

Equation (4.10) satisfies the bound (4.8), since (4.5), when
applied to (4.2), implies the bound

This definition does not rely on the precise solution D(9}
for all 0, and is in accord with the 0 dependence of the ex-
pected (but unproven) form

Do &Ps (4.11)
A. Thermajization time 80

The normalization of f(0,y ), i.e., its integral over all y,
is independent of 0 because the right-hand side of (3.17) is
a total derivative in y. By virtue of (3.18) we have

I f(0 y )dy = 1 for all 0. As 9 increases, f(0,y )

From (4.4) and (4.9) we have
1

8o ———,Do . (4.12)

Evidently, our definition of Oo also satisfies the upper
bound implied by (4.8) in which the relaxation time is
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FIG. 2. Thermalization time 00 as a function of T. The solid
lines are the results calculated from (4.9) while the dashed lines
are the bounds (2/3, )

' for s=M, F, and 8 which stand for
Maxwell, Fermi and Bose.

where the proportionality constant is of order 1 (fm/c)
In (4.14), W(y —y ~,y ) is the inclusive distribution for the
reaction q(y)+p(y&)~q(y+y')+X, where p is a parton
of any type (quark, antiquark, and gluon). The parton
distribution dX/dy &

is given by (2.20). Thus (4.14)
represents the effect on a quark at y due to all the partons
that it can interact with. It is expected that the quark in-
teracts with many partons simultaneously and stochasti-
cally, and that the form in (4.14) is a gross simplification.
In particular, tc{y,y') may not depend linearly on
dX/dy~. Nevertheless, the expression offers a framework
to discuss the various issues involved.

There are several reasons to believe that 8'(y —y~,'y') is
strongly damped for large ~y —

y& ~. One is the short-
range correlation in rapidity for pions produced in the
central region. It must imply that parton interaction
should also be short ranged. Additional evidence is the
negligible momentum degradation of quarks propagating
through nuclei. It has been shown that partons interact
very ineffectively when they are very far apart in rapidity,
such as in the situation where one belongs to the projec-
tile, the other to the target, in a high-energy scattering
process. Finally, in a more quantitative manner, one can
consider a typical distribution of the type

1f(y) = exp( —/3coshy),
0

(4.15)

(2/3, ) '. lt is an upper bound because D(0) is fixed, while
D( oo ) is bounded from above.

In Fig. 2 are shown the values of 61O as functions of T,
calculated using (4.12), (4.2), (3.21), and (3.22), for the
equilibrium distributions of the M, F, and B types. They
are not too far off from their respective bounds (2P, )

In those plots we have used mr ———, GeV in relating /3 to
T ' [see (3.21)]. Clearly, for T & 250 MeV, the thermali-
zation time Oo is

0O (0.3 (4.13)

in all three cases. This is significant because without the
transport equation there are essentially no physical guide-
lines on the basis of which one can make a realistic esti-
mate of its value.

B. Time scale B

dX
~(y,y') J dy I ~(y —y 1 3"»

y1
(4.14)

%'e now consider the second problem concerning the
time scale set by 8 in (3.16). The problem is, of course,
very difficult. In the absence of a reliable method to treat
QCD scattering in the nonperturbative domain we can
only make qualitative arguments on the subject. Our aim
is to give an order of magnitude estimate based on reason-
able properties of soft interactions. As is evident from the
definition given in (3.7), B is a measure of the rate of
dispersion in rapidity due to scattering. The transition
rate tv(y, y') describes the effect of the stochastic process
which causes a test quark at y to change to y+y' per unit
time. Although its connection with the basic microscopic
processes is not clear, one could argue that it should have
the form

dy'dye' II'{yi,y'»1 dX
2 0y 0

(4.16)

where (dX/dy)o is the rapidity distribution at y =0. The
double integrations are important only in the region

Having separated the different aspects about 8 in
(4.16), we now comment on them in turn. Being of strong
interaction with small momentum transfer, 8'(y &,y')
should be of order one, satisfying the sum rule
jdy' 8'(y~,'y')= I due to the conservation of the test
quark. For the naive distribution W(y~,'y') = —,,

~

y'
~

(1,
one would have J dy'y' W(y&,y')= —,'. Thus the double
integral in (4.16) would yield a result of O(1), which is
likely to remain invariant under fine-tuning of the details
of the dynamical input. From (2.20) we have
(dW/dy)o ——2XF(0). Hence, roughly one should expect
B=XF(0) (fm/c) ' if all X nucleons in each nucleus
contribute to the thermalization of the partons in the
space-time cell considered.

In Sec. II where the parton distribution F(y) in a nu-
cleon is introduced, we did not specify its form for the
sake of brevity. %'e assert here that it is known, and

where Eo is the modified Bessel function. The full widths
by of f (y) at half maximum for T=SO, . . . , 250 MeV at
50 MeV intervals are Ay=0. 93, 1.31, 1.59, 1.82, and 2.02.
Since in a heavy-ion collision it is unlikely that we need to
consider T ~ 250 MeV, the above numbers lead us to be-
lieve that 8'(y —y &,y') is significant only for

~ y —y t ~

( l. As a consequence, the range of y' must also
be bounded similarly due to momentum conservation. In
the central region, the y dependence may be neglected;
hence, we have approximately, from {3.7),
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that F(0)=5, which includes all types of partons. X is
the number of nucleons in a longitudinal tube through the
nucleus averaged over all impact parameters; for
12 & A ~ 238, X ranges between 2 and 5. We thus arrive
at a value B=25 (fm/c) ' for uranium-uranium col-
lisions. Based on that one would have for the proper time
of thermalization [cf. (3.16) and (4.13)]

rp B——'Hp-10 fm/c . (4.17)

rp-0. 1 fm/c . (4.18)

As we have remarked in the last paragraph of Sec. III,
it is the time for local thermalization that we have deter-
mined in (4.18). How much longer the global thermaliza-
tion time is depends on, among other factors, the rapidity
range of the initial distribution P(r, ri,y ) in the space-time
cell at (~,g). It is evident from (3.8) that if the range in y
is not wide, there is not much difference between global
and local therm aliz ation. It is also clear from the
geometry of the collision process, as illustrated in Fig. 1,
that the larger is the value of ~ relative to L/cosh Y, the
narrower is the range of y. We therefore know that the
global and local thermalization times are nearly equal at
asymptotic Y. At finite Y, if r is small enough so that
the cell (r, q) is inside the overlap region of the incident
nuclei (see Fig. 1), then the range of y would be of order
2 Y, and global thermalization cannot be expected. Thus
global thermalization time must be greater than l./sinh Y,
which differs from (4.18) in accordance with the experi-
mental variables.

This is too small to justify including the partons from all
nucleons. in the thermalization process. The reason is that
the interaction region is not infinitely dense no matter
how high the incident energy is. At finite Y the contract-
ed spatial dimension is of order L/cosh Y, as indicated in
Fig. 1. At asymptotic Y the wee partons would still occu-
py a spatial volume of the order of 1 fm, as discussed in
the last paragraph of Sec. II. In the short time interval of
order 10 fm/c not all the partons in the volume of
longitudinal extent not less than 1 fm can interact with a
test quark. Since (2.20) is obtained after integrating over
the entire longitudinal dimension, it gives an overestimate
of the number of partons at y =0 that can contribute to
the thermalization process. If on the grounds of causality
we assume that the number of partons interacting with a
test quark is proportional to r up to 1 fm/c (i.e., B ~ rp/I
fm/c), then the proper time of thermalization is roughly
the geometrical mean between 1 fm/c and the value in
(4.17), i.e.,

by convoluting the colhsionless distribution with an
f(r, rj,y) which plays the role of an evolution function.
This function f(r, ri,y) satisfies the relativistic Fokker-
Planck equation with 5(y) as the initial condition. The
broadening of f(~,g,y) is a manifestation of the local-
thermalization process, so its width provides a good mea-
sure of the time evolution of that process. While the
determination of f(r, g,y) would require a complete solu-
tion of the Fokker-Planck equation, the initial rate of
change of its width does not. We have therefore been able
to determine the local-thermalization time rather reliably,
but only in terms of a scaled time variable. The scale it-
.self is far more difficult to ascertain due to the complica-
tions associated with soft interactions. However, the
physical factors that we have examined suggest that the
local-thermalization time should be of order 0.1 fm/c.
The global-thermalization time would be larger depending
on collision parameters. Our estimate is that if the in-
cident energy is high enough so that the overlap region of
the contracted nuclei does not exceed 1 fm, the time for
global thermalization (in rapidity) should not far exceed 1

fm/c. The result justifies the usual assumption about
thermal equilibrium made in the phase-transition and hy-
drodynamical calculations.

A number of areas in this subject deserve further inves-
tigation. An obvious one is the problem of understanding
better the transition rate w(y, y') in QCD. It is related to
the question of whether a connection can be established
between soft interactions in QCD and stochastic process-
es, the phenomenological significance of which has al-
ready been pointed out by Carruthers. ' Our result may
allay any concerns for the need of nonequilibrium thermo-
dynamics in treating certain problems in heavy-ion col-
lisions. However, the Fokker-Planck equation does not
provide a close link between the microscopic and macro-
scopic properties of the system. In treating Brownian
motion it describes the approach to thermal equilibrium
with the surrounding bath of a given temperature. For
the quark-gluon system we have no thermal bath. The
test quark is in the same system of partons that move to-
ward thermal equilibrium with one another attaining a
temperature that must be self-consistent. We have not ad-
dressed the question of what that temperature is. Finally,
the detail dynamical mechanism of how a quark-gluon
system can attain global thermalization in rapidity when
the basic interaction is shortranged (in rapidity) remains
an open question. Our crude estimate is based mainly on
geometrical and kinematical considerations. A more reli-
able determination of the global-thermalization time can
follow only upon a better understanding of the dynamics
of the problem.

V. CONCLUSION

The thermalization problem has been investigated in
this work in several stages. The quark distribution in a
collisionless plasma is first determined for the kinematical
conditions of a high-energy nucleus-nucleus collision.
The effect of quark interactions is then taken into account
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